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Since the 3+1 neutrino models with one light sterile neutrino turn out
to be not very effective, at least two light sterile neutrinos may be needed to
reconcile the solar and atmospheric neutrino experiments with the LSND
result, if this is confirmed by the ongoing MiniBooNE experiment (and
when the CPT invariance is assumed to hold for neutrino oscillations). We
present an attractive 3+2 neutrino model, where two light sterile neutri-
nos mix maximally with each other, in analogy to the observed maximal
mixing of muon and tauon active neutrinos. But, while the mixing of νe

and (νµ − ντ )/
√

2 is observed as large (though not maximal), the mixing
of νe with the corresponding combination of two light sterile neutrinos is
expected to be only moderate because of the reported smallness of LSND
oscillation amplitude. The presented model turns out, however, not to be
more effective in explaining the hypothetic LSND result than the simplest
3+1 neutrino model. On the other hand, in the considered 3+2 model, the
deviations from conventional oscillations of three active neutrinos appear
to be minimal within a larger class of 3+2 models.

PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh

1. Introduction

As is well known, the neutrino experiments with solar νe’s [1], atmo-
spheric νµ’s [2] and long-baseline reactor ν̄e’s [3] are very well described
by oscillations of three active neutrinos νe , νµ , ντ , where the mass-squared
splittings of the related neutrino mass states ν1, ν2, ν3 are estimated to be
∆m2

sol ≡ ∆m2
21 ∼ 7 × 10−5 eV2 and ∆m2

atm ≡ ∆m2
32 ∼ 2 × 10−3 eV2 [4].

∗ Work supported in part by the Polish State Committee for Scientific Research (KBN),
grant 2 P03B 129 24 (2003–2004).
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The neutrino mixing matrix U (3) =
(

U
(3)
αi

)

(α = e, µ, τ and i = 1, 2, 3) ,

appearing in the unitary transformation

να =
∑

i

U
(3)
αi νi , (1)

is experimentally consistent with the global bilarge form

U (3) =







c12 s12 0
− 1√

2
s12

1√
2
c12

1√
2

1√
2
s12 − 1√

2
c12

1√
2






, (2)

where θ12 ∼ 33◦ and θ23 = 45◦, while U
(3)
e3 = s13 exp(−iδ) is neglected

in accordance with the negative result of Chooz experiment with short-
baseline reactor ν̄e’s [5] (the experimental upper bound is estimated at
s13 < 0.03). However, the signal of ν̄µ → ν̄e oscillations reported by LSND
experiment with short-baseline accelerator ν̄µ’s [6] requires a third neutrino
mass-squared splitting, say, ∆m2

LSND ∼ 1 eV2 which cannot be justified
by the use of only three neutrinos (unless the CPT invariance of neutrino
oscillations is seriously violated, leading to considerable mass splittings of
neutrinos and antineutrinos [7]; in the present note the CPT invariance is
assumed to hold for neutrino oscillations). The LSND result will be tested
soon in the ongoing MiniBooNE experiment [8]. If this test confirms the
LSND result, we will need the light sterile neutrinos in addition to three
active neutrinos to introduce extra mass splittings (and, at the same time,
not to change significantly the solar, atmospheric and reactor neutrino os-
cillations).

While the 3+1 neutrino models with one light sterile neutrino are consid-
ered to be strongly disfavored by present data [9], the 3+2 neutrino schemes
with two light sterile neutrinos may provide a much better description of
current neutrino oscillations including the LSND effect (for a discussion on
the compatibility of all short-baseline neutrino experiments in 3+1 and 3+2
models cf. Ref [10]).

The necessary existence in Nature of exactly two light sterile neutrinos
was argued some years ago [11] on the ground of a new series of generalized
(Kähler-like) Dirac equations which could describe three and only three gen-
erations of SM-active leptons and quarks, and two and only two generations
of single SM-passive light neutrinos (light sterile neutrinos). The condition
for it was an intrinsic (Pauli-type) exclusion principle that, when it was
holding, cut off the series of the corresponding generalized Dirac fields to
one triad of SM (15+1)-plets and one couple of SM singlets, respectively (all
of spin 1/2). The subjects of this exclusion principle were the sets of addi-
tional Dirac bispinor indices appearing for the introduced generalized Dirac
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fields and treated as undistinguishable physical degrees of freedom obeying
the Fermi statistics. However, in Refs. [11] it was wrongly presumed that
two light sterile neutrinos mixed largely with two active neutrinos νe and
νµ, what now must be specifically corrected, of course.

The cosmological problems of light sterile neutrinos will not be discussed
in this note.

2. Overall neutrino mixing matrix

In the present note, we will conjecture that two light sterile neutrinos,
call them νs and νs′ , mix maximally with each other, but only moderately
with three active neutrinos νe, νµ, ντ . More precisely, we will assume the

overall 5×5 neutrino mixing matrix U (5) =
(

U
(5)
αi

)

(α = e, µ, τ, s, s′ and i =

1, 2, 3, 4, 5) in the form

U (5) = U (5)(12)U (5)(14)

=















c12c14 s12 0 c12s14 0
− 1√

2
s12c14

1√
2
c12

1√
2

− 1√
2
s12s14 0

1√
2
s12c14 − 1√

2
c12

1√
2

1√
2
s12s14 0

− 1√
2
s14 0 0 1√

2
c14

1√
2

1√
2
s14 0 0 − 1√

2
c14

1√
2















, (3)

where

U (5)(12) =













c12 s12 0 0 0
− 1√

2
s12

1√
2
c12

1√
2

0 0
1√
2
s12 − 1√

2
c12

1√
2

0 0

0 0 0 1 0
0 0 0 0 1













,

U (5)(14) =













c14 0 0 s14 0
0 1 0 0 0
0 0 1 0 0

− 1√
2
s14 0 0 1√

2
c14

1√
2

1√
2
s14 0 0 − 1√

2
c14

1√
2













. (4)

The first matrix factor in Eq. (3) arises from the bilarge form (2) of active-
neutrino mixing matrix by its trivial 5 × 5 extension, while the second is
an analogue of the first, when e, µ, τ ↔ e, s, s′ and 1, 2, 3 ↔ 1, 4, 5. Thus,
the cosine c14 and sine s14 are analogues of cosine c12 and sine s12, though
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the angle θ14 is expected to be smaller than the large angle θ12 ∼ 33◦.
Also c45 = 1/

√
2 = s45 with the maximal angle θ45 = 45◦ are analogues

of c23 = 1/
√

2 = s23 with the maximal θ23 = 45◦. Finally, an analogue of
s13 = 0 is s15 = 0. Both kinds of conditions are necessary for the maximal
mixing of νµ with ντ and νs with νs′ .

The overall 5×5 neutrino mixing matrix (3) leads to the following unitary

transformation νi =
∑

α U
(5)∗
αi να inverse to να =

∑

i U
(5)
αi νi:

ν1 = c14

(

c12νe − s12
νµ − ντ√

2

)

− s14
νs − νs′√

2
,

ν2 = s12νe + c12
νµ − ντ√

2
,

ν3 =
νµ + ντ√

2
,

ν4 = s14

(

c12νe − s12
νµ − ντ√

2

)

+ c14
νs − νs′√

2
,

ν5 =
νs + νs′√

2
. (5)

This displays explicitly the maximal mixing of νµ and ντ as well as of νs

and νs′ , because these neutrinos appear in Eq. (5) through the combinations
(νµ ∓ ντ )/

√
2 as well as (νs ∓ νs′)/

√
2, where (νµ + ντ )/

√
2 as well as (νs +

νs′)/
√

2 are decoupled from other flavor neutrinos (do not mix with them).
In the flavor representation, where the charged-lepton mass matrix is

diagonal, the active-neutrino mixing matrix (2) is at the same time the
diagonalizing matrix for the active-neutrino effective Majorana mass matrix.
In this flavor representation, the overall 5×5 effective neutrino mass matrix

M (5) =
(

M
(5)
αβ

)

(α, β = e, µ, τ, s, s′) can be calculated from the formula

M
(5)
αβ =

∑

i

U
(5)
αi mi U

(5)∗
βi , (6)

where the matrix elements U
(5)
αi are given in Eq. (3). The form (6) is inverse

to the diagonalization formula

∑

α β

U
(5)∗
αi M

(5)
αβ U

(5)
βj = miδij . (7)
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3. Overall neutrino oscillations

We will use the να → νβ neutrino oscillation probabilities (in the vac-
uum)

P (να → νβ) = δβα − 4
∑

j>i

U
(5)∗
βj U

(5)
αj U

(5)
βi U

(5)∗
αi sin2 xji (8)

(α, β = e, µ, τ, s, s′ and i, j = 1, 2, 3, 4, 5), where

xji ≡ 1.27
∆m2

jiL

E
, ∆m2

ji ≡ m2
j − m2

i (9)

(∆m2
ji, L and E are measured in eV2, km and GeV, respectively). Here,

CP violation is neglected i.e., U
(5)∗
αi = U

(5)
αi (or, more generally, the quartic

products in Eq. (8) are real). For U
(5)
αi we will make use of the matrix

elements of U (5) as given in Eq. (3).
The formula (8) applied respectively to the ν̄µ → ν̄e, νe → νe and

νµ → νµ oscillations leads to the probabilities (in the vacuum)

P (ν̄µ → ν̄e) ≃ 2c2
12s

2
12c

2
14 sin2 x21 + 2c2

12s
2
12s

4
14 sin2 x41 , (10)

P (νe → νe) ≃ 1 − 4c2
12s

2
12s

2
14 sin2 x21 − 4c2

12s
2
14

(

1 − c2
12s

2
14

)

sin2 x41 (11)

and

P (νµ → νµ) ≃ 1 − c2
12s

2
12c

2
14 sin2 x21 −

(

1 − s2
12s

2
14

)

sin2 x31

−2s2
12s

2
14

(

1 − 1

2
s2
12s

2
14

)

sin2 x41 , (12)

when x31 ≃ x32 and x41 ≃ x42 ≃ x43 (notice that here, x5i and so, m2
5 are

absent). When, in addition, x21 ≪ |x31| ≪ x41 (i.e., m2
1 < m2

2 ≪ m2
3 ≪ m2

4
or m2

3 ≪ m2
1 ≃ m2

2 ≪ m2
4) with (x41)LSND = O(π/2), (x21)sol = O(π/2),

(x31)Chooz ≃ (x31)atm = O(π/2) and (x31)atm = O(π/2) for the LSND effect,
for the solar νe’s, for the Chooz reactor ν̄e’s and for the atmospheric νµ’s,
respectively, we get from Eqs. (10), (11) and (12) the probabilities (in the
vacuum)

P (ν̄µ → ν̄e)LSND ≃ 2c2
12s

2
12s

4
14 sin2(x41)LSND , (13)

P (νe → νe)sol ≃ 1 − 4c2
12s

2
12c

2
14 sin2(x21)sol − 2c2

12s
2
14

(

1 − c2
12s

2
14

)

, (14)

P (ν̄e → ν̄e)Chooz ≃ 1 − 2c2
12s

2
14

(

1 − c2
12s

2
14

)

(15)

and

P (νµ → νµ)atm ≃ 1 −
(

1 − s2
12s

2
14

)

sin2(x31)atm − s2
12s

2
14

(

1 − 1

2
s2
12s

2
14

)

.

(16)



1680 W. Królikowski

Of course, for solar νe’s the MSW matter effect is significant, leading to the
accepted LMA solar solution.

For the LSND effect of the order

P (ν̄µ → ν̄e)LSND ∼ 10−3 sin2(x41)LSND (17)

and of the mass scale, say, ∆m2
41 ∼ 1 eV2 we obtain the estimation

s2
14 ∼

(

10−3

2c2
12s

2
12

)1/2

∼ 0.049 (18)

and so, θ14 ∼ 13◦, when θ12 ∼ 33◦. This implies the following estimates:

P (νe → νe)sol ∼ 1 − (0.83 − 0.041) sin2(x21)sol − 0.066 , (19)

P (ν̄e → ν̄e)Chooz ∼ 1 − 0.066 , (20)

and

P (νµ → νµ)atm ∼ 1 − (1 − 0.015) sin2(x31)atm − 0.014 . (21)

Here, 4c2
12s

2
12 ∼ 0.83 (c2

12 ∼ 0.70 and s2
12 ∼ 0.30).

It can be noticed from Eq. (11) for νe → νe or ν̄e → ν̄e oscillations that
the third mass-squared splitting ∆m2

LSND ≡ ∆m2
41 ∼ 1 eV2, characteristic

for the reported LSND effect (Eq. (13)), may be manifested in principle
also for νe → νe or ν̄e → ν̄e oscillations in any other experiment at an
energy E and a baseline L, where (x41)other ≃ (x41)LSND = O(π/2) (i.e.,
(L/E)other ≃ (L/E)LSND). In this case,

P (νe → νe)other = P (ν̄e → ν̄e)other ≃ 1 − 4c2
12s

2
14

(

1 − c2
12s

2
14

)

sin2(x41)other

∼ 1 − 0.13 sin2(x41)other , (22)

when θ12 ∼ 33◦ and s2
14 ∼ 0.049. Any such experiment might play for

the LSND accelerator effect a somewhat similar role as that played by the
Chooz experiment for the SuperKamiokande atmospheric experiment, where
(x31)Chooz ≃ (x31)atm = O(π/2) (i.e., (L/E)Chooz ≃ (L/E)atm). An analog-
ical remark on ∆m2

41 may pertain also to Eq. (12) for νµ → νµ oscillations.

4. Conclusions

When waiting for the test of LSND effect by the MiniBooNE experiment
that may confirm or refute the LSND result, we presented in this note a 3+2
neutrino model, where two light sterile neutrinos mix maximally with each
other and only moderately with three active neutrinos. The way of mixing
is described by the 5 × 5 mixing matrix (3).
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Then, the LSND effect of the order (17) implies the estimates (19),
(20) and (21) for the solar anomaly, Chooz negative result and atmospheric
anomaly, respectively.

Note that in the conventional three-neutrino scheme (including, in gen-
eral, s13 6= 0) the result corresponding to Eq. (15) is

P (ν̄e → ν̄e)Chooz ≃ 1 − 4c2
13s

2
13 sin2(x31)Chooz , (23)

when x31 ≃ x32. From the negative result of Chooz experiment 4c2
13s

2
13 <

0.12 as s2
13 < 0.03 (here, (x31)Chooz ≃ (x31)atm = O(π/2)).

As is shown in Appendix A, the simplest 3+1 model with one light sterile
neutrino leads to the same estimates (19), (20) and (21) as the 3+2 model
with two maximally mixing light sterile neutrinos, if the LSND effect is of
the order (17). In fact, the oscillations (A.7)–(A.9) and (A.10) are identical
with those given in Eqs. (13)–(15) and (16).

Thus, the attractive 3+2 neutrino model with maximal mixing of two
sterile neutrinos, presented in this note, is not more effective in explaining
the hypothetic LSND result than the simplest 3+1 neutrino model. On the
other hand, as is indicated in Appendix B, in the 3+2 model with maximal
mixing of two sterile neutrinos where s15 = 0 (but s14 6= 0), the deviations
from conventional oscillations of three active neutrinos (where s14 = 0 and
s15 = 0) are minimal within a larger class of 3+2 models allowing for s15 6= 0
(in addition to s14 6= 0).

Appendix A

Comparing with the simplest 3+1 neutrino model

Consider the simplest 3+1 neutrino model with one sterile neutrino,
described by the overall 4×4 mixing matrix bilarge in three active neutrinos:

U (4) = U (4)(12)U (4)(14)

=









c12c14 s12 0 c12s14

− 1√
2
s12c14

1√
2
c12

1√
2

− 1√
2
s12s14

1√
2
s12c14 − 1√

2
c12

1√
2

1√
2
s12s14

−s14 0 0 c14









, (A.1)

where

U (4)(12) =









c12 s12 0 0
− 1√

2
s12

1√
2
c12

1√
2

0
1√
2
s12 − 1√

2
c12

1√
2

0

0 0 0 1









,
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U (4)(14) =









c14 0 0 s14

0 1 0 0
0 0 1 0

−s14 0 0 c14









. (A.2)

The cosine c14 and sine s14 correspond to an unknown mixing angle θ14 that
has to be estimated from the reported LSND result.

The form (A.1) of the mixing matrix U (4) =
(

U
(4)
αi

)

(α = e, µ, τ, s and

i = 1, 2, 3, 4) leads to the following unitary transformation νi =
∑

α U
(4)∗
αi να

inverse to να =
∑

i U
(4)
αi νi:

ν1 = c14

(

c12νe − s12
νµ − ντ√

2

)

− s14νs ,

ν2 = s12νe + c12
νµ − ντ√

2
,

ν3 =
νµ + ντ√

2
,

ν4 = s14

(

c12νe − s12
νµ − ντ√

2

)

+ c14νs . (A.3)

This displays the maximal mixing of active neutrinos νµ and ντ which appear

in the combinations (νµ ∓ ντ )/
√

2, where (νµ + ντ )/
√

2 is decoupled from

other flavor neutrinos, while the mixing of νe and (νµ − ντ )/
√

2 is large
(though not maximal) having the mixing angle θ12 ∼ 33◦.

The mixing matrix (A.1) implies the neutrino oscillation probabilities
(in the vacuum)

P (ν̄µ → ν̄e) ≃ 2c2
12s

2
12c

2
14 sin2 x21 + 2c2

12s
2
12s

4
14 sin2 x41 , (A.4)

P (νe → νe) ≃ 1 − 4c2
12s

2
12c

2
14 sin2 x21 − 4c2

12s
2
14(1 − c2

12s
2
14) sin2 x41 (A.5)

and

P (νµ → νµ) ≃ 1 − c2
12s

2
12c

2
14 sin2 x21 − (1 − s2

12s
2
14) sin2 x31

−2s2
12s

2
14(1 − 1

2
s2
12s

2
14) sin2 x41 , (A.6)

when x31 ≃ x32 and x41 ≃ x42 ≃ x43. Hence, when x21 ≪ |x31| ≪ x41

with (x41)LSND = O(π/2), (x21)sol = O(π/2), (x31)Chooz = O(π/2) and
(x31)atm = O(π/2), respectively, for the LSND effect, for the solar νe’s,
for the Chooz reactor ν̄e’s and for the atmospheric νµ’s, one obtains the
probabilities (in the vacuum)



Two Light Sterile Neutrinos That Mix Maximally with Each Other . . . 1683

P (ν̄µ → ν̄e)LSND ≃ 2c2
12s

2
12s

4
14 sin2(x41)LSND , (A.7)

P (νe → νe)sol ≃ 1 − 4c2
12s

2
12c

2
14 sin2(x21)sol − 2c2

12s
2
14(1 − c2

12s
2
14) , (A.8)

P (ν̄e → ν̄e)Chooz ≃ 1 − 2c2
12s

2
14(1 − c2

12s
2
14) (A.9)

and

P (νµ → νµ)atm ≃ 1 − (1 − s2
12s

2
14) sin2(x31)atm − s2

12s
2
14

(

1 − 1

2
s2
12s

2
14

)

.

(A.10)
From Eq. (A.7) the LSND effect of the order P (ν̄µ → ν̄e)LSND ∼

10−3 sin2(x41)LSND and of the mass scale, say, ∆m2
41 ∼ 1 eV2 one gets

the estimation

s2
14 ∼

(

10−3

2c2
12s

2
12

)1/2

∼ 0.049 , (A.11)

when θ12 ∼ 33◦. This gives the following estimates:

P (νe → νe)sol ∼ (1 − 0.83 − 0.041) sin2(x21)sol − 0.066 , (A.12)

P (ν̄e → ν̄e)Chooz ∼ 1 − 0.066 (A.13)

and

P (νµ → νµ)atm ∼ 1 − (1 − 0.015) sin2(x31)atm − 0.014 . (A.14)

We can see that the oscillations (A.7)–(A.10) and their estimates
(A.12)–(A.14) in the case of s2

14 ∼ 0.049, valid in the simplest 3+1 neu-
trino model, are identical with the oscillations (13)–(16) and their estimates
(19)–(21) in the case of s2

14 ∼ 0.049, obtained in the 3+2 neutrino model with
maximal mixing of two light sterile neutrinos. This identity is, of course,

a consequence of the fact that U
(4)
αi = U

(5)
αi and U

(5)
α5 = 0 for α = e, µ and

i = 1, 2, 3, as it can be seen from Eqs. (A.1) and (3). And this is true also
for α = τ , the oscillations involving ντ being identical in both cases.
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Appendix B

Perturbing the maximal mixing of two sterile neutrinos

The mixing matrix (3) in the 3+2 model with two maximally mixing
light sterile neutrinos requires the trivial value s15 = 0 corresponding to
θ15 = 0. Now, introduce the nontrivial mixing angle θ15 6= 0, replacing the
factor matrix U (5)(14) in Eq. (3) by the more general form

U (5)(14, 15) =













c14c15 0 0 s14c15 s15

0 1 0 0 0
0 0 1 0 0

− 1√
2
(s14+c14s15) 0 0 1√

2
(c14−s14s15)

1√
2
c15

1√
2
(s14−c14s15) 0 0 − 1√

2
(c14+s14s15)

1√
2
c15













(B.1)
which is the 5 × 5 trivially extended canonical form of 3 × 3 real unitary
matrix for α = e, s, s′ and i = 1, 4, 5 with c45 = 1/

√
2 = s45. Then, the

mixing matrix (3) transits into the new overall 5×5 neutrino mixing matrix

U (5) = U (5)(12)U (5)(14, 15)

=















c12c14c15 s12 0 c12s14c15 c12s15

− 1√
2
s12c14c15

1√
2
c12

1√
2

− 1√
2
s12s14c15 − 1√

2
s12s15

1√
2
s12c14c15 − 1√

2
c12

1√
2

1√
2
s12s14c15

1√
2
s12s15

− 1√
2
(s14 + c14s15) 0 0 1√

2
(c14 − s14s15)

1√
2
c15

1√
2
(s14 − c14s15) 0 0 − 1√

2
(c14 + s14s15)

1√
2
c15















.

(B.2)

Of course, for s15 = 0 the mixing matrix (B.2) comes back to the form (3).
A consequence of the new mixing matrix is the following unitary trans-

formation νi =
∑

α U
(5)∗
αi να:

ν1 = c14

[

c15

(

c12νe − s12
νµ − ντ√

2

)

− s15
νs + νs′√

2

]

− s14
νs − νs′√

2
,

ν2 = s12νe + c12
νµ − ντ√

2
,

ν3 =
νµ + ντ√

2
,

ν4 = s14

[

c15

(

c12νe − s12
νµ − ντ√

2

)

− s15
νs + νs′√

2

]

+ c14
νs − νs′√

2
,

ν5 = s15

(

c12νe − s12
νµ − ντ√

2

)

+ c15
νs + νs′√

2
. (B.3)
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We can see from Eqs. (B.3) that here, the maximal mixing of νµ and ντ is
maintained, while the maximal mixing of νs nd νs′ is perturbed if s15 6= 0
(beside s14 6= 0).

The new mixing matrix (B.2) leads to the neutrino oscillation probabil-
ities (in the vacuum):

P (ν̄µ → ν̄e)LSND ≃ 2c2
12s

2
12s

2
14(s

2
14 + s2

15) sin2(x41)LSND + c2
12s

2
12s

4
15 ,(B.4)

P (νe → νe)sol ≃ 1 − 4c2
12s

2
12(1 − s2

14 − s2
15) sin2(x21)sol

−2c2
12(s

2
14 + s2

15) , (B.5)

P (ν̄e → ν̄e)Chooz ≃ 1 − 2c2
12(s

2
14 + s2

15) (B.6)

and

P (νµ → νµ)atm ≃ 1 −
[

1 − s2
12(s

2
14 + s2

15)
]

sin2(x31)atm − s2
12(s

2
14 + s2

15) ,
(B.7)

when x31 ≃ x32, x41 ≃ x42 ≃ x43, x51 ≃ x52 ≃ x53 ≃ x54 and x21 ≪ |x31| ≪
x41 ≪ x51 with (x41)LSND = O(π/2), (x21)sol = O(π/2) and (x31)Chooz ≃
(x31)atm = O(π/2). Here, the respective higher powers of s2

14 ≪ 1 and
s2
15 ≪ 1 are neglected.

From Eq. (B.4), for the LSND effect of the order P (ν̄µ → ν̄e)LSND ∼
10−3 sin2(x41)LSND one obtains the estimation

(

s4
14 + s2

14s
2
15 +

1

2 sin2(x41)LSND
s4
15

)1/2

∼
(

10−3

2c2
12s

2
12

)1/2

∼ 0.049 , (B.8)

when θ12 ∼ 33◦. Here, sin2(x41)LSND ∼ 1/2 to 1. Thus, s2
14 + s2

15 =

(s4
14 + 2s2

14s
2
15 + s4

15)
1/2 > (lhs of Eq. (B.8)) ∼ 0.049 if s15 6= 0, while s2

14 ∼
0.049 if s15 = 0 (as is the case in the 3+2 model with maximal mixing of two
sterile neutrinos). Hence, one can infer that the deviations from conventional
oscillations of three active neutrinos (with s14 = 0 and s15 = 0), being
proportional to s2

14 + s2
15 in Eqs. (B.5)–(B.7), get larger magnitudes in the

case of s15 6= 0 (and s14 6= 0) than in the case of s15 = 0 (but s14 6= 0), where
two sterile neutrinos mix maximally (leading to the estimates (19)–(21)).
Thus, when s15 = 0, the 3+2 neutrino models defined in Eq. (B.2) for various
values of s15 become minimal (in the sense of the discussed deviations). Such
a minimal character of the deviations from conventional neutrino oscillations
is connected, therefore, with the maximal mixing of two sterile neutrinos,
realized if s15 = 0 (but s14 6= 0).

The oscillation probabilities (B.4)–(B.7) are valid obviously in the option
of hierarchical sterile neutrinos, where m2

4 ≪ m2
5 implying x41 ≪ x51. Then,

our conclusion of minimal character of deviations from conventional neutrino
oscillations works for s15 = 0 (but s14 6= 0). It turns out that in the
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opposite option of degenerate sterile neutrinos, where m2
4 ≃ m2

5 leading
to x41 ≃ x51 and x54 ≃ 0, the new mixing matrix (B.2) provides exactly
the oscillation probabilities of the form (13)–(16), where s2

14 is replaced now
by s2

14 + s2
15 − s2

14s
2
15, equal approximately to s2

14 + s2
15. In this degenerate

option, the LSND effect of the order P (ν̄µ → ν̄e)LSND ∼ 10−3 sin2(x41)LSND

gives the estimation

s2
14 + s2

15 − s2
14s

2
15 ∼

(

10−3

2c2
12s

2
12

)1/2

∼ 0.049 , (B.9)

and the deviations from conventional oscillations of three active neutrinos
are identical to those in the 3+2 model with two maximally mixing sterile
neutrinos. They are equal to the previous minimal deviations appearing in
the hierarchical option if s15 = 0 (but s14 6= 0).
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