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We investigate the mass spectrum of a scalar field in a world with
latticized and circular continuum space where background fields take a
topological configuration. We find that the mass spectrum is related to the
characteristic values of Mathieu functions. The gauge symmetry breaking
in a similar spacetime is also discussed.
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1. Introduction

The most exotic approach to realize the unification of fundamental forces
is based on assuming higher-dimensional gauge theory. The field in higher
dimensions brings the corresponding Kaluza–Klein (KK) spectrum in four
dimensional spacetime provided that the extra space is a compact mani-
fold [1].

Recently, there appears a novel scheme to describe higher-dimensional
gauge theory, which is known as deconstruction [2–4]. A number of copies
of a four-dimensional theory linked by a new set of fields can be viewed as
a single gauge theory. The resulting theory may be almost equivalent to a
higher-dimensional theory with discretized, or, latticized extra dimensions.

In the continuum spacetime, if the compactification involves a topologi-
cally non-trivial configuration of gauge fields, the mass spectrum of charged
fields becomes radically changed from that of the conventional compacti-
fication [5]. The cases with non-trivial field strength on a flat torus have
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also been considered [6]. The mass spectrum affects the low mass degree of
freedom as well as the (Casimir-like) quantum energy density.

It is also known that, for higher-dimensional non-Abelian theory, a simi-
lar topological configuration gives rise to a symmetry breaking [7,8]. Such an
alternative candidate to the Higgs mechanism is worth studying in higher-
dimensional theories including string(-inspired) theories.

In deconstructed theories, the link fields can form a topological config-
uration as a whole in the presence of another compact dimension. Such
a ‘hybrid’ compactification has been studied [9] in the other context. Of
course, the original motivation of the deconstruction scheme, which gives
good UV behavior of the theory, must be ignored in the present case. On
the other hand, however, we can regard the hybrid compactification as a
continuum limit of the deconstructed theory.

In the present paper, we investigate a U(1) gauge theory with a latti-
cized circle, assuming another circular continuum dimension and topologi-
cally non-trivial background fields. We explicitly show the mass spectrum
in the background fields, which has a certain limit of the continuum theory.

In Sec. 2, we examine the topologically non-trivial configuration of the
link fields in the compactified spacetime. The mass spectrum of a charged
scalar field in this background field is studied in Sec. 3. The mass spectrum
of the Yang–Mills field in the same background is studied in Sec. 4, where
symmetry breaking in this situation is shown. The final section, Sec. 5, is
devoted to conclusion.

2. Topologically non-trivial configuration

We begin with the Lagrangian for deconstructing (D + 1)-dimensional
pure U(1) gauge theory [3]:

LV =
N

∑

k=1

1

e2

[

−1

4
Fµν

k Fk µν − (DµUk)
†DµUk

]

, (1)

where e is a gauge coupling,

Fµν
k = i

[

∂µ − iÃµ
k , ∂ν − iÃν

k

]

, (2)

and
DµUk = ∂µUk − iÃµ

kUk + iUkÃ
µ
k+1

. (3)

The labels of the fields are considered as periodic modulo N , e.g., U0 ≡ UN ,
UN+1 ≡ U1, and so on. Further we assume that all Uk have a common
absolute value |Uk| = f/

√
2.
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This theory is invariant under the following gauge transformation: The
transformation of gauge fields is

Ãµ
k → Ãµ

k + iWk∂
µW †

k , (4)

while the link fields Uk are transformed as

Uk → WkUkW
†
k+1

, (5)

where absolute values of Wk’s are unity.
It is known that when all Uk are assumed to equal f/

√
2, the mass

spectrum of the D-dimensional gauge field reads [3]

4f2 sin2
(πp

N

)

, p is an integer . (6)

Now we examine the case with another compact dimension. We suppose
that the z-direction is periodical, or the following identification is assumed:

z ∼ z + 2πR , (7)

where R can be considered as a radius of a circle.
If the circular dimension exists, there are other solutions to the equa-

tion of motion for Uk with vanishing Aµ
k ’s. Then the part of Lagrangian

density (DµUk)
†DµUk can be rewritten as ∂µχk∂µχk/2, when we set Uk ≡

exp(iχk/f). The equation of motion leads to ∂2χk = 0.
The most general background solution is χk/f = nz/(NR) + ϕ, or

Uk =
f√
2

exp
[

i
( nz

NR
+ ϕ

)]

, (8)

where n is an integer and ϕ is independent of z. Possible arbitrary phases
are gauged away by transformations (5), except for a common phase ϕ.
For n 6= 0, it is irrelevant to the mass spectrum because the common phase
implies only the translation in the z-direction. The field corresponding to the
common phase, the existence of which does not require compact continuum
dimensions, was studied by Hill and Leibovich [3, 4]. We adopt only the
non-zero n in the present paper.

We show how Uk = f√
2

exp
(

i nz
NR

)

is taken for a single-valued function

with respect to z. When we choose the transformation (5) with

Wk = exp

(

−2πi
nk

N

)

, (9)
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the single-valuedness is satisfied as follows:

Uk|z=2πR =
f√
2

exp
(

2πi
n

N

)

→ f√
2

= Uk|z=0 . (10)

The periodicity in the latticized dimension, such as WN = W0, holds when
n is an integer. n is a topological number as in the case with the magnetic
flux in the two dimensional compact space. Actually, in the limit of N → ∞
and N/f = const., our model corresponds to the model with the constant
magnetic field B = nf/(NR) on the two-torus [6].

3. Scalar field

The Lagrangian for deconstructing (D+1)-dimensional scalar field theory
is

Lφ =
N

∑

k=1

[

−(Dµφ̃k)
†Dµφ̃k

]

+f

N
∑

k=1

(√
2φ̃†

kUkφ̃k+1 +
√

2φ̃†
kU

†
k−1

φ̃k−1 − 2fφ̃†
kφ̃k

)

, (11)

where
Dµφ̃k = ∂µφ̃k − iÃµ

k φ̃k . (12)

This Lagrangian is invariant under the transformation (5) with

φ̃k → Wkφ̃k . (13)

We investigate the mass spectrum of the scalar field when the z-direction
is periodic, z ∼ z+2πR, and the link fields take the topologically non-trivial
form,

Uk =
f√
2

exp
(

i
nz

NR

)

, (14)

with an integer n.
To obtain the eigenfunctions associated with the spectrum, we expand

the scalar field as

φ̃k =
1√
N

N
∑

p=1

φp exp

[

2πi
pk

N

]

. (15)

Then the equation of motion for the charged scalar field reduces to

−∂2
µφp + 2f2

[

1 − cos

(

2πp

N
+

nz

NR

)]

φp = 0 . (16)
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Now we have to find the eigenfunction of the following eigenvalue equation

M2φp = −∂2
zφp + 2f2

[

1 − cos

(

2πp

N
+

nz

NR

)]

φp , (17)

to obtain the spectrum of the mass M for scalar fields in (D−1)-dimensional
spacetime.

The possible eigenfunctions turn out to be the Mathieu functions [10].
They are given by

φ0,m,p(z) = ce 2mN
n

(

nz

2NR
+

πp

N
+

π

2
,
4N2f2R2

n2

)

m = 0, 1, 2, . . . ,

(18)
and

φ1,m,p(z) = se 2mN
n

(

nz

2NR
+

πp

N
+

π

2
,
4N2f2R2

n2

)

m = 1, 2, 3, . . . ,

(19)
up to some normalization constants omitted here. Their eigenvalues M2 are
given by

M2
0,m =

1

R2

[

n2

4N2
a 2mN

n

(4N2f2R2/n2) + 2(fR)2
]

m = 0, 1, 2, . . . ,

(20)
and

M2
1,m =

1

R2

[

n2

4N2
b 2mN

n

(4N2f2R2/n2) + 2(fR)2
]

m = 1, 2, 3, . . . ,

(21)
respectively, where ar(q) [br(q)] is a characteristic value which yields an even
[odd] periodic solution of the Mathieu’s equation1.

These eigenfunctions do not necessarily satisfy the periodic condition
in the z-direction. Therefore the degree of freedom for each eigen value is
determined by the possible combinations in the form (15) which satisfy the
periodic boundary condition.

First we consider the case that the topological number n is a divisor of
N , or n = 1. In this case, the linear combination

φ̃a,m,ℓ,k(z) =

N/n
∑

p′=1

φa,m,ℓ+p′n(z) exp

[

2πi
(ℓ + p′n)k

N

]

(a = 0, 1) , (22)

1 In the limit q → 0, both ar(q) and br(q) approach to r2.
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has the correct boundary condition. To see this, we notice that φa,m,p(z +
2πR) = φa,m,p+n(z) when N/n is an integer. Then one can find

φ̃a,m,ℓ,k(z + 2πR) = φ̃a,m,ℓ,k(z) exp

[

−2πi
nk

N

]

(a = 0, 1) , (23)

and this is gauge equivalent to φ̃a,m,ℓ,k(z) via the transformation (13) with

Wk = exp

(

2πi
nk

N

)

. (24)

The degeneracy of each mass eigenvalue is n, which corresponds to ℓ =
1, . . . , n. This degeneracy is the same as the counterpart of continuum the-
ory [6].

In Fig. 1, the mass-squared eigenvalues of the scalar field are exhibited
against fR for n = N . For general values of n, similar dependence on
fR can be found. One notices that, in the limit of fR → 0, the mass-
squared spectrum approaches the KK spectrum with a circular dimensions,
i.e. m2/R2 (m: integer). This limit means that the discrete dimension be-
comes degenerate. Oppositely, in the limit of fR → ∞, the mass-squared
spectrum behaves as (2p+1)nf/(NR) (p: integer). This spectrum coincides
with that of the continuum theory [6]. One can find the boundary of the
behavior of the mass level in Fig. 1. This lies on M2 = 4f2, which indi-
cates how the mass scale f of the discrete compactification affects the mass
spectrum. Note that although the mass spectrum has both continuum and
discrete compactifications, that is not a mere sum of each spectrum.
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Fig. 1. The mass-squared eigenvalues of the scalar field are plotted as functions of

fR for n = N .
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Next, we consider the case that n is not a divisor of N . Let g be the
greatest common divisor of n and N . In this case, not all m are permitted but
only m = m′n/g (m′ = 0, 1, 2, . . .). Then the eigenfunction is proportional
to

φ̃a,m′n/g,ℓ,k(z) =

N/g
∑

p′=1

φa,m′n/g,ℓ+p′g(z) exp

[

2πi
(ℓ + p′g)k

N

]

(a = 0, 1) ,

(25)
and the degeneracy of each eigenvalue is given by g. The restriction on the
eigenstates looks very similar to the case with orbifold compactification. Of
course, the present case includes the previous case where n is the divisor of
N , as a special case.

4. SU(2) Yang–Mills field

In this section, we will briefly describe how the symmetry breaking can
occur in the Yang–Mills theory. For simplicity, we consider a deconstructed
U(2) Yang–Mills theory. The action and the gauge symmetry on the fields
are similar to the U(1) case in Sec. 2, provided that the fields Aµ

k and χk

are matrix valued and some trace operations are attached. Whereas the link
field Uk is transformed by (SU(2))k and (SU(2))k+1, we assume that the
background link field takes the following common U(2)-valued matrix form

Uk =
f√
2

exp
(

i
τ3

2

nz

NR

)

=
f√
2

(

ei nz
2NR 0

0 e−i nz
2NR

)

. (26)

The possible z-dependent term for the Yang–Mills field comes from the term
tr[(DµUk)

†DµUk] in the action. We expand the field as

Ãµ
k =

1√
N

N
∑

p=1

Aµ
p exp

[

2πi
pk

N

]

. (27)

Moreover, we can write Aµ
p = (Aµ

p )a(τa/2). Among the three degrees of
freedom in terms of U(2), (Aµ

p )3 has no z-dependent potential and thus one
vector field has the mass spectrum

4f2 sin2

(πp

N

)

+
m2

R2
, p,m are integer . (28)

At this point, the massive scalar fields which come from fluctuations of (χp)
3

in the link fields are absorbed in the vector field except for one massless
degree of freedom, as in the case of deconstructed QED [3]. The rest two
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vector fields (Aµ
p )1 and (Aµ

p )2 have the same spectrum as the scalar field in
Sec. 3, because the term tr[(DµUk)

†DµUk] reduces to

tr[(DµUk)
†DµUk] → f2

∣

∣

∣
e∓i nz

2NR − ei 2πp

N e±i nz
2NR

∣

∣

∣

2

= 2f2

[

1 − cos

(

2πp

N
± nz

NR

)]

. (29)

The z-component (Az
p)

a becomes three scalar fields which have the same

mass spectrum as (Aµ
p )a. As a result, the massless sector in the (D − 1)-

dimensional theory contains a U(1) gauge field and two scalar fields.

5. Conclusion and discussion

In this paper, we have considered a topologically non-trivial configura-
tion for the link fields in the deconstructed gauge theory with another com-
pact continuous dimension. We have shown the bosonic spectrum in such
a background fields. We have also examined the possibility of non-Abelian
symmetry breaking by the background field by using a simple model.

A remarkable feature of the mass spectrum is as follows: the spectrum of
mass squared has a nearly equal intervals at low levels, but another nearly
equal intervals can be found in the spectrum of mass at higher levels.

It might be pointed out that the mass of the massive vector boson is
of the order nf/(NR) (or arbitrarily small according the choice of fR, N ,
and n) whereas that of the KK excited states in the gauge singlet is the
smaller one of the order either 1/R or f/N . In addition, we can naturally
take the sector which is independent of f . The KK excitation of such a
sector has an order of 1/R. In other words, we will be able to construct
models with seemingly additional mass scales from a few scales in a similar
manner.

The stability of the symmetry breaking vacuum should be studied. Clas-
sically the vacuum with the non-trivial background field has a positive finite
energy density. The Casimir-like energy may lower the value of the vacuum
energy [8]. For this purpose, we must consider also various types of matter
fields and their quantum effects.

In this paper, we have treated only the bosonic field. Incidentally, the
fermionic fields in the doubly latticized dimensions with the non-trivial back-
ground fields have been studied since almost three decades ago in the other
context [11–13]. It is known that the eigenvalue equation becomes a type of
the Harper equation (or almost Mathieu equation) [13, 14]. Therefore, the
doubly latticized space, which is obtained if the z-direction in our present
model is discretized, can also be applied to the symmetry breaking mecha-
nism and will exhibit a new type of quantum effects of fermionic and bosonic
fields. These subjects (on the Dirac fields and the doubly latticized extra
space) will be discussed elsewhere.
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