
Vol. 35 (2004) ACTA PHYSICA POLONICA B No 4

PROPERTIES OF CONFINED STAR-BRANCHED

AND LINEAR CHAINS.
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A model of linear and star-branched polymer chains confined between
two parallel and impenetrable surfaces was built. The polymer chains were
restricted to a simple cubic lattice. Two macromolecular architectures of
the chain: linear and star branched (consisted of f = 3 branches of equal
length) were studied. The excluded volume was the only potential intro-
duced into the model (the athermal system). Monte Carlo simulations were
carried out using a sampling algorithm based on chain’s local changes of
conformation. The simulations were carried out at different confinement
conditions: from light to high chain’s compression. The scaling of chain’s
size with the chain length was studied and discussed. The influence of the
confinement and the macromolecular architecture on the shape of a chain
was studied. The differences in the shape of linear and star-branched chains
were pointed out.

PACS numbers: 02.50.Ng, 05.10.Ln, 61.25.Hq

1. Introduction

The confinement of macromolecules in a slit is interesting because the
presence of the impenetrable surfaces changes dramatically most of the prop-
erties of such polymers when compared with the free (unconfined) chains in
solution. This problem is also interesting due to its practical applications like
lubrication, production of thin polymer films, colloidal stabilization [1]. The
properties of polymer under confinement were extensively studied by means
of the computer simulation. Van Vliet and ten Brinke carried out Monte
Carlo simulations of lattice models of polymer chains [2]. They found that
the size of a polymer chain exhibits a universal behavior disregarding its
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length. They also discussed the problem of orientation of the chain between
the squeezing walls. Milchev and Binder built an off-lattice model of a poly-
mer chain and studied it by means of the Monte Carlo method [3]. Besides,
the results concerning the size of a chain they also calculated the polymer
density profiles inside the slit. Recently, some intensive simulations concern-
ing lattice models of single star-branched polymers were done [4–7]. It was
shown that besides the universal behavior of the polymer size, the similar
results were found for the short-time (relaxation processes) and long-time
(self-diffusion) dynamic properties. The possible changes in the mechanism
of a chain motion during the squeezing of the walls were discussed there.
In this paper we studied models of single linear and star-branched polymers
in a slit formed by two parallel and impenetrable walls. We have investi-
gated the dependence of the size, the shape and the structure of the polymer
systems as a function of the slit size and the chain length.

2. Model and simulation algorithm

Single linear polymer chains which correspond to an infinitely diluted
solution were studied. We studied two different types of polymer chains hav-
ing different macromolecular architecture: linear chains and star-branched
chains. A star-branched polymer consisted of three linear chains starting
from a common origin (the branching point). The locations of polymer seg-
ments were restricted to vertex of a simple cubic lattice. In the model system
there was no long-distance interaction potential between polymer segments
what implied that the system was athermal. The forbidding of the double
occupancy of lattice sites by polymer segments introduced the excluded vol-
ume what corresponds to good solvent conditions or high temperatures [7].
The model system was put into a Monte Carlo box with periodic boundary
conditions set in x and y directions only. The surfaces that confined the
polymer chain were parallel to the xy plane. Each surface was impenetrable
for polymer segments. The distance between the surfaces was d lattice units.

In figure 1 we present a schematic representation of a linear and star-
branched polymer chain trapped between two surfaces. The model polymer
systems were studied by means of the Monte Carlo method. In the simula-
tion algorithm the conformation of a polymer chain was randomly modified
using the following set of micromodifications: 2-bond move, 2-bond move,
3-bond crankshaft move and chain’s ends moves [5]. A number of attempts
of all micromodifications per one polymer segment is defined as a time unit.
A new conformation of the chain obtained as a result of such local move was
accepted due to topological constraints and the excluded volume condition
(double occupancy of lattice sites by polymer bead was forbidden and poly-
mer chains were not allowed to cross the confining surfaces). Each Monte
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Carlo simulation run consisted of 10
7–108 time units. The simulations for

each model system was carried out 30 times starting from quite different
conformations [7].

Fig. 1. The scheme of star-branched and linear polymers located between two

parallel impenetrable walls.

3. Results and discussion

The Monte Carlo calculations were performed for star-branched and lin-
ear chain models that contained the same number of beads. We studied
star-branched chains with n = 17, 34, 67, 134 and 267 beads in one arm,
which corresponded to the total number of beads N = 49, 100, 199, 400
and 799, respectively. Linear chains under consideration consisted of N =

49, 100, 199, 400 and 799 beads in order to make the results comparable for
both types of chains. We studied properties of our model chains for dis-
tances between the two parallel impenetrable surfaces from d = 3 to d = 80.
The first one is the smallest possible distance for which the micromodifica-
tions of polymer conformations are possible while the second one was much
higher than the mean diameter of the longest chains under consideration
and therefore chains were here almost unaffected by the presence of the con-
finement [7, 8]. The size of a polymer chain was described by its radius of
gyration. Figure 2 presents the log-log plot of the mean-square radius of gy-
ration 〈S2〉 vs. the total number of polymer segments N . The presented cases
are linear and star-branched chains, and two distances between the surfaces:
d = 3 and d = 10. One can observe that for longer chains (for N > 199) the
radius of gyration scales as 〈S2〉 ∼ Nγ . For larger distances (d = 10) the
scaling exponent of the star-branched chain was γ = 1.346±0.008 , for linear
chain the scaling exponent was found to be γ = 1.388 ± 0.006. From the
point of view of the fractal systems one can notice that the fractal dimen-
sion df of the object can be determined from the relation df = 1/1

2
γ [9, 10].

We obtained the following values of df= 1.49 and 1.44 for star-branched and
linear chains, respectively. Both these scaling exponents were considerably
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higher than those for the free chain, where γ = 1.19 [10]. This behavior can
be explained by the fact that longer chains are in the transition between
three-dimensional and two-dimensional chains.

Fig. 2. The mean-square radius of gyration 〈S2〉 as a function of the total chain

length N . The distances between the surfaces d and macromolecular architecture

are given in the inset.

For the distance between the surfaces d = 3 which is the smallest possible
to be simulated in our model [7] the scaling behavior of the radius of gyration
is quite different. For star-branched chains γ = 1.459 ± 0.011, while for
linear ones it was γ = 1.496 ± 0.008. The obtained values of the scaling
exponents are very close to 3

2
which was characteristic for all two-dimensional

polymer chains [10]. This result was rather expected as the chains squeezed
by two surfaces to the distance d = 3 are almost two-dimensional. The
fractal dimensions for this confinement was found df = 1.37 and 1.34 for
the star-branched and linear chains, respectively. These values are smaller
than for less confined systems what also confirms that the highly squeezed
molecules become almost two-dimensional. The differences between size of
linear and branched polymer chains are usually expressed in terms of the
factor g defined as:

g =
〈S2〉bra

〈S2〉lin
, (1)

where subscripts ‘bra’ and ‘lin’ denote branched and linear chains, respec-
tively. The theoretical considerations [10] led to the following simple formula
for random-flight unconfined chains (with no excluded volume):

gtheor =
3f − 2

f2
, (2)

what implies that for chains with three arms of equal length gtheor ≈ 0.778.
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Figure 3 presents the factor g calculated for our model chains as a func-
tion of the reciprocal of the total chain length 1/N . One can observe that
relatively short chains (N < 199) remain almost constant for both dis-
tances d under consideration: for d = 10 g ≈ 0.75 while for d = 3 g ≈ 0.71.
For longer chains the g parameter evidently decreases. Simulations of un-
confined chains within the frame of the same model gave g between 0.786
(short chains) and 0.744 (longer chains) while this parameter extrapolated
towards the infinitely long chain was 0.730 [7]. The decrease of the g pa-
rameter along the diminishing size of the slit indicates that the squeezing
of star-branched chains led to more compact structures when compared to
their linear counterparts.

Fig. 3. The g factor versus the 1/N . The distances between the surfaces d are given

in the inset. The theoretical value of g is indicated by the arrow.

The analysis of the radius of gyration gives information about the mean
spatial distribution of polymer segments only. More insight into the struc-
ture of a confined chain can be obtained from the polymer density profiles
inside the slit. In figure 4 we present polymer segment density profiles of
linear and star-branched chains for d = 3 and d = 30. As one can notice,
for both values of N the profiles for star-branched and linear molecules are
almost identical, what means that they are independent on the architecture
of the polymer. For a small distance between surfaces (d = 3), where poly-
mer chains were the most squeezed: there is no difference in density profiles
for different chain lengths. For polymers that were only slightly deformed
(d = 30) the distribution of polymer segments was different. For the case
of longer chains (N = 799) when 2〈S2〉1/2 ≫ d the density profiles were
parabolic as for d = 3. For shorter chains (2〈S2〉1/2 < d) a plateau appeared
in the middle part of the slit. This is caused by the fact that chains can
migrate between the walls. The width of the plateau region is the same
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for linear and star-branched chains and roughly equals d − 4〈S2〉1/2. This
means that in the center of the space between the walls the short chain is
not affected by the confinement. The deformation of the short chain by the
walls is visible at the distance equal to the diameter of the coil.

Fig. 4. The distribution of polymer segments ρ versus the distance from a wall z

for the distances d = 3 (left) and d = 30 (right). The values of chain lengths N

and macromolecular architecture are given in the inset.

The above results can be compared with findings of Milchev [11] for
diluted solution of linear chains, where the presence of the plateau was also
noticed. Further information about the differences in the structure between
star-branched and linear chains in a slit can be found from the analysis of the
shape of the chain. The eigenvalues of the tensor of gyration called L2

1
, L2

2
,

L2
3

correspond to the three main axes of the equivalent ellipsoid. In order to
determine the instantaneous shape of a chain we calculated the asphericity
factor δ∗ defined originally by Rudnick and Gaspari [12]:

δ∗ =

〈

3
∑

i>j

(

L2
i − L2

j

)2

〉

2

〈

3
∑

i=1

L2
i

〉 . (3)

This parameter takes the value 0 for a sphere and 1 for a one-dimensional
rod.

In figure 5 we showed changes of the asphericity factor δ∗ with the dis-
tance between the surfaces d for some chain lengths. For all chains under
consideration δ∗ is close to 0.4. For more squeezed chains the asphericity
became larger. The changes of the chain’s shape are not monotonic: there
are shallow minima on all curves. This behavior can be explained by the fact
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that chains in larger slit are rather reoriented than deformed [5]. The prin-
cipal axes of the chain are oriented predominately parallel to the walls. One
has to remember that the theoretical predictions of the asphericity for single
‘free’ linear chains were found δ∗ = 0.53 and for star chains δ∗ = 0.34 [13].

Fig. 5. The asphericity factor δ∗ versus the distance between walls d. The chain

lengths and macromolecular architectures are given in the inset.

4. Conclusions

We studied the properties of a simple model of polymers with different in-
ternal macromolecular architecture: linear chains and star-branched chains.
Despite the simplicity of the model (simple cubic lattice, confinement in a
form of an impenetrable surface) the results obtained enable one to conclude
some interesting features of the system. The presence of a confinement has
a major impact on polymer’s size and shape. It is observed that the linear
chains are less symmetric than their star-branched counterparts in the en-
tire range of confinement. The shape of linear chains is more sensitive on
confinement than that for branched polymer systems.
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