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Within the chiral soliton model the SU(3) breaking collective Hamil-
tonian introduces representation mixing in the baryonic wave functions.
We calculate O(ms) effects of this mixing on the decay widths of decuplet
and antidecuplet baryons. We find importance of the 27-plet admixture in
the Θ

+ and Ξ10 decays. The role of the 1/Nc nonleading terms in O(ms)
transition matrix elements is discussed.

PACS numbers: 11.30.Rd, 12.39.Dc, 13.30.Eg, 14.20.–c

1. Introduction

There is almost no doubt today that the lightest member of the exotic
antidecuplet has been discovered [1]. Most probably also the heaviest mem-
bers of 10 were seen by NA49 experiment at CERN [2]. These states were
predicted within the chiral soliton models [3–6]. Early estimates of both Θ+

and Ξ10 masses from the second order mass formulae obtained in the Skyrme
model are in a surprising agreement with present experimental findings [4].
Later, the masses, as well as the decay widths of the exotic states were com-
puted within the chiral quark soliton model [5]. There, however, a freedom
in relating the exotic-nonexotic splittings and the splittings within the ex-
otic multiplets to the value of the pion–nucleon sigma term, ΣπN , whose
experimental value has varied over the years from 45 to almost 77 MeV [7],
made the prediction of Ξ10 higher [5] than the 1860 MeV reported in [2].
That the chiral models can easily accommodate lighter Ξ10 masses is clear
from earlier studies [4, 8, 9] and was emphasized recently in Ref. [10].
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One of the most striking predictions of the seminal paper by Diakonov,
Petrov and Polyakov [5] was the narrow width of antidecuplet states. Despite
some misprints in this paper (see e.g. [10, 11]) and the model dependent
corrections, the narrow width is one of the key features of the chiral model
predictions which is in line with recent experimental findings. The small
width appears due to the cancellation of the coupling constants multiplying
3 different group-theoretical structures entering the decay operator [5]. That
this cancellation is consistent with the Nc counting, despite the fact that
two out of the three above mentioned constants scale differently with Nc

was shown in Ref. [12].

In Ref. [5] also the ms corrections to the decay widths coming from the
representation mixing in the baryonic wave functions, caused by the SU(3)
breaking effective Hamiltonian, were estimated. However, two approxima-
tions have been used: firstly only the mixing with lowest possible represen-
tations was considered, boiling down to neglecting the SU(3)-flavor 27-plet;
and secondly, these corrections were calculated only for the term leading
in Nc. In Ref. [11] the second simplification was partially abandoned and
in Ref. [9] the 27-plet contributions were evaluated, however, only for the
leading term. It is the purpose of this work to discuss the ms corrections to
the decay widths without the above mentioned simplifications. Some of the
results presented here were already discussed in Ref. [10].

The corrections due to the representation mixing constitute only a part
of the full ms correction which, however, are fully under control if the mass
spectra are known. There exists another set of ms corrections in the decay
operator itself. The group theoretical structure of these terms is known
[13], however, numerical analysis is not straightforward, since there are 3
new unknown constants which appear at this order. In the following we
concentrate only on the mixing corrections. Therefore their magnitude can
only serve as an estimate of a theoretical uncertainty introduced by ms

corrections.

Our findings can be summarized as follows: 27-plet admixtures are very
important for the Θ+ and Ξ10 decays, whereas for Σ10 decays they are only
moderate and for N10 decays the can be safely neglected. Effects of the
terms nonleading in Nc are important for Θ+ decay: in fact they change the
character of the correction from enhancement found in [5] to suppression
discussed already in [10].

The paper is organized as follows: in Sect. 2 we introduce model param-
eters and discuss the magnitude of the representation mixing. In Sect. 3 we
calculate decay corrections to the decuplet and antidecuplet decay widths.
We explicitly display their dependence on the model parameter ρ and pion-
nucleon sigma term, and examine the importance of the 27-plet. Conclusions
are presented in Sect. 4.
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2. Representation mixing

In a recent paper [10] it has been shown that the set of parameters of
the symmetry breaking Hamiltonian

Ĥ ′ = αD
(8)
88 + βY +

γ√
3
D

(8)
8i Ŝi (1)

(where D
(8)
88 are SU(3) Wigner matrices, Y is hypercharge and Ŝi is the

collective spin operator [14]) which reproduces well the nonexotic spectra,
as well as the measured mass of the Θ+(1540) can be parameterized as
follows1:

α = 336.4 − 12.9ΣπN , β = −336.4 + 4.3ΣπN , γ = −475.94 + 8.6ΣπN .
(2)

Moreover, the inertia parameters which describe the representation splittings

∆M10−8 =
3

2I1
, ∆M10−8 =

3

2I2
(3)

take the following values (in MeV)

1

I2
= 152.4 ,

1

I2
= 608.7 − 2.9ΣπN . (4)

If, furthermore, one imposes additional constraint that MΞ
10

= 1860 MeV,
then ΣπN = 73 MeV [10] (see also [16]) in agreement with recent experimen-
tal estimates [7]. The dependence of model parameters on ΣπN is plotted in
Fig. 1(a).

Hamiltonian (1) introduces mixing between different representations
[10, 13]:

|B8〉 =
∣

∣81/2, B
〉

+ cB
10

∣

∣101/2, B
〉

+ cB
27

∣

∣271/2, B
〉

,

|B10〉 =
∣

∣103/2, B
〉

+ aB
27

∣

∣273/2, B
〉

+ aB
35

∣

∣353/2, B
〉

,

|B10〉 =
∣

∣101/2, B
〉

+ dB
8

∣

∣81/2, B
〉

+ dB
27

∣

∣271/2, B
〉

+ dB
35

∣

∣351/2, B
〉

, (5)

where |BR〉 denotes the state which reduces to the SU(3) representation R
in the formal limit ms → 0. The ms dependent (through the linear ms

1 We use here ms/(mu + md) = 12.9 [15].
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dependence of α, β and γ) coefficients in Eq. (5) read:

cB
10

= c10









√
5

0√
5

0









, cB
27 = c27









√
6

3
2√
6









,

aB
27 = a27









√

15/2
2

√

3/2
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5/
√
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√
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3
√
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2
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5/7









,

dB
8 = d8
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5√
5
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, dB
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0
√

3/10
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√

5
√

3/2
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1/
√

7

3/(2
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14)

1/
√

7
√

5/56









(6)

in the basis [N,Λ,Σ ,Ξ ], [∆,Σ ∗,Ξ ∗,Ω ] and [Θ+, N10,Σ10,Ξ10], respectively,
and

c10 = − I2

15

(

α +
1

2
γ

)

, c27 = − I2

25

(

α − 1

6
γ

)

,

a27 = −I2

8

(

α +
5

6
γ

)

, a35 = − I2

24

(

α − 1

2
γ

)

,

d8 =
I2

15

(

α +
1

2
γ

)

, d27 = −I2

8

(

α − 7

6
γ

)

, d35 = −I2

4

(

α +
1

6
γ

)

.

(7)

In Fig. 1(b) we plot the value of mixing coefficients (6) for the Σ particle2.
We see from Fig. 1(b) that previously neglected [5,11] mixing with 27 both
for 10 and 10 are potentially important (the latter one only for not too
small ΣπN ). Whether the entire correction to the decay widths due to the
admixture of R = 27 remains large, depends on the values of the pertinent
transition matrix elements which will be calculated in the next section.

2 Note that Σ mixes in all the above representations, and therefore is useful for the
sake of illustration.
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Fig. 1. Parameters of the splitting Hamiltonian (1) and 1/I2 (a) and (b) mixing

coefficients (6) for Σ as functions of pion–nucleon sigma term ΣπN .

3. Decay widths

In this section we shall calculate matrix elements which enter into the
formula for the decay width for B → B′ + ϕ:

ΓB→B′+ϕ =
1

8π

p

M M ′
M2 =

1

8π

p3

M M ′
A2 (8)

up to linear order in ms. The “bar” over the amplitude squared denotes av-
eraging over initial and summing over final spin (and, if explicitly indicated,
over isospin). Anticipating linear momentum dependence of the decay am-
plitude M we have introduced reduced amplitude A which does not depend
on the kinematics, i.e. on the meson momentum p

p =

√

(M2 − (M ′ − mϕ)2)(M2 − (M ′ − mϕ)2)

2M
. (9)

For the discussion of the validity of (8) see [10]. In order to match former
normalization [5] we shall define the decay amplitude as

MB→B′+ϕ =
〈

B′
∣

∣ Ô(8)
ϕ |B〉

= 3
〈

B′
∣

∣ G0Dϕi − G1dibc D
(8)
ϕb Ŝc −

G2√
3
D

(8)
ϕ8 Ŝi |B〉 × pi , (10)

where the sum over repeated indices is assumed: i = 1, 2, 3 and b, c = 4, . . . 7.
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Coupling constants G0,1,2 can be related to the elements of the axial
current operators yielding relations [5, 13]:

9

5

F

D
=

G0 + 1
2G1 + 1

2G2

G0 + 1
2G1 − 1

6G2
(11)

and to

G2 =
2MN

3Fπ
∆Σ , (12)

where ∆Σ = 0.3± 0.1 is the “spin content of the proton” and Fπ = 93 MeV.
Note that formally constants G0 and G1,2 are of different order in Nc, how-
ever, as has been shown in [12] additional Nc dependence comes from the
SU(3) Clebsch–Gordan coefficients [17].

In the following we shall use

G1 = ρG0 , G2 = εG0 . (13)

Equation (11) introduces relation between ρ and ε:

ε =
9F

D − 5

9F
D + 5

(ρ + 2) . (14)

Throughout this paper we fix F/D = 0.59 following Ref. [10].
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Fig. 2. Ratios of the effective couplings (a) (17) and (b) (24) to G10 as functions of

the parameter ρ defined in Eq. (13).
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3.1. Decuplet decays

Now let us consider matrix elements of the decay operator (10) between
states (5). Decuplet can only decay to octet, and we have

〈

B′

8

∣

∣ Ô(8)
ϕ |B10〉 =

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣103/2, B
〉

+aB
27

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣273/2, B
〉

+cB′

27

〈

271/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣103/2, B
〉

. (15)

It is convenient to choose ~p = (0, 0, p). Then the matrix elements for S3 =
S′

3 = 1/2 read:

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣103/2, B
〉

= 3
2√
15

G10

(

8 8
ϕ B′

∣

∣

∣

∣

10
B

)

× p ,

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣273/2, B
〉

= 3
2
√

2

9
G27

(

8 8
ϕ B′

∣

∣

∣

∣

27
B

)

× p ,

〈

271/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣103/2, B
〉

= 3
1√
15

G′

27

(

8 27
ϕ B′

∣

∣

∣

∣

10
B

)

× p , (16)

where

G10 = G0 +
1

2
G1, G27 = G0 −

1

2
G1, G′

27 = G0 − 2G1 . (17)

We see here that the transition matrix elements are generally different
and depend on representations. For the decuplet decays we find that

G10 > G27 > G′

27 ∼ 0 . (18)

Hence, we do not expect very large modifications of decuplet decays widths.
Most of the effect will come from 27 admixture in the initial 10 state rather
than in the final octet state. However, the admixture coefficient a27 is rela-
tively large, as can be seen from Fig. 1(b), and the enhancement factor due
to the representation mixing will be of the order (for ρ = 0.5 and ΣπN =
73 MeV)

R
(mix)
B→B′+ϕ ≃ 1 + 2 aB

27

G27

G10
× CB→B′+ϕ ∼ 1 + 0.4 × CB→B′+ϕ , (19)

where CB→B′+ϕ < 1 is the Clebsch–Gordan factor for a given decay. In the
table below we list possible decay modes and the relevant matrix elements. It
should be stressed that for the consistency of the ms expansion we should not
literary square the matrix elements, but rather — as in Eq. (19) — keep only
G2

10 and the mixed term 2G10(cG27 + c′ G′
27), neglecting (cG27 + c′ G′

27)
2.
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Decay Matrix element A2

∆ → N + π 3
5

[

G10 + 5
3a27 G27 + 1

3c27 G′
27

]2

Σ10 → Λ + π 3
10

[

G10 + 4
3a27G27 + 2

3c27G
′
27

]2

Σ10 → Σ + π 3
15 [G10 + c27G

′
27]

2

Ξ10 → Ξ + π 3
10

[

G10 + 7
9

√

5
6a27G27 + 3

5

√

5
6c27G

′
27

]2

(20)

In Fig. 3 the correction factors

R(mix) = 1 + 2

√

A2 −
√

A2
∣

∣

∣

ms=0
√

A2
∣

∣

∣

ms=0

(21)

are plotted as functions of ρ and ΣπN for the decuplet decays displayed in
Eq. (20). We see that they are moderately large for ∆ and Σ ∗ → Λ + π.
For Σ ∗ → Σ + π the correction is small since it proceeds only through the
admixture of 27 in the final state Σ , i.e. is given entirely in terms of G′

27
3.
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Fig. 3. Enhancement factors R(mix) for the decuplet decays displayed in Eq. (20)

as functions of ρ (for ΣπN = 73 MeV) and ΣπN (for ρ = 0.5).

3 Note that the relevant SU(3) isoscalar factor vanishes for the admixture of 27 in the
initial decuplet Σ

∗.
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3.2. Antidecuplet decays

Antidecuplet can directly decay only to octet:

〈

B′

8

∣

∣ Ô(8)
ϕ |B10〉 =

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣101/2, B
〉

+cB′

10

〈

101/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣101/2, B
〉

+cB′

27

〈

271/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣101/2, B
〉

+dB
8

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣81/2, B
〉

+dB
27

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣271/2, B
〉

. (22)

In Ref. [5] only the terms proportional to cB′

10
and dB

8 = −cB
10

were considered.
Moreover the assumption was made that all transition elements were equal
to G10 defined below. Although this is true in the leading order in the
“explicit” Nc counting4, the full expressions for these matrix elements are
substantially different from G10 [10]. In Ref. [9] the admixtures of 27 were
considered with, however, only the leading part for the transition elements.
The comparison with [9] can be easily made by choosing G1 = G2 = 0,
G0 = G10 in the equations below.

In order to evaluate the transition matrix elements entering Eq. (22) it
is convenient to choose ~p = (0, 0, p). Then the matrix elements for S3 =
S′

3 = 1/2 read:

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣101/2, B
〉

= −3
1√
15

G10

(

8 8
ϕ B′

∣

∣

∣

∣

10
B

)

× p ,

〈

101/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣101/2, B
〉

= 3
1

2
√

6
H10

(

8 10
ϕ B′

∣

∣

∣

∣

10
B

)

× p ,

〈

271/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣101/2, B
〉

= 3
7

4
√

15
H ′

27

(

8 27
ϕ B′

∣

∣

∣

∣

10
B

)

× p ,

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣81/2, B
〉

=

3

2

[

H8√
3

(

8 8
ϕ B′

∣

∣

∣

∣

81

B

)

−
√

3

5
H ′

8

(

8 8
ϕ B′

∣

∣

∣

∣

82

B

)

]

× p ,

〈

81/2, B
′
∣

∣ Ô(8)
ϕ

∣

∣271/2, B
〉

= −3
1

9

√

2

5
H27

(

8 8
ϕ B′

∣

∣

∣

∣

27
B

)

× p , (23)

where we have introduced the following constants5 [10, 11, 18]:

4 There is also “implicit” Nc dependence coming from the SU(3)flavor Clebsch–Gordan
coefficients calculated for an arbitrary Nc [12,17].

5 Note that our H ′

27 is identical to H ′

10
from Ref. [10].
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G10 = G0 − G1 −
1

2
G2, H10 = G0 −

5

2
G1 +

1

2
G2 ,

H27 = G0 − 2G1 +
3

2
G2, H ′

27 = G0 +
11

14
G1 +

3

14
G2 ,

H8 = G0 +
1

2
G1 +

1

2
G2, H ′

8 = G0 +
1

2
G1 −

1

6
G2 . (24)

In Fig. 2(b) we plot the ratios of the transition constants (24) to G10. Al-
ready here we see the potential source of trouble: the leading term in (22) is
governed by G10 which is substantially smaller than G10. This is the primary
source of the suppression for the antidecuplet decay widths [5,10]. However,
in view of the smallness of G10, the coefficients H ′

27, H8 and H ′
8, which

come from the admixtures of 27 in the final octet state and of 8 in the ini-
tial antidecuplet state, pose a challenge to the validity of the ms expansion,
since the relevant mixing coefficients c27 and d8 = −c10 are not enough sup-
pressed. Therefore we might expect here relatively large corrections, their
magnitude depending on the relative magnitude of different terms entering
the expression for the decay amplitude A.

Let us first list formulae for the decay widths of the (possibly) observed
states Θ

+
10

and Ξ10:

Decay Matrix element A2

Θ+ →
{

n + K+

p + K0
3
10

[

G10 + 5
4c10 H10 − 7

4c27H
′
27

]2

Ξ10 → Ξ + π 3
10

[

G10 + 7
6c27 H ′

27 + 1
3d27H27

]2

Ξ10 → Σ + K 3
10

[

G10 − 5
4c10 H10 + 7

12c27 H ′
27 − 1

3d27 H27

]2

(25)

In Eq. (25) for Ξ10 we list expressions for the averaged decay widths (like
Ξ10 → Ξ + π) that, however, for this particular case equal to the width of
the specific decays of Ξ

−−

10
(like Ξ

−−

10
→ Ξ− + π−). The relevant correction

factors R(mix) are plotted in Fig. 4. We see that Θ+ decay gets strongly
suppressed, while Ξ10 decays get enhanced [10]. The strong suppression of
ΓΘ+ indicates that for ρ & 0.3 and/or ΣπN & 50 MeV one cannot neglect the
square of the admixtures which start to dominate. The numerical analysis
of the impact of these and other factors on the physical decay widths was
done in [10]. Let us remark here that for Θ+ most of the negative correction
comes from the 27 admixture, because the 10 admixture in the final nucleon
is proportional to H10 which is small and changes sign around ρ ∼ 0.4.



SU(3) Breaking in Decays of Exotic Baryons 1635

Therefore initial calculation of the ms correction to this decay [5], which
showed enhancement rather than suppression, indicates how important are
the terms nonleading in Nc as well as the corrections due to the flavor
27-plet. The importance of the 27 admixtures is also visible in the case of
Ξ10 → Ξ + π where all other admixtures are absent.
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R(m
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)

SpN [MeV]

Fig. 4. Correction coefficients R(mix) for Θ+ and Ξ10 decays as functions of ρ (for

ΣπN = 73 MeV) and ΣπN (for ρ = 0.5).

Next, let us list results for the nucleon-like states

Decay Matrix element A2

N10 →N + π 3
20

[

G10 + c10

(

5
4H10 − 5

2H8 − 9
2H ′

8

)

+ c27
49
12H ′

27 + 1
15d27H27

]2

N10 →N + η 3
20

[

G10 − c10

(

5
4H10 − 5

2H8 + 3
2H ′

8

)

− 7
4c27H

′
27 − 1

5d27H27

]2

N10 →Λ + K 3
20

[

G10 + c10

(

5
2H8 + 3

2H ′
8

)

− 7
2c27H

′
27 + 1

5d27H27

]2

N10 →Σ + K 3
20

[

G10 + c10

(

5
2H10 − 5

2H8 + 9
2H ′

8

)

− 7
3c27H

′
27 − 1

15d27H27

]2

(26)
which were discussed in some detail in Ref. [11]. Our formulae agree with the
ones of Ref. [11] provided we neglect 27 admixtures and set H8 = H ′

8 which
in view of Fig. 2(b) is legitimate. At the end of this section we shall discuss
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the relative magnitude of the 27 admixtures with respect to the other ones.
Note that for our set of parameters (2) for ΣπN = 73 MeV N10 (1646 MeV)
is below the threshold for Σ + K.
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R(m
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Fig. 5. Correction coefficients R(mix) for N10 decays as functions of ρ (for ΣπN = 73

MeV) and ΣπN (for ρ = 0.5 and ρ = 0.3).

For Σ10 decays we get:

Decay Matrix element A2

Σ10 → N + K 1
10

[

G10 − c10

(

5
2H10 − 5

2H8 + 9
2H ′

8

)

+ 7
6c27H

′
27 − 4

15H27

]2

Σ10 → Σ + π 1
10

[

G10 + c10

(

5
2H10 − 5H8

)

+ 7
2c27H

′
27

]2

Σ10 → Σ + η 3
20

[

G10 + 3c10H
′
8 − 7

3c27H
′
27 − 4

15d27H27

]2

Σ10 → Λ + η 3
20

[

G10 − 3c10H
′
8 + 7

2c27H
′
27 + 4

15d27H27

]2

Σ10 → Ξ + K 3
30

[

G10 + c10

(

5
2H8 + 9

2H ′
8

)

− 14
3 c27H

′
27 + 4

15d27H27

]2

(27)
and the pertinent correction factors are plotted in Fig. 6. Note that for
our set of parameters (2) for ΣπN = 73 MeV Σ10 (1754 MeV) is below the
threshold for Ξ + K.

Finally let us discuss the importance of the 27 admixtures both in the
initial and final state. For decuplet decays this is the only possible ms

correction, however, the final state admixture is proportional to G′
27 which
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Fig. 6. Correction coefficients R(mix) for Σ10 decays as functions of ρ (for ΣπN =

73 MeV) and ΣπN (for ρ = 0.5).

small. The magnitude of these corrections can be read off from Fig. 3. For
antidecuplet decays only Ξ10 → Ξ + π is entirely governed by R = 27 ms

corrections, while for the other decays there is a subtle interplay of 27 and
10+8, however, in view of Fig. 2, the final state 27 admixture is by far more
important that the one in the initial state. In Eq. (28) below we present the
ratios of the 10 and 8 admixtures to 27 for ρ = 0.5 and ΣπN = 73 MeV:

Decay Ratio (10 + 8) to 27

Θ+ → N + K 0.14
Ξ10 → Σ + K 0.58
N10 → N + π −2.17
N10 → N + η −0.89
N10 → Λ + K −1.48
N10 → Σ + K −0.83
Σ10 → N + K −1.70
Σ10 → Σ + π −1.98
Σ10 → Σ + η −1.48
Σ10 → Λ + η −1.01
Σ10 → Ξ + K −1.91

(28)
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An interesting pattern emerges: Θ+ and Ξ10 decays are dominated by R =
27 ms corrections, for N10 decays effects of 27 admixtures are in all but one
case negligible, whereas for Σ10 decays 10+8 and 27 pieces are comparable,
with 27 admixture being at most 2 times smaller and of the opposite sign.

4. Summary

The representation mixing introduced by the symmetry breaking Hamil-
tonian (1) depends on the value of the ΣπN term. For ΣπN = 73 MeV, the
value suggested by recent experimental analysis [7], as well as by the chiral
soliton model fits [10, 16], this mixing becomes large and introduces large
O(ms) corrections to the decay widths. In the case of the decuplet decays
large means at most 35%, however, in the antidecuplet case these corrections
may reach even a factor 3 or more. This is because the leading term, given
by the transition matrix element G10 of Eq. (24), is small for the typical
values of the coupling constants G0,1,2 entering the decay operator (8). This
poses a challenge to the SU(3) perturbation expansion in ms. As far as two
exotic states recently observed experimentally [1, 2] are concerned, we find
strong suppression of the Θ+ decay width and the enhancement for Ξ10. Be-
fore, however, a definitive conclusion may be drawn, the O(ms) corrections
to the decay operator (8) must be examined.

A key issue is whether, knowing the decay width of ∆, one can predict
the decay width of Θ+. Other decays of the antidecuplet are in fact related
to Θ+ by phase space factors, for which we have to know the masses of
the decaying particles, and the SU(3) Clebsch–Gordan coefficients and the
O(ms) correction factors calculated in this paper. In order to estimate
ΓΘ+→n+K+ let us observe that

ΓΘ+→n+K+

Γ∆

∣

∣

∣

∣

ms=0

=
1

2

M∆

MΘ+

(

pK

pπ

)3 (

G10

G10

)2

= 0.67

(

G10

G10

)2

, (29)

where G10/G10 is plotted in Fig. 2(b). For ρ ∼ 0.5 we get ΓΘ+→n+K+/Γ∆ ∼
0.1, a fairly large suppression6. Next, the O(ms) corrections increase ∆

width by a factor of 1.3 and suppress ΓΘ+ by a factor of 0.2, so that the rel-
ative suppression coming from the SU(3) breaking is 0.15. As said above this
factor must be considered with care, however, the suppression mechanism is
here evident and one may safely conclude that

ΓΘ+

Γ∆

≪ 0.1 (30)

6 Note that we discuss here one of the two possible decay modes of Θ
+, rather than

the total width, which would make this ratio 0.2.
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indicating that the total width ΓΘ+ is of the order of a few MeV. Further
suppression factors were discussed in the original paper of Diakonov, Petrov
and Polyakov [5] and more recently in [10].

In order to estimate the widths of the other members of antidecuplet we
first calculate the ratios of a given decay width to the one of Θ+ and then
the O(ms) correction factors (for ρ = 0.5 and ΣπN = 73 MeV). The results
are listed in (31) below:

Decay X
RΓ =

Γ/ΓΘ+→n+K+

Rmin =

R(mix)

Rmax =

R(mix)/R
(mix)
Θ+→n+K+

Θ+ → n + K+ 1 0.20 1
Ξ10 → Ξ + π 2.67 1.54 7.7
Ξ10 → Σ + K 1.57 1.27 6.4
N10 → N + π 3.82 ? ?
N10 → N + η 0.97 0.92 4.6
N10 → Λ + K 0.08 1.66 8.3
Σ10 → N + K 1.74 0.70 3.5
Σ10 → Σ + π 3.47 ? ?
Σ10 → Σ + η 2.10 1.48 7.4
Σ10 → Λ + η 0.34 0.99 4.9

(31)

The question marks in Eq. (31) indicate that the R(mix) factors are negative
so that our results are not reliable. Since also the large suppression factor
for Θ+ is not fully reliable, one could argue that the real correction factor
lies somewhere between Rmin and Rmax defined in (31). Our estimates for
the decay width in the antidecuplet take therefore the following form

ΓX = ΓΘ+→n+K+ × RΓ ×







Rmax

Rmin

(32)

and for the entries with question marks one can only conclude that

ΓX < ΓΘ+→n+K+ × RΓ . (33)

Hence for 2 MeV total decay width of Θ+ we get for example ΓΞ
10

→Ξ+π ∼
4 ÷ 20.6 MeV and ΓΞ

10
→Σ+K ∼ 2 ÷ 10 MeV. This is more than the value

quoted in Ref. [11], however, these authors did not take into account the 27
admixture which is quite important in this case. Also for N10 → N + π we
find much stronger suppression than [11] due to the fact that for our set of
parameters c10 is larger and H10 < 0 rather than small and positive.
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