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We generalize recent studies of particle transport to the case of quasi-
periodic potentials with quasiperiodic driving. We obtain the relevant set
of space-time symmetries and the way of violating them in order to obtain
directed transport. Numerical results confirm the predicted rectification
for the dissipationless case.
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1. Introduction

The possibility to rectify transport with the help of fluctuations has been
discussed for several years with respect to e.g. molecular motors and other
nonequilibrium processes in biological systems [1], electrical currents in su-
perlattices [2], and voltages in Josephson junction coupled systems [3, 4].
The fluctuations have zero mean value. The most simple underlying mathe-
matical models correspond to a classical particle moving in a space-periodic
but asymmetric (ratchet) potential and allowed to study the resulting di-

rected current in great detail [5] (for a review see [6]). A recently elaborated
symmetry approach to this problem established a clear relationship between
directed currents and broken space-time symmetries [7–9]. The essential step
was to separate the unavoidable correlations in the fluctuations from the un-
correlated ones. This is easily obtained by replacing the fluctuations as a
superposition of ac driving fields and uncorrelated white noise. An impor-
tant consequence is that the symmetries may be broken either by violating
the reflection symmetry of the potential in space or by violating the shift
symmetry of the ac fields. Thus, a particle may display a directed motion
also in the case of a space-symmetric potential. Another interesting result
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is the persistence of directed currents in the Hamiltonian limit of systems
exposed to ac fields but decoupled from the heat bath [7, 8] as well as in
the case of absence of noise (deterministic ratchets) [10]. The underlying
concept of symmetry analysis and breaking has been successfully applied
to other cases, e.g. to obtain a transverse magnetization of driven quantum
spins without and with interaction [11] and an energy transport in spatially
extended systems [12].

While the symmetry analysis is straightforward for external fields which
are periodic in time, the generalization to fields which vary quasiperiodically
in time is less obvious. The adiabatic limit of slowly varying fields allows
to conclude that the way of symmetry breaking, which leads to directed
transport, is not substantially altered [13]. However dynamical symmetries
may loose to some extend their meaning in this limit. A pioneering break-
through was the symmetry study of an overdamped Josephson junction with
a two-frequency quasiperiodic drive by Neumann and Pikovsky [14]. In this
work, we will extend their analysis to the general case of a system with
an N -frequency drive, and also to spatial potentials which vary quasiperi-
odically. Our study will incorporate both the case with damping and the
dissipationless (Hamiltonian) limit. We will provide with classifications of
various quasiperiodic functions in terms of their discrete symmetries relevant
for studying the appearance of directed transport. We will finally present
numerical results for the Hamiltonian case which support our symmetry
studies.

2. Symmetry analysis

In this section we will present our results on the analysis of space-time
symmetries of the following equation:

mẍ + γẋ − f(x) − E(t) − ξ(t) = 0 . (1)

Here ξ(t) is a Gaussian white noise, E(t) is an external time-dependent
field and f(x) is the force generated by a spatially dependent potential
U ′(x) = −f(x), m is the mass of a particle located at coordinate x, and
γ a coefficient characterizing the strength of an assumed external friction
force. The two functions E(t) and f(x) are assumed to be bounded and of
zero average. In what follows all symmetries considered will contain discrete
operations in time, which transform a given realization of ξ(t) into an equiv-
alent realization with the same statistical weight [6,9]. Consequently we can
skip this term from further symmetry considerations. The essential point is
that we are left with a deterministic equation. A possible symmetry oper-
ation which leaves this equation invariant will in general transform a given
trajectory (solution) in phase space into another trajectory (solution). The
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question we are going to investigate is whether (1) allows for the generation
of a nonzero average current

J = 〈ẋ〉 6= 0 , (2)

where the average is done with respect to time. Consequently we are looking
for symmetry operations which will change the sign of ẋ. If such a symmetry
is identified under certain conditions, and if the corresponding symmetry
related trajectories have the same statistical weight, their contributions to
an average current will annihilate each other. As a result, in such a case the
predicted current will be zero. By violating the conditions for the symmetry
to be in place, we expect to observe a nonzero average current (for details
see also [13]).

2.1. The case of periodic functions E(t) and f(x)

We briefly review the symmetry analysis for the case of periodic functions
E(t) = E(t + T ) and f(x) = f(x + λ). As a prerequisite note that a
periodic function g(z) = g(z + zp) with zero mean can have three more
discrete symmetries. It can be symmetric gs(z) = gs(−z), antisymmetric
ga(z) = −ga(−z) around certain argument values (which are for simplicity
put to zero here), and can be shift symmetric gsh(z) = −gsh(z + zp/2). A
given function g(z) may either have none of these symmetries, exactly one
or all three. One of the simplest ways to break all three symmetries is to
choose g(z) = g1 cos(ωz) + g2 cos(2ωz + δ). If both g1 and g2 are nonzero,
g 6= gsh. For δ = mπ it follows g = gs, and for δ = (1/2 + m)π it follows
g = ga (here m is an integer). For all other values of δ the function has none
of the above symmetries.

The following current-relevant symmetries can be identified for (1) [7–9]:

Ŝa : x → −x , t → t +
T

2
, if {fa , Esh} ;

Ŝb : x → x , t → −t , if {Es , γ = 0} ;

Ŝc : x → x +
λ

2
, t → −t , if {fsh , Ea , m = 0} . (3)

By a proper choice of the functions f(x) and E(t) conditions for all sym-
metries are violated, and consequently a nonzero current is expected. This
has been confirmed by many numerical studies [7, 8, 16], and even recently
by experimental observations of the rectified motion of cold atoms in optical
lattices [15]. These results show that typically the largest possible values
of the directed current are obtained in the underdamped limit close to the
Hamiltonian case γ = 0 [7, 8, 16]. In this limit the dynamical mechanisms
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have been studied [13, 16]. As a result the main contributions are due to
nonlinear resonances [16], and efficient sum rules [17] allow to account for
the average current value.

2.2. The case of quasiperiodic functions

Here we follow and generalize the symmetry analysis approach done in
[14]. We consider a quasiperiodic function g(z) to be of the form

g(z) ≡ g̃(z1, z2, . . . , zN ) ,
dzi

dz
= Ω i , (4)

where all ratios Ωi/Ωj are irrational if i 6=j and g̃(z1, z2, . . . , zi+2π, . . . , zN )=
g̃(z1, z2, . . . , zi, . . . , zN ) for any i. Such function may have numerous sym-
metries. With respect to the following symmetry analysis of the equation of
motion we will list here only those symmetries of g̃ which are of relevance. It
can be symmetric g̃s(z1, z2, . . . , zN ) = g̃s(−z1,−z2, . . . ,−zN ), antisymmetric
g̃a(z1, z2, . . . , zN ) = −g̃a(−z1,−z2, . . . ,−zN ). It can be also shift-symmetric
for a given set of indices g̃sh,{i,j,...,m} which means that g̃ changes sign when
a shift by π is performed in the direction of each zi, zj , . . . , zm only, leaving
the other variables unchanged.

The relevant symmetry properties of g̃ are thus studied on the compact
space of variables {z1, z2, . . . , zN}. The irrationality of the frequency ratios
guarantees that in the course of evolution of z this compact space is densily
scanned by these variables with uniform density in the limit of large z. At
the same time we note that it is always possible to find a large enough value
Z such that

lim
τ→∞

1

τ

τ∫

0

(g(z + Z) − g(z))2dz < ε (5)

with (arbitrarily) small absolute value of ε. For a given value of ε this defines
a quasiperiod Z of the function g(z).

In order to make the symmetry analysis of the equation of motion trans-
parent, we rewrite it (skipping the noise term) in the following form:

mẍ + γẋ − f(x) − E(φ1, φ2, . . . , φN ) = 0 ,

φ̇1 = ω1 ,

φ̇2 = ω2 ,

.

.

.

φ̇N = ωN . (6)
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The function f(x) is also assumed to be quasiperiodic with M corresponding
spatial frequencies.

The following symmetries can be identified, which change the sign of 〈ẋ〉
and leave (6) unchanged:

S̃a : x → −x , φi,j,...,m → φi,j,...,m + π , if {fa , Esh,{i,j,...,m}} , (7)

S̃b : x → x , t → −t , if {Es , γ = 0} . (8)

The symmetry S̃a is actually a set of various symmetry operations which
are defined by the given subset of indices {i, j, . . . ,m}.

The prediction then is that if for a given set of parameters any of the
relevant symmetries (8) is fulfilled, the average current will be zero. If
however the choice of functions f(x) and E(t) is such that the symmetries
are violated, a nonzero current can be expected to appear.

3. Numerical studies

We considered three different cases for our numerical studies. The first
one (case I) is with quasiperiodic E(t) and periodic f(x):

f(x) = sin(x) ,

E(t) = a cos(ω1t) + b cos(ω2t + δ1) + c cos(2ω1t + δ2) . (9)

The second case II is with quasiperiodic f(x) and periodic E(t):

f(x) = sin(x) + b cos(ω2x + δ1) ,

E(t) = a cos(ω1t) + c cos(2ω1t + δ2) . (10)

The third one (case III) is with both quasiperiodic f(x) and E(t):

f(x) = sin(x) + b cos(ω2x + δ1) ,

E(t) = a cos(ω1t) + c cos(2ω1t + δ2) + d cos(ω3t + δ3) . (11)

The numerical values of the parameters are:

a = −0.33 , b = 0.24 , c = 0.123 , d = 0.2 ,

δ1 = 1.2 , δ2 = 1 , δ3 = 0.75 ,

ω1 = 1 , ω2 =
√

5 − 1 , ω3 =
√

2.5 . (12)

All three cases are chosen such that S̃a and S̃b are violated. We will consider
here only the Hamiltonian case γ = 0, ξ = 0 and m = 1. The numerical
integration of (6) is done using a symplectic leap-frog algorithm with time
step 0.01.
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As is well known for the case of periodic functions f(x) and E(t), the
strongest contributions to a nonzero current originate from the stochastic
layer in the phase space. This layer appears because of the underlying nonin-
tegrability of the driven system. It is bounded by invariant tori and encloses
internal resonances (regular islands). For periodic functions f(x) and E(t)
it is possible to visualize this stochastic layer using a stroboscopic Poincare
map in time (after each period of the drive E(T )) by plotting p = ẋ and
xmod2π. The periodicity of the potential in x can be used to shift the x
coordinate by multiples of the spatial period of f(x) into a given stripe of
length of the spatial period. Invariant tori will be then characterized by a
certain winding number or average velocity on such a torus. The dynamical
mechanism of rectification in the stochastic layer is due to desymmetriza-
tions of probabilities to enter and stay in the fractal region of boundaries
of the stochastic layer close to invariant tori with nonzero winding num-
bers [13, 16]. An efficient sum rule allows to compute the average current
using the area of the stochastic layer, the areas of enclosed regular islands
and their corresponding winding numbers (see [17] for details).

For quasiperiodic functions it is not that straightforward to study Poincare
plots. Nevertheless we performed such an analysis, using for the stroboscopic
period 2π/ω1 in time, and still folding x into a stripe of length 2π.

In Fig. 1 we plot the x(t) dependence for case I. We observe a nonzero
average current, which is interrupted by long and rare quasiballistic flights
due to the abovementioned dynamics in the boundary regions of the stochas-
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Fig. 1. x(t) dependence for case I (see text for parameters). Note the large scales

of both time and space. Inset: Poincare map for the trajectory. After each time

2π the coordinate xmod2π and the velocity p = ẋ are plotted.
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tic layer. A rough estimate for the average velocity from these data suggests
J ≈ 0.02 . . . 0.03. In the inset we show a Poincare map. Because of the
quasiperiodicity of E(t) our method is not capable of detecting possible reg-
ular islands embedded into the stochastic layer. The layer is bounded from
above and below by invariant tori with average kinetic energies T+ = 3.47
and T− = 3.24, respectively. Assuming that embedded islands are not
present, using a rough estimate for the layer width in p-direction ∆p = 5
and using the sum rule Jsr = (T+ − T−)/∆p [17] we obtain an estimate for
the current Jsr ≈ 0.009.

Case II is shown in Fig. 2. Here the current is roughly one order of
magnitude larger J ≈ 0.2. With the same assumptions as for case I the sum
rule estimate yields Jsr ≈ 0.088 using T+ = 2.87, T− = 2.43 and ∆p = 5.
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Fig. 2. x(t) dependence for case II (see text for parameters). Note the large scales

of both time and space. Inset: Poincare map for the trajectory. After each time

2π the coordinate xmod2π and the velocity p = ẋ are plotted.

Finally case III is depicted in Fig. 3. Again the current is roughly one or-
der of magnitude larger J ≈ 0.2 compared to case I. With the same assump-
tions as for case I the sum rule estimate yields Jsr ≈ 0.19 using T+ = 4.74,
T− = 3.78 and ∆p = 5.

Note that for case I J is 2 times smaller than Jsr, while for case II it is
2 times larger.
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Fig. 3. x(t) dependence for case III (see text for parameters). Note the large scales

of both time and space. Inset: Poincare map for the trajectory. After each time

2π the coordinate xmod2π and the velocity p = ẋ are plotted.

4. Discussion

The obtained symmetry analysis and its predictions concerning directed
transport have been nicely confirmed in the Hamiltonian limit. In addition
we tested various situations where at least one of the symmetries is not
violated, and checked that the averaged current is indeed zero. We also
tested numerically the case of weak damping and stochastic forcing. In
analogy to [13] we found that the dissipation is limiting the time of duration
of quasiballistic flights and leads to a reduction of the averaged current value.

A number of problems are still to be investigated. First we did not
observe fractality in the x(t) curves with respect to ballistic flights, as com-
pared to the case of periodic functions [16]. Instead we observe the absence
of intermediate ballistic flight times. We find only very long flights (see
Figs. 1–3) and relatively short flights which are 2–3 orders of magnitude
shorter. This implies that the structure of the boundaries of the stochastic
layer is significantly altered as compared to the case of periodic functions.

Second we note some discrepancy between the estimated current value
Jsr using the sum rule [17] and the numerically observed one J , although the
orders of magnitude coincide. The main reason may be the assumption that
we can neglect possible regular islands embedded in the stochastic layer. In
fact these islands most probably exist, but we have not found so far an easy
numerical method to reliably extract them from the data.

Finally we expect these systems to be characterized by several competing
length and time scales. The characteristic structure of the phase space flow
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of our system implies certain length and time scales, which are related to
the spatial and temporal periods in the case of strictly periodic functions.
Taking an ε much smaller in (5), we will obtain some large but finite second
space and time scales, on which the functions f(x) and E(t) will be nearly
periodic. We speculate that these competing scales are the origin of the
disappearance of fractality in the phase space flow on certain times and
spatial distances. These issues will be studied in more detail in future work.

We thank A. Miroshnichenko for a helpful discussions and a critical read-
ing of the manuscript.
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