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LACUNARITY AS A MEASURE OF TEXTURE∗
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Lacunarity can work as a supplement for describing texture of self-
similar objects. We propose a systematic study of this measure based on a
set of carefully designed prototype structures, providing also a comparision
to already existing measures (generalized fractal dimension). We also il-
lustrate its applications to material science (describing changes in polymer
surface during gold dispersion) and cellular biology (describing stains in
cancer cells from two cell lines in two conditions). To measure lacunarity
the gliding box method was used.

PACS numbers: 61.43. Hr

1. Introduction

“Texture is an elusive notion which mathematicians and scientists tend
to avoid because they cannot grasp it. Engineers and artists cannot avoid
it, but mostly fail to handle it to their satisfaction”. This definition of tex-
ture descends from Mandelbrot’s book [1] and is still valid. An important
goal in many branches of science and especially in material science, biology
and medicine is the quantitative analysis of the texture (patterns) of differ-
ent objects. These patterns may often be complex, exhibit scale-dependent
changes in structure, and may be difficult to quantify. Some progress in
this direction has been made by means of fractal generalized dimension. It
provides an acceptable good quantization of the structure and morphology
of a wide range of different objects [2]. One can find examples of using frac-
tal analysis for description of the microscopy output in different branches of
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science and technology: surface science (structure and morphology of ma-
terials surface) [3], porous materials [4], cellular biology (shape of cells) [5],
etc. Very often however, it is not enough especially for sets with almost the
same fractal dimension having quite different outlook otherwise. To make a
progress, some new concepts are required.

One of such concepts is lacunarity. It was invented long time ago by
Mandelbort [1] for measuring gaps in the texture. The name comes from
Latin, i.e. lacuna stands for lack, gap, or hole. Unfortunately, this measure
was until now very poorly examined, and it is difficult to tell, which features
of the texture does it grasp best. In this paper we try to face this question
by examining various, carefully constructed prototype structures of known
differences, and noticing the changes in lacunarity. This enables one to learn,
when application of this measure does make sense, and when this is not the
case. We also compare it to the generalized fractal dimension, and show,
that the areas of texture discrimination for those two measures are in many
cases complementary.

In our paper we also investigate some previously proposed relations
between fractal dimension and lacunarity, i.e. the linear relation between
them [4]. We show that this relation is not always met, and we try to
explain, why.

2. Lacunarity and its features

Various objects can exhibit different textures but still have the same
fractal dimensions [1]. This problem in many cases can be avoided by using
generalized fractal dimension (which usualy discriminates such textures),
but sometimes even that is not enough. In such cases further progress can
be achieved with help of lacunarity. Our studies show, that for textures with
the same Dq (generalized fractal dimension, discussed in details previously
in [2]) lacunarity can discriminate them very well (Fig. 1 and 2). From
analysis of these images we can conclude about sensitivity of this measure
to the shape of examined objects. This sensitivity is however limited by the
resolution of image, and gliding box size (see difference for images koch2 and
koch3).

Other studies show, that the lacunarity is a convenient measure of het-
erogeneity [6,7]. Low lacunarity indicates the homogeneity and translational
invariance due to similar gap sizes, whereas high lacunarity indicates het-
erogeneity a wide range of gap sizes of a texture in question.

We measure lacunarity by the gliding box method. In this method the
set under study is put on an underlying lattice with mesh size equal to 2a;
where a is less or equal to particle radius ε [6]. We consider a box of radius s

which glides on this lattice. The gliding box is initially placed at upper left
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Fig. 1. Six prototype structures (A — ellipse, B — bars, C — koch0, D — koch1,

E — koch2, F — koch3) with the same generalized fractal dimension Dq and

different value of lacunarity Λ (see Fig. 2 for details). These structures have the

same surrounding elements (small bars), and different cores of similar size.

corner of the image, and the number of light pixels in the image contained in
the gliding box is counted to n1. The box glides then over the entire image,
moving to all N positions at which it covers at least one pixel of the image,
at each location recording the number of light pixels (empty space) ni in
the box. The sequence of ni values for i = 1, 2, ..., N defines a probability
distribution Qn(M,s) which represents the probability that a gliding box of
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Fig. 2. Analysis of lacunarity and Dq spectrum for structures from Fig. 1: A — Dq

(for ellipse, koch3, koch2, koch1, the plot overlaps). B — Λ (lightgray bars) and

∆Dq = D−∞ − D∞ (darkgray bars).

size s contains M light pixels. Lacunarity is defined in terms of moments

Z
(q)
Qn

(s) =
s2

∑

M=1

M qQn(M,s) (1)

of distribution Qn(M,s) by the ratio λ(s)

λ(s) =
Z

(2)
Qn

(s)
[

Z
(1)
Qn

(s)
]2 =

E(s2)

(Es)2
=

D2s

(Es)2
+ 1 = Λ(s) + 1 , (2)

where Es stands for expected value, and D2s for the variance. (Note, that
lacunarity λ, as usually defined (cf. [8]), is always greater than one, but in
some papers we meet lacunarities (Λ) lower than one, declared to be λ [9].)

Lacunarity is a function of three factors. First, of the size of gliding
box. When this size increases, then also the average mass of the box gets
bigger (which causes greater denominator in (2)). Simultanously, the prob-
ability that box masses will differ, decreases (because local features become
averaged). Thus variance drops down, and similarly the numerator of (2).

Second variable in considerations is the fraction of map occupied P (as
the mean number of occupied sites goes to zero, lacunarity goes to infinity —
because of denominator in (2)); thus, sparser maps have higher lacunarities
than dense maps. The final factor is the geometry of map (for a given P ,
higher lacunarity represents higher contagion) [7, 8].

Analysis, in this paper, has been performed on a PC computer using the
public domain ImageJ program (developed at the U.S. National Institute
of Health and available on the Internet at http://rsb.info.nih.gov/nih

-image/). This program calculates an average Λ over a branch of gliding
box sizes. Such analysis is in most cases good enough, but occasionaly (like
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for cancer cell staining) when it is important to calculate the lacunarity of
individual frame sizes, or lacunarity of a non-rectangular region, it needs
extension. For such purposes we have written our own program.

In Fig. 3 we show the self-similarity range of lacunarity. As can be seen
the lacunarity changes with the box size s. At large box sizes the lacunarity
decreases, because all features of image become averaged into a kind of
“noise”. At small scales we are limited by the image resolution. There is
however still quite a wide range of s in which the concept makes sense [6].
From this scaling behaviour we see, that choosing a proper gliding box size
is an important problem. One way of dealing with this is to average the
lacunarity over the whole range of scales, and check, the variance. If it is
small, then we have just a small uncertainty about the calculated value of
Λ. This is the case in the above mentioned program.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

ln s

ln
 Λ

Fig. 3. Lacunarity Λ versus gliding box sizes (s) (in ln–ln coordinates) for structure

F from Table IV.

3. Lacunarity versus fractality

When introducing the new physical measure the natural question arises
how does it correspond to already existed ones. The simplest property of
an object (set) is its average density. We can easily obtain a value for the
density of material in search area by dividing the mass of tiles in the area
by magnitude of search area [10]. Thus we have:

σ =
nM

L2
, (3)

where σ is the average density of the lattice area, L length of lattice, n

number of tiles of mass M . Apart from density, there was a need to define
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some quantity, which would measure the holes of the image. In a book of
Kaye [10], who studied random walk generated lattices, there is a relation
between “local density”, lacunarity, and the fractal dimension D0:

nM

L2
∼ ΛD0 . (4)

This gives a hint, that there should be a negative correlation between Λ

and D0.
Later reports try to investigate and complete the relationship between

fractal dimension and lacunarity. Smith [9] observed negative correlation be-
tween fractal dimension and lacunarity based on analysis of neuronal cells.
In Pomonis [4] paper, one can find another example of, essentially experi-
mental relationship, between fractal dimension D0 and lacunarity Λ

D0 = 2.47 − 1.4Λ . (5)

(Though a thermodynamic formalism, staying behind the lacunarity con-
cept has not been proposed so far, there are several proposals concerning
the fractal dimension, referring to f(α)– formalism, known as multifractal-
ity, and related concepts, mostly toward quantification of possibly chaotic
character of microstractures under examination, see [11] and Refs. therein.)

We obtain quite similar results for morphology of polymer surface
(Fig. 4A) and structure of stains in cancer cells (Fig. 4B). (We realise, that
in Fig. 4A there is only 6 values plotted due to the technical limitations of
the technique used, but neverthless, it is worth mentioning as illustration of
another process, which seems to exhibit expected behaviour). In contrary,
for the set of prototype structures we obtain a plot which does not look lin-
ear at first sight. But when take a closer look, it appears to contain several
clusters of linearly aligned values. These clusters correspond to similar pro-
totype structures (Fig. 5 and Table I). From these results, we can speculate,
that the linear relation applies only to surfaces, generated by similar mech-
anism, and consequently, where the images show similar type of regularity.
So, when we don’t observe negative correlation, it may happen, that in the
examined process there are several surface generation mechanisms of differ-
ent nature. This is partially seen in the prototype structures of P2 set (see
Table I) where the dominating structure changes at some point from squares
to circles. This is due to the fact, that we have here two mechanisms: change
in radius of circles and opposite in direction, change in diameter of squares.
These two mechanisms are however of similar nature, and correlation does
not disrupt totally.
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Fig. 4. Fractal dimension (D0) versus lacunarity (Λ) of two examples. A — Mor-

phology of polymer surface during gold dispersion. D0 = 1.95− 0.95Λ Correlation

coefficient equal to 0.68. B — Structure of stain in cancer cells. D0 = 1.34− 0.55Λ

Correlation coefficient equal to 0.57.
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Fig. 5. Fractal dimension D0 versus lacunarity Λ for different prototype structures

(see Table I and III). For P1: D0 = 2.14 − 2.15Λ Correlation coefficient equal to

0.87. For P2: D0 = 1.78 − 0.42Λ Correlation coefficient equal to 0.77. For P3:

D0 = 1.94 − 0.52Λ Correlation coefficient equal to 0.83.

Besides of the above considerations for fractal dimension, we can also
see a relation of lacunarity to generalized fractal dimension. In figure 6
there is a comparision of these two measures for image set P2. We see,
that lacunarity behaves complementary to generalized fractal dimensions,
i.e. when the differences in fractal dimension are low, the differences in
lacunarity get higher, and vice versa.
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TABLE I

Prototype structures. P1: a carpet with uniformly distributed frames of various
size. P2: a carpet with growing circles and decreasing squares. P3: dendrite tree
based structure with differing number of branches (only nodes are plotted).

P1 P2 P3

a a a

b b b

c c c

d d d

e e e
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TABLE II

Lacunarity Λ and fractal dimension D0 for prototype structures from Table I.

Name Λ D0

P1a 0.20 ± 0.01 1.71 ± 0.01
P1b 0.22 ± 0.01 1.68 ± 0.01
P1c 0.23 ± 0.01 1.61 ± 0.01
P1d 0.27 ± 0.01 1.59 ± 0.01
P1e 0.29 ± 0.01 1.50 ± 0.01
P2a 0.28 ± 0.01 1.73 ± 0.01
P2b 0.31 ± 0.01 1.66 ± 0.01
P2c 0.44 ± 0.01 1.51 ± 0.01
P2d 0.72 ± 0.01 1.45 ± 0.01
P2e 0.89 ± 0.01 1.44 ± 0.01
P3a 0.50 ± 0.01 1.77 ± 0.01
P3b 0.58 ± 0.01 1.69 ± 0.01
P3c 0.60 ± 0.01 1.56 ± 0.01
P3d 0.76 ± 0.01 1.46 ± 0.01
P3e 1.33 ± 0.01 1.29 ± 0.01
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Fig. 6. Analysis of lacunarity and Dq spectrum for structures P2 from Table I: A

— Dq. B — Λ (lightgray bars) and ∆Dq = D−∞ − D∞ (darkgray bars).

4. Results and discussion

Aside of studying the prototype stuctures, we present the usage of lacu-
narity for two real-life cases: characterizing the polymer surface during gold
dispersion and staining in cancer cells. (They are examples of two entirely
different problems, for which we have the data available, having nothing in
common.)

The problem of gold clusters embedding in crystallizing bisphenol A
polycarbonate, treated as diffusion with drift in time changing medium was
presented previously [12]. In this presentation fractal analysis had been
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used to describe differences in polycarbon membrane surface morphology
during the gold dispersion. We describe surfaces of two kinds of membranes
(thickness: 2 µm and 3.5 µm) after 10h, 24h, 35.5h and 96.5h gold dispersion
(Table III).

TABLE III

Structure and morphology of polymer surface during gold dispersion.

Time Thickness Thickness
[h] 2µm 3.5µm

10

24

35.5

96.5

The results of fractal analysis is presented in Fig. 7 and Fig. 8. We can
observe (in chart D0 versus time), that “mountainous” of surface smooth
when gold goes inside (in both cases of thickness) and thus D0 drops down.
The “mountainous” of surface can also be described as levels on the map,
and analysed using lacunarity. From results of lacunarity calculation, we
see, that the value depends on thickness of the membrane only (Fig. 9 and
Table IV). This is probably due to the fact, that a thick membrane (which is
more rigid than thin one) cannot have big displacements on its surface, and
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thus has them smaller, but more in quantity, instead. In this circumstances,
the gold particles have more gaps to get into.
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Fig. 7. Generalized fractal dimension presented as f(α) spectrum for morphology of

polymer surfaces during gold dispersion from Table III and IV. Wide plots denote

high range of mass distribution, the maximum of a plot corresponds to fractal

dimension, while zeros of f(α) indicate, that minimum or maximum value of mass

appeared only once.
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Fig. 8. Changing in structure of polymer surface during gold dispersion. Fractal

dimension D0 versus time for membranes of two thickness: A. 2µm and B. 3.5µm.

In the previous paper ( [13]) addressed to staining in cancer cells, fractal
analyses had been used to analyse differences in secretory membrane activ-
ities of two rat prostate cancer cell lines (Mat-LyLu and AT-2) of strong
and weak metastatic potential, respectively. Each cell’s endocytic activity
had been determined by horseradish peroxidase uptake. Digital imaging
showed that Mat-LyLu cells took up more label (i.e. were more endocytic)
than AT-2 cells. The patterns of staining had been evaluated by multi-
fractal analyses: Generalized fractal dimension (Dq), as well as Partitioned
Iterated Function System — Semifractal (PIFS-SF) analysis [14]. These
approaches had revealed that under control conditions, all multifractal pa-
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Fig. 9. Changes in structure and morphology of surface of polymer membrane

(measured by lacunarity) during gold dispersion for two membrane thicknesses.

The symbols in the figure are: o, —– – for 3.5µm, +, - - - – for 2µm.

TABLE IV

Structure and morphology of polymer surface during gold dispersion.

Name Thickness Time of dispersion Λ D0

[µm] [h]
A 3.50 10.0 0.22 ± 0.01 2.93 ± 0.01
B 2.00 24.0 0.17 ± 0.01 2.91 ± 0.01
C 3.50 24.0 0.21 ± 0.01 2.90 ± 0.01
D 2.00 35.5 0.14 ± 0.01 2.87 ± 0.01
E 3.50 35.5 0.21 ± 0.01 2.84 ± 0.01
F 2.00 96.5 0.15 ± 0.01 2.79 ± 0.01

rameters and PIFS-SF codes had values greater for Mat-LyLu than AT-2
cells. This would agree generally with the endocytic/vesicular activity of
the strongly metastatic Mat-LyLu cells being more developed than the cor-
responding weakly metastatic AT-2 cells. All the parameters under study
had presented sensitivity to tetrodotoxin (TTX) pre-treatment of the cells,
which blocked voltage-gated Na2+ channels (VGSCs). In the preset work
we would like to check if lacunarity can enhance this analysis. Previously
used tools: Dq and PIFS-SF are invariant to flipping, mirroring, rotating
(by 90◦, 180◦ and 270◦) (lacunarity Λ also) and shuffling of a given image.
Lacunarity is more sensitive however for finding quality difference between
pattern of staining in cell line then any of so far used techniques.
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For cases, which we analyze in this paper we obtain: (Λ = 0.84±0.13 for
AT-2 in control condition, Λ = 0.67 ± 0.15 Mat-LyLu in control condition,
Λ = 0.68 ± 0.20 for AT-2 with TTX, Λ = 0.77 ± 0.25 for Mat-LyLu with
TTX). We can observe, that the range of various types of staining in the same
cell line, held in the same conditions, is very large (Fig. 10 and Table V), i.e.
the variances of different cell lines overlap. This shows, that lacunarity, as
calculated by the NIH ImageJ program does not properly resolve between
those cell lines. The large uncertainty in lacunarity value Λ stems from
application of two averaging procedures, (i) with regard to gliding box size
and (ii) number of cells.
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   control      control       +TTX       +TTX  

Fig. 10. Average value of lacunarity for two type of cancer cell lines in two different

conditions (control condition and after blocked voltage-gated Na2+ channels by

using TTX.)

TABLE V

Endocytotic measure E, fractal dimension D0, range of self-similarity ∆D =
D−∞ − D∞, number of PIFS-SF codes NPIFS−SF and lacunarity Λ for two type
of cancer cell lines in two different conditions (control condition and after blocked
voltage-gated Na2+ channels by using TTX.)

AT-2 Mat-LyLu AT-2 Mat-LyLu
control control with TTX with TTX

E[%] 3.50 ± 0.20 7.90 ± 0.20 3.50 ± 0.20 3.40 ± 0.03
D0 1.43 ± 0.05 1.68 ± 0.05 1.41 ± 0.05 1.45 ± 0.05
∆D 1.62 ± 0.05 1.44 ± 0.05 1.60 ± 0.05 0.78 ± 0.05

NPIFS−SF 81 ± 20 153 ± 25 76 ± 20 51 ± 20
Λ 0.84 ± 0.13 0.67 ± 0.15 0.68 ± 0.20 0.77 ± 0.25
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To deal with this case, we have developed our own program for lacunarity
calculation. In this program we add possibility to calculate lacunarities at
arbitrary gliding box sizes (the best gliding box size for cancer cells was 15
pixels for the zoom of inspected microscope), and the possibility to calculate
lacunarities over irregular shapes. Also, moments were calculated in two
different ways: for one feature we do this as specified by definition, and for
second omitting the white peak of histogram (this corresponds to calculation
of lacunarity only in places where there are some holes, so it helps to focus
attention on the hole properties rather than on the density of image). In
this way, we end up with two features, which are sufficient to discriminate
AT-2 and Mat-LyLu cancer cells (Fig. 11).
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Fig. 11. Lacunarity of vacuole region versus lacunarity of cell for four cases. A —

Mat-LyLu and AT-2 in control conditions, B — Mat-LyLu and AT-2 in TTX, C

— Mat-LyLu in control conditions and Mat-LyLu in TTX, D — AT-2 in control

conditions and AT2 in TTX.
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5. Concluding remarks

The geometry or structure of sets can be characterized by generalized
fractal dimension that can be viewed also as a measure of their irregularity.
But, simple visual inspection shows that there are cases in which several
sets with the same fractal (or generalized) dimension show differences in
texture. In such cases the lacunarity appears to be a right tool to get rid of
this discrepancy, but its use needs attention and care (especially the size of
gliding box, and region of analysis is of critical importance).

We have investigated the nature of negative correlation of Λ to D0

through analysis of the slope and intercept of equation, in which Λ and
D0 is determined by image generation rule. There is a hope that uniqueness
of the image generation rule implies the linear correlation between Λ and
D0.

In case of the gold dispersion, based on SEM images, we observe surface
morphology. Dq and f(α) show that regularity (self-similarity) of surface
morphology depends on time of dispersion. After 96.5 h we have the struc-
ture of the biggest regularity. There is a linear correlation between the
morphology (in the sense of D0, which equals fractal dimension dF ) and
time of gold dispersion. The obtained result shows that the surface becomes
more regular due to the gold dispersion inside the polycarbone membrane.
We can also observe that lacunarity depends on membrane thickness, which
is not the case for the fractal dimension.

Pattern of staining, which measures endocytic membrane activity E, de-
pends on the kind of the cells (normal cells, weakly and strongly metastatic
cells) and on experimental conditions (e.g. tetrodotoxin sensitivity). Endo-
cytic membrane activity E in control conditions is different for each cell line.
Quantity of uptaken HRP is bigger for strongly metastatic cells Mat-LyLu.
The fractal analysis (D0) and PIFS-SF codes have confirmed this result.
After blocking the activity of Na2+ channel (by using tetrodotoxin TTX)
in Mat-LyLu cells, the decrease in number of staining is observed. TTX
had no effect on HRP uptake in the AT-2 cells. Self-similarity of strongly
metastatic cells after blocking Na2+ channel is two times higher than in con-
trol conditions. We don’t observe this effect for weakly metastatic cell line.
Lacunarity appeared here to be a measure, which can distinguish between
AT-2 and Mat-LyLu cell lines; in control, as well as in TTX conditions. But
to make it work, we had to implement our own program, with additional
features, comparing to the NIH program.

Concluding, we can say that lacunarity can be used as a supplementary
tool for quantitative analysis of texture of self-similar patterns of a very
different nature.
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