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FROM A CLANNISH RANDOM WALK TO
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A diffusion equation with a functional drift (generalized Smoluchowski
equation) has been derived from the clannish random walk (nonlinear dis-
crete master equation) for both probability density and velocity fields, in
case of 1D. A relation between Burgers and generalized Smoluchowski equa-
tions as well as between concentration and velocity fields, has been dis-
cussed.

PACS numbers: 05.40.Fb, 05.10.Gg

1. Introduction

Diffusion as a random molecular motion has been successfully described
for the first time by Einstein and Smoluchowski while considering the Brow-
nian particles suspended in a fluid. In their approach the concentration W
of suspended particles was given by:

∂W

∂t
= DdivgradW , (1)

where D = κT/β is a diffusion coefficient with β = 6πaηm = ξm, “a” is a
radius of the particle of mass m, η and ξ are viscosity and friction coefficients,
respectively.

This simple diffusion equation is valid only when there is no external
force present. When the force “κ” acts on a system then equation (1) must
be replaced by the following Smoluchowski equation:

∂W

∂t
= div[DgradW − cW ] , (2)
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where c = κ/β is velocity of a Brownian particle under the force κ in a
viscous solution (drift constant).

In 1D case, and D, c constant, we can rewrite equation (2) as:

∂W

∂t
= −c

∂W

∂x
+ D

∂2W

∂x2
. (3)

Equation (3) will stand for the reference point in our further considerations.
It is worthy to observe that concentration W (x, t), when properly normal-
ized, can be treated as probability density [1].

A very natural extension of equation (1), especially for experimental-
ists, is to consider it when diffusion coefficient depend upon concentration
(probability density) [2, 3]

∂W

∂t
= div[D(W )gradW ] , (4)

where D(W ) = D0[1 + f(W )] or D(W ) = D0e
aW .

In this paper we will consider the process in which diffusion coefficient
is constant but the drift coefficient depends on concentration i.e.

∂W

∂t
= −cf(W )

∂W

∂x
+ D

∂2W

∂x2
(5)

and we will call it the generalized Smoluchowski equation. The function
f(W ) takes some special forms resulting from the clannish random walk
consideration.

2. The generalized Smoluchowski equation as continuum limit

of clannish random walk process

This is a well known fact that one of the fundamental problems of
nonequilibrium statistical physics i.e. how does the microscopic dynamics
of atoms and molecules lead to equations, such as Burgers, Navier–Stokes,
etc. can be, at least partially, answered by the suitably constructed random
walks problems. The answers have been provided in case of a simple Smolu-
chowski equation (3) [6, 8], its extension based on the generalized master
equation to time dependent coefficients [9], and also to diffusion equation
(1) with diffusion coefficient depending upon concentration [10]. A very el-
egant, alternative approach to the transport dynamics has been presented
by means of fractional calculus [11]. In this paper we will show, however,
how to derive the nonlinear Smoluchowski type equation with nonlinear drift
term from the generalized master equation i.e. we will follow the traditional
way of introducing the interactions between particles which give rise to lo-
cal equilibrium states characterized by the conserved quantities which then
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satisfy hydrodynamic-type equations. Following Montroll and West [10] we
develop our consideration of diffusion with functional drift by analysis of a
phenomenological random walk known as a “clannish random walk”. Con-
sidering a single species of random walk in a manner in which each step
reflects the concentration of walkers to the left and right of the one being
examined, we can write a sort of discrete master equation for the particle’s
probability density

W (x, t + τ) = p̂W (x − δ, t) + q̂W (x + δ, t) , (6)

where
p̂ = p

{

1 + µ[W (x, t) − W (x − 2δ, t)]
}

, (7)

q̂ = q
{

1 + µ[W (x, t) − W (x + 2δ, t)]
}

, (8)

are the probabilities of going to the right or left respectively, p, q are con-
stants, and µ = µ(W ) is a coupling function reflecting the nature of inter-
actions (long range) between random walkers.

Consequently
p̂ + q̂ = 1 . (9)

Expanding subsequent terms in equation (6) in a Taylor series with remain-
der, and taking into account that:

lim
δ→0

(p̂ − q̂) = −W (x, t)(p − q) (10)

for suitably chosen function µ(W ), we have

Wt = −(p − q)
δ

τ
WWx +

1

2

δ2

τ
Wxx (11)

which can be rewritten as

Wt = −cWWx + DWxx , (12)

where

c = (p − q)
δ

τ
and D =

1

2

δ2

τ
. (13)

Equation (12), known as Burgers equation [17], can be rewritten as the
generalized Smoluchowski equation

Wt = −ĉWx + DWxx , (14)

where ĉ(W ) = cW is a functional drift coefficient.
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Following essentially the same procedure we can arrive at the more gen-
eral equation

Wt = −cf(W )Wx + DWxx (15)

which has the following divergence form

Wt =
∂

∂x

(

−c

∫

f(W )dW + DWx

)

(16)

for some functions of C0 class.

3. The probability density versus velocity fields

To derive an equation of the transport type on the phenomenological
level two things are required:

(i) an equation of flux (current) −j,

(ii) continuity equation ∂W

∂t
+ ∇j = 0.

Taking into account that the flux can also be expressed in terms of the
local particle velocity V (x, t) through

j(x, t) = V (x, t)W (x, t) (17)

we can derive a set of PDEs for the particle probability density (normalized
concentration) and corresponding local particle velocity fields.

If we restrict ourselves to the case of a constant diffusion coefficient then
for a simple, Fickian diffusion

∂W

∂t
= D

∂2W

∂x2
(18)

we obtain a Burgers type equation for the corresponding velocity field [10]
i.e.

Vt =
∂

∂x

(

−V 2 + D
∂V

∂x

)

. (19)

It is interesting to see how it looks like in case of more complicated equations
of concentration fields.
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3.1. Smoluchowski equation with constant drift

This is the case represented by Eq. (3) for which flux is given by

j = −D
∂W

∂x
+ cW (20)

and, at the same time

j = V (x, t)W (x, t) (21)

from Eqs. (20) and (21) we get

V (x, t) = −D
∂ ln W

∂x
+ c . (22)

After differentiating equation (22) with respect to time, and changing the
order of differentiation, we get

∂V

∂t
= −D

∂

∂x

(

1

W

∂W

∂t

)

= −D
∂

∂x

(

∂ ln W

∂t

)

. (23)

Taking into account the continuity equation

∂V

∂t
= −

∂j

∂x
= −

∂(V W )

∂x
(24)

we can write
∂V

∂t
= D

∂

∂x

(

∂V

∂x
+ V

(

∂ ln W

∂x

))

(25)

and further, through equation (22),

∂V

∂t
=

∂

∂x

(

D
∂V

∂x
− V (V − c)

)

(26)

or
∂V

∂t
= D

∂2V

∂x2
− (2V − c)

∂V

∂x
(27)

i.e. type of Burgers equation or Smoluchowski equation with drift coefficient
ĉ(V ) = 2V − c.

3.2. Smoluchowski equation with a “functional” drift — Burgers equation

The case is represented by equation (12) for which the flux is given by

j = −D
∂W

∂x
+

1

2
cW 2 , (28)

where the drift coefficient ĉ(W ) = 1

2
cW .
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Following similar steps as in Section 3.1 we finally get

∂V

∂t
= D

∂2V

∂x2
− 2V

∂V

∂x
(29)

i.e. equation identical to equation (19) derived for a simple, Fickian diffu-
sion.

4. Results and discussion

To begin with we would like to comment on the nature of drift and con-
vective terms that appear in Smoluchowski (3) or/and Burgers (12) equa-
tions. Drift is a consequence of a potential field under which the Brownian
particle undergoes the deterministic displacement. Convection is a process
in which the whole phase with the Brownian particle immerse in it, flows
due to the external force. So, in spite of formal, mathematical similarities
these two processes are entirely different. In the present work we consider
the process of diffusion with drift contrary to “diffusion process in a flow”
considered elsewhere [4]. In this situation we also would like to comment
on the differences between the Burgers and generalized Smoluchowski equa-
tions. Namely, Burgers equation, when addressed to velocity field [17], shows
nonlinear behaviour controlled by velocity itself — which is a bifurcation
parameter. In this context velocity is unbounded quantity fulfilling how-
ever the energy conservation. In our work the Burgers equation is used for
description of normalized concentration (probability density) field which is
bounded [0,1], and essentially shows a linear behaviour as well as fulfils the
mass conservation law. Since we deal with high viscosity limit, at which
the Fokker–Planck equation simplifies to Smoluchowski equation, respective
velocity field is regular and bounded (it is pretty natural to expect a small
velocity of Brownian particle in a high viscosity medium). In this situation,
we call the Burgers equation the generalized Smoluchowski equation with
drift coefficient linearly dependent upon the concentration or velocity.

We can easily find that on a molecular level, at which the drift coefficient
is proportional to the difference between probabilities of a molecules jump
to the left or right, these probabilities should depend on probability den-
sity (concentration). This is equivalent, in a sense, to the long correlation
between molecules with a short correlation not present (constant diffusion
coefficient). It is interesting to notice that the vector field whose components
are W and DWx −

1

2
cW 2 in x − t plane is irrotational, so that a potential

field must exist Q(x, t) such that [19]

W = Qx , DWx −
1

2
cW 2 = Qt . (30)



From a Clannish Random Walk to Generalized Smoluchowski Equation 1469

Replacing W by Qx we obtain

Qt = DQxx −
1

2
cQ2

x . (31)

Although this equation is still nonlinear, the nonlinearity is quadratic and
an exponential transformation is sometimes effective. Namely,

Ψ(x, t) = exp
(

−
c

2D
Q(x, t)

)

(32)

leads to
Ψt = DΨxx (33)

i.e. the familiar simple diffusion equation.
To obtain W (x, t) i.e. a solution of generalized Smoluchowski equation

from any solution of (33) we use

W (x, t) = −
2D

c

Ψx(x, t)

Ψ(x, t)
. (34)

As can be seen from the above the generalized Smoluchowski equation is
a high viscosity limit of the Fokker–Planck equation, and, on the other
hand of the Burgers equation as well, since the high viscosity implies small
average velocity of a Brownian particle, and consequently no singularities in
a velocity field.

5. Concluding remarks

The clannish random walk approach, concluded in a form of nonlinear
discrete master equation is an effective tool for generating a wide class of
transport equations. In this paper we have considered a functional drift
due to the concentration dependence of jumping probability of a Brownian
particle. The high viscosity limit (polymer solutions) gave us the possibility
to distinguish between two, mathematically identical equations

Wt = −cWWx + DWxx (35)

i.e. the Burgers equations known as being a simplified version of the Navier–
Stokes equation, and showing an essential nonlinear behaviour [18] and

Wt = −ĉ(W )Wx + DWxx , (36)

where ĉ(W ) = cW is a functional drift coefficient. Equation (36) gives
regular solutions with a functional drift coefficient ĉ(W ) that accounts for
the mutual interactions between transported molecules. Last but not least
we would like to mention that in spite of a clear procedure of solving a
Burgers type equations, provided by Eqs. (30)–(34), a particular problem
might be difficult to handle.
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