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The problem of the correct computation of the vacuum energy contribu-
tion to cosmological constant is discussed in the context of the relativistic
invariant zeta-function approach. This method is shown to yield the value
of this quantity proportional to the fourth power of the (small) quantized
field mass, while the dependence on the large mass scale is only logarithmic.
This value is compared to the result obtained in the dimensional regular-
ization scheme which also satisfies the relativistic invariance condition, and
found to be the same up to irrelevant finite terms. The consequences of the
renormalization group invariance are also briefly discussed.
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The cosmological constant is known to contain the contributions of var-
ious origin, the explicit evaluation and “fine tuning” of which still remains
to be an open problem [1]. Here, only one of them will be addressed —
the contribution of the ground state energy of quantum fields. The Einstein
equation may be written in the form:

Rµν − 1
2gµνR = −gµνΛ0 − 8πGTµν , (1)

where Λ is the “classical” part while the vacuum average of the energy-
momentum tensor 〈Tµν〉 arises due to the quantum fluctuations. The condi-
tion of the relativistic invariance for this quantity may be formulated as [1,2]:

〈Tµν〉 = εgµν , (2)

(1607)
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what means that the energy density ε = 〈T00〉 and the vacuum pressure
p = 〈Tii〉 are related as:

ε = −p . (3)

Using (2), Eq. (1) can be written in the form

Rµν − 1
2gµνR = −gµνΛeff , (4)

where
Λeff = Λ0 + 8πGε , (5)

can be treated as the effective cosmological term. The “standard” estimation
of the energy density for a scalar field is based on the obvious field theoretical
formula with the UV cutoff of the divergent integral at the Planck scale
MP ≈ 1019 GeV:

ε =
1

2

∫

d3~k

(2π)3
ωk →

MP
∫

0

k2dk

(2π)2

√

~k2 +m2 , (6)

producing the well-known huge value

εP ≈ 1071 GeV4 , (7)

that is about 120 orders larger than the observable one.
However, recently it was argued in Ref. [3] that the leading power-law

terms in this naive evaluation do not satisfy the relativistic invariance condi-
tion (3). Instead, it was shown that the calculation of the zero-point energy
in the dimensional regularization satisfies the condition (3) at all steps, and
yields after removing the singular part within the MS scheme:

ε
(0)
dim = −p = − m4

64π2

(

ln
Λ2

m2
+

3

2

)

, (8)

where m is the field mass, and Λ is the mass scale parameter. The dimen-
sionally regulated, but non-renormalized expression contains neither quartic,
nor quadratic divergent terms — the only logarithmic ones appear. In con-
trast, the four-dimensional cutoff performed for computation the vacuum
averaged trace of the energy-momentum tensor does give the quadratic di-
vergent term, being in the same time the relativistic invariant. In all these
cases, it was shown that the vacuum energy density vanishes for a massless
field [3].

On the other hand, a powerful method for calculation of the ground
state energy for various configurations of quantum fields is provided by the
ζ-function technique supplied, if necessary, with the heat-kernel expansion
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[4–6]. Within the general framework of the zero-point energy computations,
the classical cosmological term Λ0 is treated as a “bare constant”, and possi-
ble divergences appearing in calculation of the quantum contribution must
be absorbed by the (infinite) redefinition of this parameter. One of the aims
of the present paper is to check if this approach can be applied in a relativis-
tic invariant fashion to the cosmological constant calculations, and compare
the results with that ones obtained in the other invariant frameworks.

It can be easily shown that the straightforward application of the
ζ-function regularization [7]:

∫

d3~k

(2π)3
ωk →

∫

d3~k

(2π)3
ω1−ǫ

k (9)

does not meet the relativistic invariance condition (3). In order to use this
approach properly, let us consider the following definition of the one-loop
vacuum energy of the free quantum field [4, 8, 9]:

ε =
1

V4
lnZ(ϕ) , (10)

where V4 is the (Euclidean) infinite space-time volume, the partition function
for the scalar field ϕ(x) reads

Z(ϕ) =

∫

Dϕ exp

(

− i

2

∫

dx
√−gϕ(x)ASϕ(x)

)

, (11)

and the second-order operator AS = gµν∂µ∂
ν +m2 has the eigenvalues λk:

ASϕk = λkϕk . (12)

The generalized dimensionless ζ-function corresponding to this operator is
defined as the infinite sum

ζ(s) = µ2s
∑

k

λ−s
k , (13)

where µ is an arbitrary mass scale providing the correct dimension. In case
of the continuous spectrum λk (which we are actually dealing with), the sum
in the Eq. (13) is replaced by the integral with the corresponding measure

∑

n

→ V4

∫

d4k

(2π)4
. (14)

The function (13) converges in (3+1)D space-time for Re (z) > 2, and can
be analytically continued to a meromorphic function having the poles only
at s = 1 and s = 2 [4]. At the origin (s = 0) it is regular.
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Then, from the expressions

Z(ϕ) = (det AS)
−1/2 = exp

(

∑

k

m

λ
1/2
k

)

, lnZ(ϕ) = −1

2

∑

k

ln
λk

m2
, (15)

evaluating the derivative of the ζ-function at s = 0

ζ ′(0) =
∑

k

ln
µ2

λk
, (16)

one gets the formula for the zero-point energy

ε =
1

V4
lnZ(ϕ) =

1

2V4

(

ζ ′(0) − ζ(0)ln
µ2

m2

)

(17)

for the scalar field ϕ with the mass m (for comparison, see, e.g., [8]). Now,
using the continuous spectrum of eigenvalues λk in the momentum space

λk = −k2 +m2 , (18)

we evaluate (replacing the infinite sum by the corresponding integral and
performing the Wick rotation) explicitly the corresponding ζ-function (by
virtue of simplicity of the expression for λk, we can do this. In general
case, the eigenvalues are unknown, and the heat-kernel technique should be
applied [4–6, 10]. In some situations, the direct large-k expansion may also
be useful [11]):

ζ(s) = V4µ
2s

∫

d4k

(2π)4
1

(k2 +m2)s
= V4

m4

16π2

(

µ2

m2

)s
1

s2 − 3s+ 2
. (19)

Then we have

ζ(0) =
V4m

4

32π2
, ζ ′(0) =

3

4

V4m
4

16π2
, (20)

and the energy density is given by

εζ = − m4

64π2

(

ln
µ2

m2
− 3

2

)

. (21)

This value coincides with the one obtained in Ref. [3] provided that the
arbitrary mass µ is re-scaled to give the same log-independent term. This
coincidence may be formally explained as follows (for a comparison, see also
Ref. [12]). Computing the vacuum average of the traced energy-momentum
tensor

〈0|Tµµ|0〉 = m2〈0|ϕ2|0〉 , (22)
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with account of the condition (3) we find [3]:

ε =
m2

4

∫

d4k

(2π)4
i

k2 −m2 + iε
. (23)

The equivalence of the definition (6) and the expression (23) stems from
Eqs. (6) and (3):

〈0|Tµµ|0〉 = 4ε =

∫

d3~k

(2π)3
1

2ωk

(

ω2
k − ~k2

)

= m2

∫

d4k

(2π)4
2πδ+

(

k2 −m2
)

= m2

∫

d4k

(2π)4
i

k2−m2 + iε
.(24)

This integral can be calculated in the dimensional regularization scheme
what gives:

ε
(1)
dim = − m4

64π2

(

4πµ2

m2

)ε(
1

ε
+ 1 − γE

)

. (25)

On the other hand, evaluating the vacuum energy density according the
definition (10) in the same regularization scheme one gets:

ε
(2)
dim = −1

2

∫

dnk

(2π)n
ln

m2

k2 −m2 + iε
= − m4

64π2

(

4πµ2

m2

)ε(
1

ε
+

3

2
− γE

)

,

(26)
what coincides exactly with the result obtained in Ref. [3] (in this paper
Eq. (8)) and differs by irrelevant log-independent term with (25). There-
fore, one can see that the dimensional and ζ-function regularization schemes
satisfy the relativistic invariance condition and yield the similar result. In
these cases, the power-law divergences are absent (in contrast to the four-
dimensional cutoff method, as well as any other relativistic invariant scheme
with an UV cutoff: here the quadratic term survives [3]), and the finite
log-independent difference between them can be eliminated by means of the
corresponding re-scaling of the arbitrary mass µ.

The corresponding result for the fermion field ψ(x) can also be obtained
from the fermionic partition function

ZF(ψ̄, ψ) =

∫

Dψ̄Dψ exp

(

i

∫

dx
√−gψ̄(x)AFψ(x)

)

, (27)

where
AF = i∂̂ −mf . (28)

By means of the similar considerations, one gets the fermion field contribu-
tion to the zero-point energy:

εf =
1

V4
lnZF(ψ̄, ψ) = − 4

V4

(

ζ ′f (0) − ζf (0)ln
µ

mf

)

(29)
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with the following relations between the scalar and fermion ζ-functions:

ζf (0,mf ) = ζ(0,m) , ζ ′f (0,mf ) = 1
2ζ

′(0,m) , (30)

and the factor of two added to take into account the anti-particle states. One
sees now that the fermionic and scalar zero-point energy densities satisfy:

εf = −4ε , (31)

as it should be.
The expression for the vacuum energy (21) has been obtained within the

relativistic covariant formulation from the very beginning, and we observe
that the properly applied ζ-function regularization does not break the in-
variance. Note also, that within this approach the expressions for the energy
density are finite at all steps of calculations, containing no divergent terms.
This is the well-known feature of the ζ-function method, and follows directly
from the analytical properties of the generalized ζ-function [4, 6].

The question remains how to deal with the logarithmic dependence on
the arbitrary mass scale µ. One might treat it as a high energy (UV) bound-
ary of order of the Planck scale MP, but this is not a satisfactory way since
the scale µ is completely arbitrary and its fixing at a certain value has not
any physical basis. Another possible way is to demand the total effective
constant Λeff in Eq. (5) to be independent of this (now treated as “unphysi-
cal”) scale parameter. This requirement gives the renormalization invariance
equation

µ
d

dµ
Λeff = 0 , (32)

what means that the renormalized classical cosmological constant Λ0 (see
Eq. (1)) becomes a “running constant” having the logarithmic dependence
on the scale µ [13, 14]:

Λ0(µ) = Λ0(µ0) +
Gm4

4π
ln
µ2

µ2
0

, (33)

where the value Λ0(µ0) gives the boundary condition for the solution of the
differential equation (32). One may think that the running parameter Λ0(µ)
depends on the initial value Λ0(µ0) as well as on µ0 itself, but this is not the
case. Indeed, it should not depend on the starting point, what is provided
by the renormalization invariance condition (32). Then it is convenient to
express the running constant in terms of a single variable (thus excluding
an extra parameter):

M = µ0 exp

[

− 4π

Gm4
Λ0(µ0)

]

, (34)
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and write

Λ0(µ) =
Gm4

4π
ln
µ

M
. (35)

The mass parameter M plays now a role of the fundamental energy scale
analogous to ΛQCD, while the renormalized classical cosmological constant
Λ0 becomes a running parameter, the value of which can be extracted from
the data at certain energy scale µ. The expression for the renormalized
effective cosmological constant then reads:

Λeff =
Gm4

4π

[

ln
m

M
+

3

2

]

, (36)

and is controlled by the forth power of the (small) mass m. The dependence
on the experimentally detectable parameter M , which now can be identified
with some high energy scale, such as the Planck mass, is only logarithmic
and affects slightly the result.

To summarize, it is confirmed that the proper relativistic invariant calcu-
lation in the regularization scheme which does not use explicitly any UV cut-
off (such as dimensional or ζ-function regularization) of the quantum zero-
point energy contribution to the cosmological constant in the flat space-time
yields no power-law divergences (just logarithmic ones in the dimensional
regularization, and no divergences at all in the ζ-function regularization),
and yields the result which is determined by the fourth power of the elemen-
tary quanta mass rather than the large mass scale. The dependence on the
latter appears to be only logarithmic and its influence on the result is not
so important. In this simple study we neglected the possible curvature of
the space-time what might change the results significantly. Also we did not
take into account the possible presence of different sorts of quantum fields
which can contribute to the vacuum energy [13].

As compared to the other possible regularization schemes, the ζ-function
method based on the formulas (10),(11) seems to have the following advan-
tages:

(i) By virtue of the analytical properties of the generalized ζ-function, the
divergences do not appear at any step of the calculations and hence,
from the formal point of view, no (infinite) renormalization is required.

(ii) This method starts with the covariant expression (11) what can be eas-
ily generalized to the case of the curved space-time. This is important
since the effects of the curvature may be nontrivial [4, 5].
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