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We analyze the spatio-temporal patterns of two competing species in
the presence of two white noise sources: an additive noise acting on the
interaction parameter and a multiplicative noise which affects directly the
dynamics of the species densities. We use a coupled map lattice (CML)
with uniform initial conditions. We find a nonmonotonic behavior both
of the pattern formation and the density correlation as a function of the
multiplicative noise intensity.

PACS numbers: 05.40.–a, 87.23.Cc, 89.75.Kd, 87.23.–n

1. Introduction

We present a stochastic model for spatial distribution of two compet-
ing species. Our theoretical model could be useful to describe biological
systems, where the presence of fluctuations, such as random variability of
temperature, can modify strongly the dynamics of an ecosystem [1, 2]. We
focus on the role played by the noise on the transient dynamics of the spatial
distributions of two competing species belonging to an ecosystem described
by generalized Lotka–Volterra equations [3] in the presence of multiplicative
noise. We find nonmonotonic behaviors for the pattern formation and the
density correlation of the species as a function of the multiplicative noise in-
tensity. The theoretical results could contribute to select environmental and
periodical driving forces using the proper space and time scales to develop
physical models of population dynamics useful to interpret spatial patterns
in the abundance of the species [4, 5].
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2. The model

To study the spatial effects due to the presence of noise sources we con-
sider a discrete time evolution model, which is the discrete version of the
Lotka–Volterra equations with diffusive terms, namely a coupled map lat-
tice [6].

The time evolution of the spatial distribution for the two species is given
by the following equations

xn+1

i,j = µxn
i,j(1 − xn

i,j − βnyn
i,j) +

√
σxx

n
i,jX

n
i,j + D

∑

γ

(xn
γ − xn

i,j) , (1)

yn+1

i,j = µyn
i,j(1 − yn

i,j − βnxn
i,j) +

√
σyy

n
i,jY

n
i,j + D

∑

γ

(yn
γ − yn

i,j) , (2)

where xn
i,j and yn

i,j denote respectively the densities of prey 1 and prey 2 in

the site (i, j) at the time step n, µ is proportional to the growth rate, D is
the diffusion constant,

∑
γ indicates the sum over the four nearest neighbors.

The random terms are modeled by independent Gaussian variables de-
noted by Xn

i,j , Y n
i,j with zero mean and variance unit and βn takes into

account for the interaction between the species. In Eqs. (1) and (2), σx and
σy are the intensities of the multiplicative noise which models the interaction
between the species and the environment.

2.1. Stochastic resonance

It is known that for β < 1 a coexistence regime takes place, that is
both species survives, while for β > 1 an exclusion regime is established,
that is one of the two species vanishes after a certain time [7, 8]. Coexis-
tence and exclusion of one of the two species correspond to stable states of
the Lotka–Volterra’s deterministic model [3]. Real ecosystems are immersed
in a noisy nonstationary environment, so also the interaction parameter is
affected by the noise and some other deterministic periodical driving such
as the temperature. The change in the competition rate between exclusion
and coexistence occurs randomly because of the coupling between the lim-
iting resources and the noisy environment. A random variation of limiting
resources produces a random competition between the species. The noise,
therefore, together with the periodic force determines the crossing from a
dynamical regime (β < 1, coexistence) to the other one (β > 1, exclusion).
To describe this continuous and noisy behavior of the interaction parame-
ter β(t) we consider an Ito stochastic differential equation with a bistable
potential and a periodical driving force

dβ(t)

dt
= −dU(β)

dβ
+ γ cos(ω0t) + ξβ(t) , (3)
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where U(β) is the bistable potential (see Fig. 1)

U(β) = h(β − (1 + ρ))4/η4 − 2h(β − (1 + ρ))2/η2 , (4)

the periodical driving mimics the climatic temperature oscillations, and ξβ(t)
is a white Gaussian noise with 〈ξβ(t)〉 = 0 and 〈ξβ(t)ξβ(t′)〉 = σβδ(t − t′).
Since the dynamics of the species strongly depends on the value of the in-
teraction parameter, we initially consider the time evolution of β for σβ = 0
(see Fig. 2).
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Fig. 1. The bistable potential U(β) of the interaction parameter β(t). The potential

U(β) is centered on β = 0.99. The parameters of the potential are h = 6.25×10−3,

η = 0.05, ρ = −0.01.
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Fig. 2. Time evolution of the interaction parameter β for σβ = 0 and initial value

β(0) = 0.94. The values of the parameters are: γ = 1.5 · 10−1, ω0/(2π) = 10−2. In

the absence of noise β(t) oscillates below the critical value βc = 1. The transient

behavior near the initial point β(0) = 0.94 is due to the choice of cosine function

in Eq. (3) as deterministic periodical driving.
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We note that in the absence of the additive noise ξβ(t), β(t) shows a
periodical evolution but its values always remain below β = 1, i.e. in the
coexistence regime. The noise can synchronize with the periodical driving
force. In this case a Stochastic Resonance (SR) [9, 10] effect appears which
affects strongly the dynamics of the system [7, 11, 12]. Therefore we fix the
additive noise intensity at the value σβ = 2.65 × 10−3 corresponding to a
competition regime with β periodically switching from coexistence to exclu-
sion regions [12] (see Fig. 3). The SR effect in the dynamics of interaction
parameter β induces SR phenomenon in the dynamics of two competing
species. This produces noise-induced anticorrelated periodic oscillations in
time evolution of the two species densities (see Ref. [12]).
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Fig. 3. Time evolution of the interaction parameter β(t) for σβ = 2.65 × 10−3.

The values of the parameters and the initial value β(0) are the same as in Fig. 2.

For this level of noise a synchronization appears (Stochastic Resonance) and β(t)

oscillates quasi-periodically below and above the critical value βc = 1.

2.2. Spatial distributions

We consider the time evolution of the spatial distribution of the ecosys-
tem, described by Eqs. (1) and (2), in the SR dynamical regime. The
interaction parameter βn of Eqs. (1), (2) corresponds to the value of contin-
uous β(t) of Eq. (3) taken at the step n. So we fix the additive noise at the
value σβ = 2.65 × 10−3 and we vary both the intensities of multiplicative
noise. In Figs. 4 and 5 we report the spatio-temporal patterns of the two
species for different values of the multiplicative noise intensity σ = σx = σy,
namely σ = 10−12, 10−8, 10−4, 10−1 with µ = 2, D = 0.05, γ = 1.5 × 10−1,
ω0/(2π) = 10−2, β(0) = 0.94 and x0

i,j = y0
i,j = 0.5 at all sites (i, j). We see

that for very low noise intensity (see Fig. 4(a)) an average correlation on
the considered lattice (N = 100× 100) between the species is observed. For
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(a) (b)

Fig. 4. Spatial distributions at different times for (a) σ = 10−12 and (b) σ = 10−8.

The value of the additive noise is fixed at σβ = 2.65 × 10−3. The values of the

parameters are: µ = 2, D = 0.05, γ = 1.5× 10−1, ω0/(2π) = 10−2, N = 100× 100.

The initial values are x0
i,j = y0

i,j = 0.5 for all sites (i, j) and β(0) = 0.94.

(a) (b)

Fig. 5. Spatial distributions at different times for (a) σ = 10−4 and (b) σ = 10−1.

The additive noise intensity, the values of the parameters and the initial conditions

are the same as in Fig. 4.

higher noise intensities (see Fig. 4(b), 5(a)) an anticorrelation between the
two species is observed: the two species tend to occupy different positions.
The anticorrelation is more evident in Fig. 5(a). By increasing the multi-
plicative noise the anticorrelation is strongly reduced (see Fig. 5(b)). Further
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increase of the noise (σ = 10+3) causes the anticorrelation to disappear and
the two species densities become uncorrelated. We note also that the average
size of the patterns increases with the noise intensity non-monotonically: at
very low noise intensity (σ = 10−14) the spatial distribution is almost uni-
form, by increasing the noise intensity spatial patterns arise (see Figs. 4(b),
5(a)) and a further increase of the noise intensity reduces the average size
of the patterns (see Fig. 5(b)).

2.3. Spatial correlation

In order to evaluate the spatial correlation between the two species for the
noise intensities considered we calculate, at the time step n, the correlation
coefficient 〈cn〉 defined on the lattice as

〈cn〉 =
covn

xy
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xsn

y
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where x̄n, sn
x, ȳn, sn

y are the mean value and the root mean square, respec-
tively, of species 1 and species 2, obtained over the whole spatial grid at the
time step n, covn

xy is the corresponding covariance and N = 100 × 100 the
number of sites which compose the grid. The behavior of the correlation
coefficient 〈cn〉 as a function of the time for different levels of the multi-
plicative noise has been reported in Fig. 6. We observe a nonmonotonic
behavior of 〈cn〉 as a function of the multiplicative noise intensity. In fact
for low noise intensities σ = 10−12, 〈cn〉 shows weak oscillation around 1,
that is strong correlation between the two species. For higher levels of the
noise σ = 10−10, 〈cn〉 is affected by fluctuations and its values vary strongly
as a function of the time. A further increase of the multiplicative noise, i.e.

σ = 10−8 and σ = 10−4, determines an oscillation of 〈cn〉 around a negative
value, that is anticorrelation between the two species, with the frequency of
the periodical forcing. For higher intensities of the noise σ = 10−1, the value
of the correlation coefficient 〈cn〉 increases and it vanishes for σ = 10+3. Fi-
nally to show clearly the nonmonotonic behavior of 〈cn〉, we calculate the
time average of the correlation coefficient 〈cn〉t and we report it as a function
of the multiplicative noise intensity in Fig. 7. A clear minimum is shown,
which corresponds to the anticorrelated oscillations shown in the time evo-
lution of two competing species in each point of our spatial grid [12]. We
note therefore the different role of the two noise sources in the ecosystem
dynamics. The additive noise determines the conditions of the dynamical
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Fig. 6. Correlation coefficient 〈cn〉 as a function of time. For low levels of the

multiplicative noise (σ = 10−12) the species are strongly correlated and 〈cn〉 is

approximately constant. By increasing the intensity of the multiplicative noise

(σ = 10−10) 〈cn〉 shows big fluctuations. A further increase of the noise (σ =

10−8, σ = 10−4) causes strong anticorrelation between the two species with 〈cn〉
oscillating at the frequency of the periodical forcing. For very high levels of noise,

the anticorrelation is reduced (σ = 10−1) and finally it disappears (σ = 10+3), that

is the species are totally uncorrelated.
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Fig. 7. Time average of the correlation coefficient 〈cn〉t as a function of the multi-

plicative noise in semilog scale.

regime, the multiplicative noise produces a coherent response of the system
(see Ref. [12]), which is responsible for the appearance of anticorrelation
behavior in the spatial patterns of the species.
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3. Conclusions

We present a study on the role of the noise in the spatial distributions
of two interacting species. The main result is that noise plays a very im-
portant role in population dynamics and cannot be neglected. Noise can
have a constructive role and it is responsible for the enhancement of the
response of the system to a driving force producing stochastic resonance.
By using a discrete time evolution model, which is the discrete version of
the Lotka–Volterra equations with diffusive terms, in the presence of a mul-
tiplicative noise and with a random interaction parameter, we analyze the
temporal behaviors of the spatial distributions for an ecosystem consisting
of two species. The noise induces spatio-temporal behaviors which are ab-
sent in the deterministic dynamics, i.e. pattern formation with the same
periodicity of the deterministic force. Moreover, appearance of temporal
oscillation is observed in the correlation coefficient between the two species.
We find a nonmonotonic behavior of the time average correlation coefficient
as a function of the multiplicative noise. In fact at low levels of the noise
intensity the species densities are almost uniform and a strong correlation
appears in the spatial distributions. By increasing the noise intensity we
observe pattern formation and anticorrelated behavior, which exhibit the
same periodicity of the deterministic driving force and correspond to the
minimum of Fig. 7. For higher values of the noise intensity no patterns or
correlations appear. Our model could be useful to explain spatio-temporal
behaviors of populations, whose dynamics is strongly affected by the noise
and by the environmental physical variables.

This work has been supported by INTAS Grant 01-450, by INFM and
MIUR.
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