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The noise-induced pattern formation in a population dynamical model
of three interacting species in the coexistence regime is investigated. A
coupled map lattice of Lotka–Volterra equations in the presence of multi-
plicative noise is used to analyze the spatiotemporal evolution. The spatial
correlation of the species concentration as a function of time and of the
noise intensity is investigated. A nonmonotonic behavior of the area of the
patterns as a function of both noise intensity and evolution time is found.
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1. Introduction

The study of models of population dynamics is one of the topics that in
the last few years has revealed large interest ranging from chaos to spatial
organization, covering several branches of physics and different disciplines
such as biology, theoretical ecology, oceanography and medicine. In par-
ticular the addition of noise in such mathematical models can be useful to
describe the phenomenology in a realistic and relatively simple form. The in-
troduction of noise in real systems gives rise to non trivial effects, modifying
sometimes in an unexpected way the deterministic dynamics. Examples of
noise induced phenomena are stochastic resonance [1,2], noise-enhanced sta-
bility [3], temporal oscillations and noise-induced pattern formation [4–6].
Biological complex systems can be modeled as open systems in which in-
teractions between the components are nonlinear and a noisy interaction
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with the environment is present [7]. The dynamics of interacting biological
species can be successfully described by means of a set of Lotka–Volterra
equations with the addition of a multiplicative noise and a diffusive term to
take into account spatial extension of the ecosystem. Recently it has been
found that nonlinear interaction and the presence of multiplicative noise can
give rise to pattern formation in population dynamics of spatially extended
systems [8,9]. The model studied in this work concerns the ecosystem com-
posed of three interacting species: two competing preys and one predator.
The area of the patterns of maximum density has been quantitatively evalu-
ated, finding a nonmonotonic behavior as a function of time and as a function
of the noise intensity. The site correlation between the species concentration
as a function of time and of the noise intensity is also investigated.

2. The model

The starting point of our study is the simple discrete set of general-
ized Lotka–Volterra equations describing a population of two preys and one
predator. The dynamics of our spatially distributed system is therefore de-
scribed by the following model of coupled map lattice (CML) [10]
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where xn
i,j, yn

i,j and zn
i,j are respectively the densities of preys x, y and the

predator z in the site (i, j) at the time step n. Here α and γ are the
interaction parameters between preys and predator, X, Y and Z are the
white Gaussian noise variables with

〈X(t)〉 = 〈Y (t)〉 = 〈Z(t)〉 = 0 , (2.2)

〈X(t)X(t + τ)〉 = 〈Y (t)Y (t + τ)〉 = 〈Z(t)Z(t + τ)〉 = δ(τ) , (2.3)

〈X(t)Y (t′)〉 = 〈X(t)Z(t′)〉 = 〈Y (t)Z(t′)〉 = 0 ∀ t, t′ , (2.4)

q is the noise intensity, D is the diffusion coefficient, µ and µz are scale
factors.

∑

p indicates the sum over the four nearest neighbors in the map
lattice. The multiplicative noise in the above equations models the inter-
action between the species and the environment. The boundary conditions
have been established in such a way that no interaction is present out of
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lattice. This means that for the four corner sites we have only two interac-
tions and for the other 4 × 98 line-confined sites the number of interactions
is three.

We analyze the transient dynamics of the system with a time varying
interaction parameter β(t) between the two preys

β(t) = 1 + ε + η cos(ωt) , (2.5)

due to the environment temperature. Here η = 0.2, ω = π10−3 and ε =
−0.1. The interaction parameter β(t) oscillates around the critical value
βc = 1 in such a way that the dynamical regime of Lotka–Volterra model for
two competing species changes from coexistence of the two preys (β < 1)
to exclusion of one of them (β > 1) [11]. The parameters used in our
simulations are µ = 2; ν = 1; α = 0.03; µz = 0.02; γ = 205 and D = 0.1.
The noise intensity q varies between 10−12 and 10−2. With this choice of
parameters the interspecies competition among the two prey populations
is stronger compared to the intraspecies competition (preys-predator), and,
therefore, both prey populations can stably coexist in the presence of the
predator [11].

By considering the influence of noise and spatial diffusion, we analyze the
noise-induced pattern formation. Specifically the time evolution of the area
of the patterns and the correlation r over the grid between two species, as a
function of the noise intensity, are analyzed. The quantitative calculations
of the site correlation between a couple of species in the lattice have been
done using the following formula
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where N is the number of sites in the grid, the symbols wn, kn represent
one of the three species x, y, z, and w̄n, k̄n represent the mean values of
the concentration of the species in all the lattice at the step n. From the
definition (2.6) it follows

−1 ≤ rn ≤ 1 . (2.7)

We calculate the correlation between the two preys and between preys and
predator.

3. Results and comments

The bidimensional spatial grid considered is composed by 100×100 sites
in (x, y) plane. The calculations have been done for various noise intensities
and at different steps of the iteration process. To quantify our analysis we
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consider only the maximum patterns, defined as the ensemble of adjoining
sites in the lattice for which the density of the species belongs to the interval
[3/4 max,max], where max is the absolute maximum of density in the spe-
cific grid. For each spatial distribution, in a temporal step and for a given
noise intensity value, the following quantities have been evaluated referring
to the maximum pattern (MP): mean area of the various MPs found in the
lattice and spatial correlation r between two preys, and between preys and
predator.

3.1. Deterministic analysis

In the absence of noise and with constant interaction parameter β we ob-
tain: (i) for ε < 0 (β < 1) a coexistence regime of the two preys characterized
in the lattice by a strong correlation between them with the predator lightly
anti-correlated with the two preys; (ii) for ε > 0 (β > 1) wide exclusion
zones in the lattice (see Fig. 1), characterized by a strong anti-correlation
between preys. In Fig. 1 we report the spatial configuration of the species
after long time evolution. We chose Gaussian initial distribution with mean
value x̄0 = ȳ0 = z̄0 = 0.25 and variance σ0 = 0.1.

Fig. 1. Spatial configuration of the species obtained after long time evolution in

noiseless dynamics and in the exclusion regime between preys. The parameter set is:

ε = 0.1, β = 1.1, η = 0, q = 0, D = 0.1, µ = 2, ν = 1, α = 0.03, µz = 0.02, γ = 205.

The initial conditions are random with a Gaussian distribution, with mean values

x̄(0) = ȳ(0) = z̄(0) = 0.25 and variance σ0 = 0.1. Here r12, r13, r23 and r123 are

respectively the site correlations between: (i) preys, (ii) prey 1 and predator, (iii)

prey 2 and predator, and (iv) predator and both preys.

By considering the periodic variation of the interaction parameter β(t),
we obtain for ε = 0, after a transient anti-correlated behavior between preys,
a coexistence regime with strong correlation between preys that evolves to-
wards an homogeneous spatial distribution of all three species. For ε > 0
we find an oscillating behavior of the site correlation coefficient from coex-
istence regime between preys, corresponding to strong correlation, to an ex-
clusion regime, corresponding to strong anticorrelation. This last behavior is



Nonmonotonic Behavior of Spatiotemporal Pattern Formation in a Noisy . . . 1495

prevalent. The oscillating frequency coincides with that of the β-parameter.
When ε < 0, the two preys, after an initial transient, remain strongly corre-
lated for all the time, in spite of the fact that the parameter β(t) takes values
greater than 1 during the periodical evolution. This situation corresponds
to a coexistence regime between preys. In Fig. 2 we report the behavior of
the site correlation parameter r as a function of time for three values of the
parameter ε = −0.1, 0, 0.1.

Fig. 2. Site correlation parameter r in noiseless dynamics as a function of time for

different values of the parameter ε : −0.1, 0., +0.1. Here η = 0.2. The values of the

other parameters are the same used for Fig. 1.

3.2. Noise effects

To analyze the effect of the noise we focus on the interesting dynamical
regime characterized, in absence of noise, by coexistence between preys in all
the period of β, i.e. with ε < 0. The noise triggers the oscillating behavior of
the site correlation r giving rise to periodical alternation of coexistence and
exclusion regime. Even a very small amount of noise is able to destroy the
coexistence regime periodically as we can see from Fig. 3, where the correla-
tion parameter r as a function of time is reported. Noise is also responsible
for a nonmonotonic behavior of the area of spatial patterns, which repeats
periodically in time. In Fig. 4 we report a nonmonotonic behavior of the
area of the maximum pattern as a function of noise intensity. A maximum
of the area of maximum patterns is visible for the preys at q = 10−9 and for
the predator at q = 10−8. The same behavior is present in the following time
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Fig. 3. Site correlation parameter as a function of time. Here ε = −0.1, η = 0.2

and the noise intensity is q = 10−9. The values of the other parameters are the

same used for Fig. 1. The initial spatial distribution is homogeneous and equal for

all species, i.e. xinit

ij = yinit

ij = zinit

ij = 0.25 for all sites (i, j).

Fig. 4. Semi-Log plot of the mean area of the maximum patterns for all species as

a function of noise intensity, at iteration step 1400. Here circles and triangles are

related to preys, squares to predator. The values of the other parameters and the

homogeneous initial distribution are the same used in Fig. 3.

steps within the first period of the interaction parameter: 600, 800, 1200,
1400. But at time steps 600, 800 the preys are highly anticorrelated with
site correlation parameter r12 = −1, while at time steps 1200, 1400 the preys
are highly correlated with r12 = 1. The formation of spatial patterns appear
only when the preys are highly correlated, while large patches with cluster-
ization of preys appear when they are anticorrelated. This means that the
coexistence regime between preys corresponds to the appearance of spatial
patterns, while the exclusion regime corresponds to clusterization of preys.
The noise-induced pattern formation relative to the iteration 1400 is visible
in Fig. 5, where we report five patterns of the preys and the predator for the
following values of noise intensity: q = 10−11, 10−9, 10−8, 10−4, 10−2. The
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Fig. 5. Spatial Pattern formation for preys and predator, at time iteration 1400 and

for the following values of the noise intensity: q = 10−11, 10−9, 10−8, 10−4, 10−2.

The values of the other parameters and the homogeneous initial distribution are

the same used in Fig. 3. The parameters r12, r13, r23, r123 have the same meaning

of Fig. 1.

initial spatial distribution is homogeneous and equal for all species, that is
xinit

ij = yinit
ij = zinit

ij = 0.25 for all sites (i, j). A spatial structure emerges with
increasing noise intensity. At very low noise intensity, with respect to the
value of the diffusion coefficient D, the spatial distribution appears almost
homogeneous without any particular structure (see Fig. 5(a)). Increasing
the multiplicative noise intensity, the symmetric dynamical evolution of the
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two preys in each site of the lattice is destroyed, so oscillations in popula-
tion density produce an exclusion regime of one of two preys [2]. This time
evolution scenario corresponds to the appearance of spatial patterns due to
different spatial density in each site. This spatial pattern disappears for
sufficiently large noise intensity, producing a random spatial inhomogene-
ity (see Fig. 5(e)). As a final investigation we analyze the behavior of the
area of the patterns as a function of time. We observe a nonmonotonic be-
havior of the area of MPs as a function of time for all values of the noise
intensity investigated. Particularly for noise intensity values greater than
q = 10−7 this nonmonotonic behavior becomes periodical in time with the
same period of β(t), as shown in Fig. 6 for q = 10−4. We note that this

Fig. 6. Mean area of maximum pattern of the three species and relative sites corre-

lations between preys and between preys and predator as a function of time. Here

q = 10−4. (a): black and white circles are related to preys, triangles to predator;

(b) site correlation r12 (black circles), r13 (white circles), and r123 (triangles). The

values of the other parameters and the homogeneous initial distribution are the

same used in Fig. 3.

nonmonotonic behavior does not mean that a spatial pattern appears, like
that of Fig. 5(b), but that a big clusterization of preys may occur, as shown
in Fig. 7. In this figure in fact we report the spatial configuration obtained
for a noise intensity value q = 10−4, which corresponds to the maximum of
the behavior of the mean area of MPs of preys as a function of time shown in
Fig. 6(a). We see that this maximum corresponds to large patches of preys
in the lattice investigated. The various quantities, such as pattern area and
correlation parameter, have been averaged over 200 realizations, obtaining
the mean values shown in the figures 3, 4 and 6. The effects induced by the
interaction between the species and the environment, modeled by the mul-
tiplicative noise, can be summarized as: (i) to break the symmetry of the
coexistence regime between the preys, producing an alternation with the ex-
clusion regime; (ii) to trigger the oscillating behavior of the site correlation
coefficient; (iii) to produce a nonmonotonic behavior of the pattern area as
a function of the noise intensity with an appearance of spatial patterns.
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Fig. 7. Spatial configuration of one prey obtained for q = 10−4, at iteration step

800, corresponding to the maximum value of the mean area for preys reported in

Fig. 6. The values of the other parameters and the homogeneous initial distribution

are the same used in Fig. 3.

4. Conclusions

The noise-induced pattern formation in a lattice of three interacting
species, described by Lotka–Volterra generalized equations, has been inves-
tigated. We find nonmonotonic behavior of the mean area of the maximum
patterns as a function of noise intensity. The same behavior we find for the
area of the patterns as a function of evolution time. The noise changes the
dynamical regime of the species, breaking the symmetry of the coexistence
regime. Besides the noise produces spatial patterns and temporal oscilla-
tions of the site correlation parameter defined on the lattice. We finally
note that our simple model of an ecosystem of interacting species could be
useful to interpret the experimental data of population dynamics strongly
affected by the noise [12].
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