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METRICAL VS. TOPOLOGICAL NEIGHBORHOOD

RELATIONS AND LINDEMANN MELTING CRITERION

IN TWO DIMENSIONS∗
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A concept of “topological” atom–atom neighborhood relation in a
strongly fluctuating solid is introduced. The divergence of metrical and
topological definitions of a cluster of atoms for a sufficiently high level of
atom’s displacement ξ > ξtr, and its consequences for an analysis of local
structure in locally solid-like ordered liquids are discussed. The threshold
amplitude ξtr is calculated for a two-dimensional (2D) close-packed lattice.
The Monte Carlo simulations of a 2D system of Lennard–Jones atoms lead
to a hypothesis, closely related to Lindemann’s melting criterion: melting
occurs for ξ = ξm ≃ ξtr, i.e. when metrical and topological approaches
diverge.

PACS numbers: 64.70.Dv, 61.20.Ja

1. Outline of the problem

Melting of crystals has been, since long, an object of numerous experi-
ments and theoretical studies. The phase diagrams of simple systems can be
calculated, but the general questions related to the liquid structure and the
nature of changes in the local and global structure at melting-crystallization
remains a challenge [1, 2]. According to a large experimental evidence (see,
e.g., in Ref. [3]) a three dimensional (3D) crystal melts when the root-mean-
square (r.m.s.) displacement ξ of an atom from its vibration-averaged posi-
tion exceeds a small fraction ξm of an equilibrium atom–atom distance a0:
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ξm/a0 = 0.07–0.20. This phenomenological rule is known as Lindemann’s
melting criterion [4]. Numerous attempts to explain the value of Linde-
mann’s parameter ξm/a0 (see Refs. [5–9] for recent results) have not yielded
a simple and intuitive physical picture of this effect.

Local-structure analysis of computer simulated liquids has revealed im-
portant correlations between the structure in small clusters and freezing/
melting phenomena [1, 2]. Recently, a scenario of freezing (or of an on-
set of hexatic phase, see below) in two-dimensional simple liquids, and a
melting criterion were presented based on the statistics of shapes of small
clusters [1,10] consisting of a central particle and its nearest neighbors. The
clusters were defined using snapshots of particle positions. As will be de-
scribed below (see Section 2), close to the melting point the relatively high
level ξ of fluctuations in the liquid and especially in the two-phase region
may result in ambiguities when applying this metrical approach. Then, the
concept of a cluster requires a careful re-examination and generalization. In
particular, clusters defined using non-metrical (e.g. topological) criteria may
contain important new information about the local structure not accounted
for by metrically-defined clusters.

The aim of the current paper is to study the divergence between metrical
and a simple topological definitions of a cluster of atoms in a model 2D solid
and to interpret the Lindemann’s melting parameter for 2D systems in terms
of this divergence.

It is important to bear in mind that 2D systems exhibit some peculiarities
due to large (as compared to 3D) long-wavelength fluctuations [3]. For
historical reasons we describe the system in terms of melting and liquid–
solid coexistence between liquidus and solidus lines, although the solid phase
may be actually a hexatic phase [11,12] separating the liquid and crystalline
phases. In finite and not too large systems used for computer simulations,
differences between the hexatic and the true crystalline phases are negligibly
small. As observed in computer simulations, the characteristic length scale
of the mosaic of hexagonal and non-hexagonal structures near melting is
of the order of only few inter-particle distances, so that the difference in
the long-range order between the hexatic and the crystalline state may be
assumed irrelevant for the problem under discussion. More information can
be found in [1].

The paper is organized as follows. In the next section we discuss and
compare metrical and topological definitions of a cluster of atoms at various
amplitudes of fluctuations in a strongly fluctuating solid. In Section 3 we
calculate, using Monte Carlo simulations, the amplitude ξm of fluctuations
at the onset of melting for a 2D Lennard–Jones (LJ) solid. In Section 4 we
formulate a hypothesis about the onset of melting in terms of a divergence
between metrical and topological definitions.
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2. Metrical and topological neighborhood relations

2.1. General concepts

A cluster of atoms in a fluctuating system can be defined as a “metri-
cal” or a “topological” unit; these definitions contain, in general, different
kinds of information about the local structure. A metrical cluster is a local
object defined irrespective of any pattern of structure and history. Inspired
by peaks in the radial distribution function (RDF), one takes the first N
nearest atoms to be the N “neighbors” of the central atom. This approach is
commonly used in computer simulations. With increasing temperature, the
displacement amplitude ξ increases, resulting in a broadening of the peaks
of RDF. Computer simulations and experiments indicate [16] that close to
the melting temperature, the first and second peaks of the RDF in 3D fcc
crystal start to overlap, implying that atoms from the second coordination
shell may occupy positions in the first coordination shell and vice versa.
This exchange leads to difficulties with defining a cluster based on metric
concepts. At the threshold ξtr (and above it), some of the metrical clusters
are no longer generated from the ideal, symmetrical structure by thermal
fluctuations. The information about the local topology of the crystal lattice
(defined by average positions of atoms) contained in “metrical” clusters, de-
cays rapidly as ξ increases above ξtr. In this sense, a metrical local order
does not exist above this threshold. In particular, if the local crystal order
hypothesis holds [2], the metrically defined clusters may be inadequate for
a demonstration of the existence of “good” matter in liquids.

The generalization, beyond the threshold, of the concept of a metrical
cluster preserving the information discussed above, becomes an important
and non-trivial task. The solution is straightforward in the case of a model
hot solid where the atoms always remember their parental lattice sites, ir-
respective on the magnitude of their displacement. The prescription “atom-
lattice site” has then a topological and not metrical character. The topo-
logical clusters result, by the definition, from the fluctuations of an initial
cluster in the symmetric structure (crystal lattice). Thus, contrary to the
concept of metrical clusters based on the ensemble of snapshots regardless
to time and causality, a topological cluster consists of the same atoms and
is conserved by the evolution of the system. In other words, a topological
definitions requires tracing the history of atoms positions. Topological clus-
ters contain only gradually decaying (with increasing ξ ) information about
the symmetric structure. The topological local order persists at least in a
“hot” 3D fcc solid at fluctuation levels exceeding ξtr [15, 16].

The aim of the current paper is to analyze both definitions in a hot 2D
solid. This represents the first step towards quantification of the topological
definition in locally ordered systems, in the first place liquids. The task of



1504 A.C. Mituś, R. Orlik, A.Z. Patashinski

defining clusters topologically requires tracking the history of atoms posi-
tions and mapping of atoms onto regular patterns of structure. Those further
topics are beyond the scopes of the present paper, and will be discussed in
a separate communication.

2.2. Two-dimensional case

The threshold ξtr for a 2D close-packed triangular lattice (a0 = 1 ) was
calculated in Ref. [16] in the assumption that atoms undergo independent
2D Gaussian fluctuations:

ξ
(2D)
tr = 0.14−0.16 . (1)

A close but larger value can be obtained from simple geometrical argu-
ments. When particles fluctuate, particle position distributions representing
the first and the second coordination shell overlap. At some distance from
the center probabilities to find a particle from each shell coincide. This
distance is about (

√
3 − 1)/2 ≈ 0.37 of the interatomic spacing, it divides

the space into first and second coordination shells for lattice of fluctuating
atoms. Particles of the first coordination shell that penetrate the region
assigned to the second shell, and particles of the second shell in the region
assigned to the first one, may be erroneously recognized as belonging to
a wrong shell. These are the atoms that can be differently treated in the

metrical or topological definitions. The threshold r.m.s. displacement ξ
(2D)
tr

is determined by the condition that in average one particle may be erro-
neously assigned to the wrong coordination sphere. As a rough estimate,
one assumes uniform distribution for atoms displacements in a circle, and
statistical independence of different atoms motions, to find

ξ
(2D)
tr = 0.20 (2)

close to result (1). This rough estimation does not take into account cor-
relations in atomic motions, and neglects effects of possible defects of the
structure of vacancy or dislocation types.

3. Melting of 2D Lennard–Jones liquid: Monte Carlo study

To find the amplitude of atom’s displacement ξ
(2D)
m for a 2D crystal,

we have simulated, using a standard constant-volume NVT Monte Carlo
method [13,18], a 2D system of N = 1024 atoms interacting via the Lennard–
Jones potential

VLJ(r) = 4ǫ0

[

(σ

r

)12
−

(σ

r

)6
]

, (3)
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where σ is a diameter of an atom, ǫ0 — the depth of Lennard–Jones potential;
cut-off radius for potential was chosen to be 2.5σ. Minimal image convention
and periodic boundary conditions were used and a list of neighbors (inside
a sphere with radius 2.5σ) was updated every 50 Monte Carlo Steps (MCS).
Total length of the simulation was 4 × 106 MCS. We point out that in 2D
no special methods to avoid overheating effects (see Refs. [1,19]) have to be
used.

All simulations, for different reduced densities ρ∗ ≡ ρ · σ2, were done at
reduced temperature T ∗ ≡ kBT

ǫ0
= 0.7, where kB is Boltzmann constant.

To localize the solidus line (i.e. line which discriminates between crystal
and two phase region) in the simulations we monitored chosen thermody-
namical quantities (like energy and heat capacity) and structural parame-
ters: average distance 〈l〉 between two chosen neighboring particles and the
m.r.s. displacements ξ1, ξ2 of an atom. The fluctuation ξ1 was calculated
with respect to a fixed (initial) position of an atom. In an infinite 2D system
this parameter diverges [20]; it can be generalized by considering relative dis-
placement vectors and their r.m.s fluctuation ξ2 between neighboring atoms
only [9]. Finally, the fluctuations were averaged over all the atoms.
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Fig. 1. Plot of an average distance 〈l〉 between two atoms (initially nearest neigh-

bors) against reduced density.

In Fig. 1 we present the plot of the distance 〈l〉 against reduced density.
At high densities (ρ∗ > 0.875) this parameter does not depends (up to the
fluctuations) on ρ∗. Below this density 〈l〉 takes much larger values. Close
to this density we observe also both qualitative and quantitative change
in the relation ξ1(ρ

∗) and ξ2(ρ
∗), see Figs. 2 and 3. The unit on vertical

axis is σ; the atom–atom distance at zero temperature is then 21/6. We
conclude that in our studies the solidus density is ρ∗S = 0.875, in a good
agreement with the results of local structure analysis. [1] The values of the
fluctuation level on the solidus line constitute ξ1S ≡ ξ1(ρ

∗

S) = 0.82 ± 0.09,
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ξ2S ≡ ξ2(ρ
∗

S) = 0.25 ± 0.12, in units a0 = 1. Large values of ξ1(ρ
∗

S) and,
in particular of the uncertainty of ξ2S, are typical manifestations of large
long-wavelength fluctuations in 2D. To estimate, in a rather crude way, the
amplitude of the fluctuation of a single atom we divide those results by

√
2,

in an analogy with the addition of two Gaussian random variables. Finally,

ξ(2D)
m ≡ ξ2S√

2
= 0.18 ± 0.09. (4)

The physical consequences of results (1) and (4) are discussed in the next
section.
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Fig. 2. Plot of the r.m.s. displacement ξ1 of an atom (see text) against reduced

density.
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Fig. 3. Plot of the r.m.s. displacement ξ2 of an atom (see text) against reduced

density.
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4. Discussion and conclusions

The necessity to distinguish between metrical and topological concepts
of atom–atom neighborhood relations becomes actual in strongly fluctu-
ating solids. For a low level ξ of fluctuation displacements, the two ap-
proaches coincide. When ξ exceeds a threshold value ξtr the two definitions
yield different results. Using Monte Carlo simulations for a 2D Lennard–
Jones liquid, we have localized the melting point (i.e. solidus density, or the
high-density boundary of hexatic phase) and calculated the fluctuation level

ξ
(2D)
m = 0.18 ± 0.09, cf. (4), representing the short-wavelength part of the

r.m.s. displacement of an atom from its equilibrium position at the melting
point. This result is in agreement with the threshold fluctuation level on a
2D triangular lattice, calculated from independent Gaussian fluctuations in

a hot solid: ξ
(2D)
tr = 0.14–0.16, cf. (1).

Those observations suggest a criterion for the onset of the melting in 2D
(or: about the high-density boundary of hexatic phase). We assume that

melting takes place when the r.m.s. displacement ξ
(2D)
m becomes comparable

with the threshold value ξtr, determined by the divergence between metrical
and topological definitions of neighborhood relations:

ξ(2D)
m ≃ ξ

(2D)
tr . (5)

This criterion offers a new physical interpretation of the Lindemann’s

parameter ξ
(2D)
m . The basic concept behind the original formulation of Lin-

demann’s criterion was that of a loss of information about the parental
lattice site of an atom. In this scenario, melting is triggered by an exchange
of neighboring atoms. In the current formulation, cf. (5), melting is related
to the loss of information about the parental topological cluster lattice site of
an atom belonging to a metrically defined cluster; it is triggered by exchange
of nearest and next-nearest neighbors of an atom.

Preliminary results indicate that the formulation of Lindemann’s crite-
rion in form (5) is also valid in higher spatial dimensions D = 3, 4, 5. This
might suggest an existence of a general topology-based mechanism of melt-
ing. Those studies are still in progress.

Part of this paper was completed during the stay of one of us (ACM) in
2001 at TU Braunschweig, Germany, as Alexander von Humboldt Fellow;
the financial support of AvH Stiftung is gratefully acknowledged. ACM
and AZP thank Prof. Harro Hahn and Dr. Frank Smolej for stimulating
discussions on local structure of liquids. ACM thanks Prof. H. Hahn for a
warm hospitality extended to him during his stay in Prof. Hahn’s research
group at TU Braunschweig.
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