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The exact formulae for spectra of equilibrium diffusion in a fixed bi-
stable piecewise linear potential and in a randomly flipping monostable
potential are derived. Our results are valid for arbitrary intensity of driv-
ing white Gaussian noise and arbitrary parameters of potential profiles. We
find: (i) an exponentially rapid narrowing of the spectrum with increasing
height of the potential barrier, for fixed bistable potential; (ii) a nonlinear
phenomenon, which manifests in the narrowing of the spectrum with in-
creasing mean rate of flippings, and (iii) a nonmonotonic behaviour of the
spectrum at zero frequency, as a function of the mean rate of switchings,
for randomly switching potential. The last feature is a new characterisation
of resonant activation phenomenon.

PACS numbers: 05.40–a, 05.10.Gg, 02.50.Ga

1. Introduction

Spectral densities of fluctuations provide an important tool to charac-
terise physical systems, because they can be measured directly in experi-
ments. The investigations of spectra are useful to observe and analyse the
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interplay between fluctuations, relaxation and nonlinearity which are inher-
ent to real physical systems. This interplay ranks among the most challeng-
ing problems of modern nonlinear physics and forms the basis of well-known
nonlinear phenomena like stochastic resonance [1], resonant activation [2],
noise-enhanced stability [3, 4], ratchet-effect [5, 6], etc.

The exact formulae for spectra of fluctuations in nonlinear dynamical
systems were first derived for thermal diffusion in fixed potentials. Caughey
and Dienes [7] pioneered in applying analytical method based on Laplace
transform of conditional probability density to the first-order system with
V -shaped potential. Another approach has its origins in the expansion of
probability density of transitions in terms of Fokker–Planck kinetic opera-
tor eigenfunctions. This method was applied in [8] for obtaining correlation
function of a bistable system with rectangular potential profile. We would
also mention theoretical and numerical calculations reported in Refs. [9],
concerning the spectra of underdamped double-well system driven by white
Gaussian noise. In these papers the spectral peaks corresponding to stan-
dard resonance and transitions between steady states have been revealed.
Stationary spectra of fluctuations for monostable and bistable potential pro-
files, by analog simulations of underdamped stochastic system driven by
coloured noise, have been experimentally obtained in Ref. [10]. The model
of one-dimensional Brownian motion in singular potential like the potential
of hydrogen atom was investigated in [11]. Authors detected some region of
power spectrum with 1/f frequency dependence.

Despite a lot of work has been done to analyse spectra of fluctuations in
the presence of one noise source, there is however lack of investigation on the
so-called two-noise system spectra of fluctuations. A paradigmatic model is
the overdamped Brownian motion in a randomly fluctuating potential. This
model is being studied intensively in view of wide application in physics,
chemistry and biology. However, an exact analytical results have been ob-
tained only for escape rates, as mean first-passage times and lifetimes [4,12]
and stationary probability distributions of Brownian motion [13]. In this
paper we report the exact calculations of diffusion spectrum for Brownian
particle moving in fixed double-well potential and dichotomously switching
linear potential. Our theoretical results, based on Markovian theory and on
Laplace transform of conditional probability density, are valid for arbitrary
intensity of driving white Gaussian noise and arbitrary parameters of po-
tential profiles. We find: (i) a narrowing of the spectrum with increasing
height of the potential barrier for fixed potential; (ii) a narrowing of the
spectrum with increasing mean rate of flippings, and (iii) a nonmonotonic
behaviour of the spectrum at zero frequency, as a function of the mean rate
of switchings, for randomly switching potential. This last behaviour is a new
characterisation of resonant activation phenomenon [2].
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2. Basic equations

Let us consider an overdamped Brownian motion in a fixed potential
U(x) described by Langevin equation

dx

dt
= −dU (x)

dx
+ ξ (t) , (1)

where x(t) is the position of Brownian particle, ξ(t) is a δ-correlated Gaus-
sian noise with zero mean and intensity 2D. The Fokker–Planck equa-
tion, or Smoluchowski equation [14], for the conditional probability density
W (x, t |x0, 0) of Markovian random process x(t), corresponding to (1), is

∂W

∂t
=

∂

∂x

[

dU (x)

dx
W

]

+ D
∂2W

∂x2
(2)

with initial condition

W (x, 0 |x0, 0) = δ (x − x0) . (3)

Let us assume that a stationary regime exists, then the probabilistic flow
equals zero at x → ±∞

[

D
∂W

∂x
+ U ′ (x) W

]

x=±∞

= 0 . (4)

The correlation function of Brownian particle displacement x(t) in a station-
ary state can be calculated as [15]

K [τ ] =

+∞
∫

−∞

x0W∞ (x0) dx0

+∞
∫

−∞

xW (x, τ |x0, 0)dx , (5)

where W∞(x) is the stationary probability density (SPD) [14,16]

W∞ (x) = Ce−U(x)/D, C =





+∞
∫

−∞

e−U(x)/Ddx





−1

. (6)

To obtain the correlation function K [τ ] we need to solve the second-order
partial differential equation (2) using eigenfunction expansion [8, 14]. How-
ever, as shown in [7, 15], the determination of SPD (6) together with the
Laplace transform method are sufficient for calculating the spectral density.
In fact from Wiener–Khinchin theorem we have

S (ω) =
1

2π

+∞
∫

−∞

K [τ ] cos (ωτ) dτ =
1

π
Re
{

K̃ [iω]
}

, (7)
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where K̃ [p] is Laplace transform of K [τ ]. By Laplace transforming (2), with
initial condition (3), we obtain

D
d2Y

dx2
+

d

dx

[

U ′ (x) Y
]

− pY = −δ (x − x0) , (8)

i.e. a second-order ordinary differential equation, where Y (x, x0, p) is the
Laplace transform of conditional probability density

Y (x, x0, p) =

+∞
∫

0

e−ptW (x, t |x0, 0)dt . (9)

According to Eqs. (4),(9) we solve (8) with boundary conditions
[

D
dY

dx
+ U ′ (x)Y

]

x=±∞

= 0 . (10)

By using Eqs. (5) and (9) the Laplace transform K̃ [p] of the correlation
function is

K̃ [p] =

+∞
∫

−∞

x0W∞ (x0) dx0

+∞
∫

−∞

xY (x, x0, p) dx . (11)

Then, after substitution of p = iω in (11) we can find the spectral density
S(ω) from (7). Thus for calculating spectrum it will suffice to solve ordinary
differential equation (8) and make double integration, instead of solving
partial differential equation (2). To end we need the explicit expression of
the internal integral in (11). By multiplying both parts of (8) on x and
integrating it over the total area, using boundary conditions (10), we obtain

G (x0, p) ≡
+∞
∫

−∞

xY (x, x0, p) dx =
x0

p
− D

p
[Y (∞, x0, p) − Y (−∞, x0, p)]

−1

p

+∞
∫

−∞

U ′ (x)Y (x, x0, p) dx . (12)

3. Fixed bistable potential

Let us calculate the spectral density for symmetric double-well piecewise
linear potential (see Fig. 1)

U(x) =

{

E (1 − |x| /L) , |x| ≤ L ,
+∞, |x| > L .

(13)
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L0

E

U(x)

x0-L x

Fig. 1. Double-well piecewise linear potential.

Substituting (13) in (8),(10) we obtain the following equation for the Laplace
transform Y (x, x0, p) of conditional probability density

DY ′′ − E

L
[sgn (x) Y ]′ − pY = −δ (x − x0) (14)

with the conditions at reflecting boundaries x = ±L

[

DY ′ − E

L
sgn (x) Y

]

x=±L

= 0 , (15)

where sgn(x) is the sign function. Because of normalisation condition for
Y (x, x0, p)

L
∫

−L

Y (x, x0, p) dx =
1

p
,

equation (12) gives

G (x0, p) =
x0

p
+

E

p2L
− D

p
[Y (L, x0, p) − Y (−L, x0, p)]

−2E

pL

0
∫

−L

Y (x, x0, p) dx . (16)

To derive the function Y (x, x0, p) we consider first x0 > 0 and solve
homogeneous equation (14) in regions −L ≤ x ≤ 0, 0 ≤ x ≤ x0, x0 ≤ x ≤ L
separately. Then we apply the continuity conditions at the points x = 0 and
x = x0
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D
[

Y ′ (+0, x0, p) − Y ′ (−0, x0, p)
]

− E

L
[Y (+0, x0, p) + Y (−0, x0, p)] = 0 ,

D
[

Y ′ (x0 + 0, x0, p) − Y ′ (x0 − 0, x0, p)
]

= −1 ,

Y (+0, x0, p) = Y (−0, x0, p) ,

Y (x0 + 0, x0, p) = Y (x0 − 0, x0, p) . (17)

Solving (14) in above-mentioned regions and taking into account the bound-
ary conditions (15) we arrive at

Y (x, x0, p) =







c1

[

e−λ1(x+L) − (λ2 /λ1 ) e−λ2(x+L)
]

,−L ≤ x ≤ 0,
c2e

λ1x + c3e
λ2x, 0 ≤ x ≤ x0,

c4

[

eλ1(x−L) − (λ2 /λ1 ) eλ2(x−L)
]

, x0 ≤ x ≤ L ,
(18)

where λ1,2 =
(

E ±
√

E2 + 4pDL2
)

/(2DL) . Substitution of (18) in (16)

gives

G (x0, p) =
x0

p
+

E

p2L
+

D

p

(

1 − λ2

λ1

)

(c1 − c4)

+
2E

pLλ1
c1

(

e−λ1L − e−λ2L
)

. (19)

Calculating unknown constants c1 and c4 from the continuity conditions (17)
and substituting them in (19) we have

G (x0, p) =
x0

p
+

E

p2L
+

e−λ1x0

p2L

pL + Eλ2e
−λ2L

λ1e−λ1L − λ2e−λ2L

+
e−λ2x0

p2L

pL + Eλ1e
−λ1L

λ2e−λ2L − λ1e−λ1L
. (20)

To obtain the function G (x0, p) in the region x0 < 0 we use symmetry
considerations. Because of the symmetry of the potential U(x), the SPD (6)
is an even function of x, W (x, t |x0, 0) = W (−x, t |−x0, 0) and Y (x, x0, p) =
Y (−x,−x0, p). So G (x0, p) is an odd function of variable x0: G (x0, p) =
−G (−x0, p), and from (6),(11) we obtain

K̃ [p] =
β

(eβ − 1) L

L
∫

0

x0G (x0, p) eβx0/Ldx0 , (21)

where β = E /D is the dimensionless height of potential barrier. Substitu-
tion of (20) in (21) and subsequent integration gives the following result for
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Laplace transform of correlation function in stationary state

K̃ [p] =

〈

x2
〉

p
− D

p2
+

βD

p2 (1 − e−β) (α1eα2 − α2eα1)

×
{

eα1 − eα2 + 4β

[

sinh2 (α2 /2)

α2
− sinh2 (α1 /2)

α1

]}

, (22)

where α1,2 =
(

β ±
√

β2 + 4pL2 /D
)

/2. To obtain the spectral density of

coordinate fluctuations of Brownian particle moving in a double-well poten-
tial (13) it remains to put in (22) p = iω and find its real part. However,
we will not report here the exact formula for the spectrum because of its
complicated expression. We give here the spectrum for particular case of a
rectangular potential well, i.e. in the absence of a barrier (β = 0). We have
〈

x2
〉

= L2 /3 and from (22) we get

K̃ [p] =
L2

3p
+

D

p2

(

tanh L
√

p /D

L
√

p /D
− 1

)

, (23)

so after substitution of p = iω in (23) we arrive finally at (ω > 0)

S (ω) =
D

πω2

(

1 − 1

L

√

D

2ω
· sinhL

√

2ω /D + sin L
√

2ω /D

cosh L
√

2ω /D + cos L
√

2ω /D

)

. (24)

4. Discussions

Spectral densities of Brownian diffusion, obtained from (22), for different
values of the potential barrier height are plotted in Fig. 2. As shown in Fig. 2,

-1 -0.5 0.5 1

0.6

1

2
3

4

S(w)

w0

1.2

Fig. 2. Spectral density of Brownian particle displacement for different values of

dimensionless height (β = E/D) of potential barrier: curve 1 — β = 2, curve 2 —

β = 3, curve 3 — β = 4, curve 4 — β = 5. Parameters are L = 1, D = 1.
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the spectral density has a maximum at zero frequency, which is a general
property of Markovian random processes. We see also that the spectrum
S(ω) narrows very rapidly with increasing height of potential barrier, and
its value at zero frequency increases fast. This nonlinear phenomenon is
due to very rare transitions between steady states when the barrier is high
with respect to the noise intensity [17]. Brownian particles therefore move
within a potential well for most of the time, and their displacements vary
very slowly. As a result, the width of spectral density decreases.

To verify this hypothesis we compare the behaviours of the spectral width
and the mean rate of transitions between steady states as a function of
potential barrier height. First we find the value of spectral density at zero
frequency S(0) = K̃ [0] /π . Let us expand the function (22) in power series
on small parameter α2. Then we express this parameter in terms of small
parameter p

α2 ≃ −pL2

βD
+

p2L4

β3D2
,

and after calculation of the limit p → 0, we get

S(0) =
L4

πD

(β − 1)2 e2β −
(

β3 − 3β2 + 4β − 4
)

eβ − 5

β4 (eβ − 1)
. (25)

The value S(0) increases therefore as an exponential law S(0) ∼ eβ
/

β2 , with

increasing height of potential barrier β and takes the finite value 2L4/(15πD)
for β = 0. This value corresponds to a diffusion in rectangular potential
well (see (24)). The width of the spectral density with a maximum at zero
frequency can be defined as [16]

Π =

+∞
∫

0

S(ω)dω

S(0)
=

〈

x2
〉

2S(0)
. (26)

The variance of Brownian particle position in stationary state from Eqs. (6)
and (13) is

〈

x2
〉

=
L2
[(

β2 − 2β + 2
)

eβ − 2
]

β2 (eβ − 1)
(27)

and increases monotonically from the value L2/3, which takes for β → 0,
to the value L2, which takes for β → ∞, due to the finite area of diffusion.
Substituting Eqs. (25) and (27) in Eq. (26) we obtain

Π =
πD

2L2

β2
[(

β2 − 2β + 2
)

eβ − 2
]

(β − 1)2 e2β − (β3 − 3β2 + 4β − 4) eβ − 5
. (28)
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By introducing correlation time similar to (26)

τc =

+∞
∫

0

K[τ ]dτ

K[0]

we find from Eqs. (7) and (26)

τc =
πS (0)

〈x2〉 =
π

2Π
,

and equation (28) gives the exact correlation time for bistable potential,
recently obtained in [15]. The spectral width decreases monotonically with
increasing height of potential barrier from the value 5πD

/(

4L2
)

, taken for
β → 0, to zero, taken for β → ∞.

The mean rate of transitions, from one stable state to the other, can be
determined through the mean first passage time (MFPT) to reach the top
of barrier (x = 0) from the bottom of well (x = L), by solving the following
differential equation [14, 16] (x > 0)

Dτ ′′ (x) +
E

L
τ ′ (x) = −1

with boundary conditions: τ ′ (L) = 0, τ (0) = 0. After simple calculations
we get for τ(L)

τ (L) =
L2

D

eβ − 1 − β

β2
,

and for mean rate of transitions between two steady states

Ω =
D

L2

β2

eβ − 1 − β
. (29)

In Fig. 3 we report the behaviours of Π and Ω as a functions of dimen-
sionless height of potential barrier β. The curves expressed by Eqs. (28) and
(29), practically coincide at large values of β. Thus, the mean rate of tran-
sitions is approximately the spectral width of Brownian particle coordinate
fluctuations in a stationary state.

5. Randomly switching monostable potential

Let us consider now two-noise nonlinear system, namely, one-dimensional
overdamped Brownian motion in a fluctuating potential described by the
following Langevin equation

dx

dt
= −∂Φ (x, t)

∂x
+ ξ (t) , (30)
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0

P

W

Fig. 3. The spectral width and the mean rate of transitions between two steady

states vs the dimensionless height of potential barrier. Parameters are L = 1,

D = 0.5.

where ξ(t) is white Gaussian noise with zero mean and intensity 2D, Φ(x, t) =
U(x)+aη(t)x, U(x) is the same potential (13) but without barrier (E = 0),
and η(t) is Markovian dichotomous noise switching with mean rate ν between
the values ±1. In other words, we analyse Brownian diffusion in monostable
potential with two randomly switching stable states near reflecting bound-
aries at x = ±L (see Fig. 4).

F(x,t)

x

-L L0

Fig. 4. Randomly switching monostable potential.

Let us rewrite for our case the closed set of differential equations for
probability density W (x, t), recently obtained in [13], in the diffusion interval
(−L,L)

∂W

∂t
= a

∂Q

∂x
+ D

∂2W

∂x2
,

∂Q

∂t
= −2νQ + a

∂W

∂x
+ D

∂2Q

∂x2
(31)

with the following conditions at reflecting boundaries

(

DW ′ + aQ
)

x=±L
= 0 ,

(

DQ′ + aW
)

x=±L
= 0 , (32)

where Q(x, t) = 〈η(t)δ(x − x(t))〉 = W (x, t) 〈η(t) |x (t) = x〉 is an auxiliary
function [13]. We use the same method as for fixed potential.
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According to Eqs. (31) and (32) and initial conditions for the functions
W (x, t), Q(x, t): W (x, 0) = δ(x − x0), Q(x, 0) = 0, we solve the following
system of differential equations in the interval (−L,L)

DY ′′ + aZ ′ − pY = −δ(x − x0) ,

DZ ′′ + aY ′ − (p + 2ν) Z = 0 (33)

with boundary conditions

(

DY ′ + aZ
)

x=±L
= 0,

(

DZ ′ + aY
)

x=±L
= 0 . (34)

Here Y (x, x0, p) and Z(x, x0, p) are the Laplace transforms of conditional
probability density and of auxiliary function, respectively. By putting E = 0
in (16) we get

G (x0, p) =
x0

p
− D

p
[Y (L, x0, p) − Y (−L, x0, p)] . (35)

Now we solve the homogeneous set of linear differential equations (33) in
two regions: −L ≤ x ≤ x0 and x0 ≤ x ≤ L. Then we find eight unknown
constants from the boundary conditions (34) and continuity conditions at
the point x = x0

Y |x=x0−0 = Y |x=x0+0 , Y ′ |x=x0−0 = Y ′ |x=x0+0 + 1/D ,

Z |x=x0−0 = Z |x=x0+0 , Z ′ |x=x0−0 = Z ′ |x=x0+0 .

After some algebra we obtain from (35)

G (x0, p) =
x0

p
(36)

−
(

Dρ2
1 − p

)

sinh ρ1L sinh ρ2x0 −
(

Dρ2
2 − p

)

sinh ρ2L sinh ρ1x0

p
[

ρ2

(

Dρ2
1 − p

)

sinh ρ1L cosh ρ2L − ρ1

(

Dρ2
2 − p

)

sinh ρ2L cosh ρ1L
] ,

where

ρ1,2 =

√

γ2

2
+

p

D
±
√

γ4

4
+

pa2

D3
, γ =

√

a2

D2
+

2ν

D
. (37)

To find the Laplace transform (11) of correlation function in stationary
regime we use the expression of SPD for our system, derived in Ref. [13],

W∞ (x) =
1

2L

1 + µ cosh γx /cosh γL

1 + µ tanh γL /(γL)
, (38)
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where µ = a2 /(2νD) . After substitution of Eqs. (36) and (38) into Eq. (11)
and integration we get

K̃ [p] =

〈

x2
〉

p
− 1

p [1 + µ tanh γL /(γL) ]

×
(

Dρ2
1 − p

)

R (ρ2) tanh ρ1L −
(

Dρ2
2 − p

)

R (ρ1) tanh ρ2L

ρ2

(

Dρ2
1 − p

)

tanh ρ1L − ρ1

(

Dρ2
2 − p

)

tanh ρ2L
,(39)

where

R (z) =
1

z

(

1 − tanh zL

zL

)

+
γµ tanh zL

z2 − γ2

[

2z

(z2 − γ2)L
− tanh zL

]

+
zµ

z2 − γ2

(

1 − z2 + γ2

z2 − γ2
· tanh zL

zL

)

. (40)

To obtain the exact formula for the spectral density of Brownian particle
position it remains to put in equation (39) p = iω and find the real part of
expression. In the absence of flippings (a = 0, µ = 0) we find from Eq. (37):

ρ1 =
√

γ2 + p /D , ρ2 =
√

p /D and obtain the result for rectangular poten-
tial well of equation (23).

6. New characterisation of resonant activation

The evolution of spectrum shape with varying switchings mean rate ν
is shown in Fig. 5. The spectral density of Brownian diffusion in this non-
Markovian case has also a maximum at zero frequency. For very large values
of ν, the spectral density approximates to the curve corresponding to a
free diffusion in rectangular potential well. The main feature of Fig. 5 is
that the spectrum at zero frequency S (0) shows nonmonotonic behaviour
with increasing switchings mean rate ν. Namely, S (0) initially decreases,
reaches a minimum and then increases reaching asymptotically the value
2L4 /(15πD) , obtained for rectangular potential well.

Let us find the analytical expression of S (0) = K̃ [0] /π . Using the
approximate expressions for parameters ρ1, ρ2 at small p (see (37))

ρ1 ≃ γ +
p

2γD

(

1 +
a2

γ2D2

)

, ρ2 ≃
√

2νp

γD

and formula for the variance [13]

〈

x2
〉

=
γ3L3 + 3µ

[(

2 + γ2L2
)

tanh γL − 2γL
]

3γ3L [1 + µ tanh γL /(γL) ]
(41)
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Fig. 5. Spectral density S (ω) for different values of switchings mean rate ν: curve

1 — ν = 0.01, curve 2 — ν = 3, curve 3 — ν = 30. The curve 4 corresponds to a

free diffusion in rectangular potential well (a = 0). The parameter set is: L = 1,

a = 3, D = 0.5.

we get from Eq. (39)

S (0) =
1

60πγ6D3 [1 + µ tanh γL /(γL) ]

{

16νDγ4L4

+5a2
[

60 + 27µ + 4γ2L2(3µ − 1) + (4γ2L2 − 27µ − 12)γL coth γL

−(48 + 3γ2L2 (µ + 4) − 4γ4L4)
tanh γL

γL

]}

. (42)

The typical ν-dependence of spectral density at zero frequency is plotted in
Fig. 6. We see a clear minimum at ν ≃ 3. To explain this minimum let
us consider the resonant activation phenomenon for this system. From the
closed set of differential equations for MFPTs T+ (x) and T− (x) [18]

DT ′′

+ − aT ′

+ + ν (T− − T+) = −1,

DT ′′

− − aT ′

− + ν (T+ − T−) = −1 (43)

we calculate T+ (x) and T− (x), i.e. the MFPTs for positive η (0) = +1 and
negative η (0) = −1 initial value of the dichotomous noise, with starting
position of Brownian particles at the point x, respectively. If we place the
absorbing boundary at the point x = L we solve equations (43) with the
following boundary conditions: T ′

± (−L) = 0, T± (L) = 0. The arithmetic
average of MFPTs T (x) = [T+ (x) + T− (x)] /2 for initial position of Brow-
nian particles at the point x = −L is

T (−L) =
4νL2

γ2D2
+

a2

γ4D3

[

cosh 2γL − 1 − (sinh 2γL − 2γL)2

cosh 2γL + µ

]

. (44)
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2 4 6 8 10 12
0.05

0.06

0.07 S(0)

n0

Fig. 6. Nonmonotonic behaviour of the spectral density at zero frequency as a

function of mean rate of flippings, for the same parameters L, a, D of Fig. 5.

The behaviour of T (−L) as a function of switchings mean rate has a
minimum, as shown in Fig. 7. This effect was called in literature resonant
activation: the average residence time as a function of the barrier fluctua-
tion rate ν has a minimum at intermediate rates between very slow and very
fast fluctuations [2]. In this range of rate ν, the crossing event is strongly
correlated with the potential fluctuations and Brownian particles overcome
randomly switching barrier in a minimal time. As a result, Brownian particle
position changes rapidly and very slow components of the random process
x (t) are present in minor amounts: the spectral density at zero frequency
takes a minimum. Thus, the nonmonotonic behaviour of the spectral den-
sity at zero frequency S (0) can be interpreted as a new characterization of
resonant activation phenomenon.

2 4 6 8 10 12

2

3

4

0
1

T(-L)

n

MFPT

Fig. 7. Resonant activation phenomenon for MFPT T (−L). The parameters L, a

and D are the same as in Fig. 6.

Finally, we report in Fig. 8 the behaviour of spectral width Π as a
function of flippings mean rate ν. We find a new nonlinear phenomenon: the
spectral width decreases with increasing mean rate of switchings, contrary
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to the linear behaviour. As switchings mean rate increases, the slope of
the potential profile of Fig. 4 becomes less and less important. As a result,
the diffusion time of Brownian particle between the reflecting boundaries
x = ±L increases and is determined by a free diffusion at very fast flippings.
The random process x (t) therefore becomes slower and the spectral width
Π decreases.

10 20 30 40

3

5

P

n0
1

Fig. 8. Spectral width vs flippings mean rate for the same parameters L, a and D

of Fig. 5.

7. Conclusions

The exact formula for the spectral density of diffusion in double-well
potential for arbitrary noise intensity and arbitrary parameters of poten-
tial profile was obtained. We found very rapid narrowing of the spectrum
with increasing height of a potential barrier between steady states. We
also derived the exact result for spectral density of fluctuations in two-noise
nonlinear system, namely, for overdamped Brownian diffusion in randomly
flipping potential. We found a new characterisation of resonant activation
phenomenon in the behaviour of spectral density at zero frequency and new
nonlinear effect associated with narrowing of the spectrum of Brownian par-
ticle position with increasing mean rate of switchings. Our analytical method
enable us to investigate more difficult problems as those with more complex
potential profiles.
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