REMARK ON THE CORE/HALO MODEL OF BOSE-EINSTEIN CORRELATIONS IN MULTIPLE PARTICLE PRODUCTION PROCESSES*

K. Zalewski
M. Smoluchowski Institute of Physics, Jagellonian University
Reymonta 4, 30-059 Kraków, Poland
e-mail: zalewski@th.if.uj.edu.pl
and
H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Radzikowskiego 152, 31-342 Kraków

(Received March 23, 2004)

The core/halo model describes the Bose-Einstein correlations in multihadron production taking into account the effects of long-lived resonances. The model contains the combinatorial coefficients α_{j} which were originally calculated from a recurrence relation. We show that α_{j} is the integer closest to the number $j!/ e$.

PACS numbers: $25.75 . \mathrm{Gz}, 13.65 .+\mathrm{i}$

Bose-Einstein correlations in multiple particle production processes are much studied in order to get information about the interaction regions and about the hadronization processes. For detailed reviews see e.g. [1-3]. The starting point is, usually, the factorizeable approximation (see e.g. [4, 5]), where the n-particle density matrix for n indistinguishable particles is:

$$
\begin{equation*}
\rho\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n} ; \boldsymbol{p}_{1}^{\prime}, \ldots, \boldsymbol{p}_{n}^{\prime}\right)=\frac{1}{n!} \sum_{P, Q} \prod_{j=1}^{n} \rho\left(\boldsymbol{p}_{j_{P}} ; \boldsymbol{p}_{j_{Q}}^{\prime}\right) \tag{1}
\end{equation*}
$$

$\rho\left(\boldsymbol{p} ; \boldsymbol{p}^{\prime}\right)$ is some single particle density matrix and the summation is over all the permutations of the indices of \boldsymbol{p} and \boldsymbol{p}^{\prime}. The corresponding unsym-

[^0]metrized density matrix is:
\[

$$
\begin{equation*}
\rho^{U}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n} ; \boldsymbol{p}_{1}^{\prime}, \ldots, \boldsymbol{p}_{n}^{\prime}\right)=\prod_{j=1}^{n} \rho\left(\boldsymbol{p}_{j} ; \boldsymbol{p}_{j}^{\prime}\right) . \tag{2}
\end{equation*}
$$

\]

The quantities usually presented are the n-body correlation functions

$$
\begin{equation*}
C_{n}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right)=\frac{\rho\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n} ; \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right)}{\rho^{U}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n} ; \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right)} . \tag{3}
\end{equation*}
$$

As seen from the definitions $C_{n}(\boldsymbol{p}, \ldots, \boldsymbol{p})=n!$. There is a number of difficulties to check this prediction. On the experimental side, a pair of momenta, say \boldsymbol{p}_{i} and \boldsymbol{p}_{j}, can be reliably measured only if $Q_{i j}=\sqrt{-\left(p_{i}-p_{j}\right)^{2}}$ exceeds some $Q_{\text {min }}$. At present it is difficult to go with $Q_{\text {min }}$ below some (5-10) MeV (see e.g. [6] and references given there). This is important, because the very small Q region is expected to contain narrow peaks due to long-lived resonances [7]. There are other difficulties in the small Q region: Coulomb corrections, misidentified particles, perhaps effects of coherence. A model which assumes that these other factors can be either corrected for or neglected is the core/halo model ${ }^{1}$ [9,10]. According to this model for a group of identical particles close to each other in momentum space, but not so close as not to be resolved experimentally, the single particle density matrices $\rho\left(\boldsymbol{p}_{j_{P}} ; \boldsymbol{p}_{j_{Q}}^{\prime}\right)$ reach for $j_{Q} \neq j_{P}$ a common limit $f(\boldsymbol{p}) \rho(\boldsymbol{p} ; \boldsymbol{p})$, where p is some average momentum of the particles in the group. Of course for $j_{Q}=j_{P}$ the matrix element in the numerator cancels with the corresponding matrix element in the denominator. Thus the correlation function extrapolated from the region accessible experimentally to the point $\boldsymbol{p}_{1}=\ldots,=\boldsymbol{p}_{n}$ is

$$
\begin{equation*}
C_{n}^{\mathrm{extr}}(\boldsymbol{p}, \ldots, \boldsymbol{p})=\sum_{j=0}^{n}\binom{n}{j} \alpha_{j} f(\boldsymbol{p})^{j} \tag{4}
\end{equation*}
$$

where α_{j} is the number of permutations of j elements where no element keeps its place.

Let us note the identity

$$
\begin{equation*}
k!=\sum_{j=0}^{k}\binom{k}{j} \alpha_{j} \tag{5}
\end{equation*}
$$

following from the remark that every permutation of k elements can be characterized by the number j of elements which changed their places and

[^1]that the number of choices of these elements is $\binom{k}{j}$. The formula can be used to calculate the coefficient α_{j} when all the coefficients α_{k} with indices $k<j$ are known [10]. In this note we derive a simpler formula for the coefficients α_{n}. Several derivations of this result can be found in mathematical textbooks. Here we use the idea of the proof from Ref. [11].

Let us multiply both sides of (5) by $(-1)^{k}\binom{n}{k}$ and sum over k from zero to n. On the left-hand side we get

$$
\begin{equation*}
n!\sum_{k=0}^{n} \frac{(-1)^{k}}{(n-k)!}=n!(-1)^{n} \sum_{k=0}^{n} \frac{(-1)^{k}}{k!} \tag{6}
\end{equation*}
$$

and on the right-hand side

$$
\begin{align*}
& \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \sum_{j=0}^{n}\binom{k}{j} \alpha_{j} \\
& =\sum_{j=0}^{n} \alpha_{j}(-1)^{j}\binom{n}{j} \sum_{k=j}^{n}\binom{n-j}{k-j}(-1)^{k-j}=(-1)^{n} \alpha_{n} \tag{7}
\end{align*}
$$

where the second equality follows from the remark that the sum over k yields 1 for $j=n$ and $(1-1)^{n-j}=0$ for $j<n$. Comparing the two sides one finds

$$
\begin{equation*}
\alpha_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} \tag{8}
\end{equation*}
$$

The coefficient of n ! tends to e^{-1} when n increases. It is, however, an alternating series with monotonically decreasing, non-zero terms. For such series the sum of the first n elements approximates the limit with an error less than the absolute value of the first rejected term. Thus

$$
\begin{equation*}
\left|\alpha_{n}-\frac{n!}{e}\right|<\frac{1}{n+1} \tag{9}
\end{equation*}
$$

and α_{n}, for $n>0$, can be calculated as the integer closest to $n!/ e$.

The author thanks T. Csörgö for a stimulating exchange of e-mails as well as R. Wit and M. Zalewski for discussions on the mathematical aspects of the problem.

REFERENCES

[1] U.A. Wiedemann, U. Heinz, Phys. Rep. 319, 145 (1999).
[2] R.M. Weiner, Phys. Rep. 327, 250 (200).
[3] T. Csörgö, Heavy Ion Physics 15, 1 (2002).
[4] J. Karczmarczuk, Nucl. Phys. B78, 370 (1974).
[5] A. Bialas, A. Krzywicki, Phys. Lett. B354, 134 (1995).
[6] T. Csörgö, S. Hegyi, W.A. Zajc, nucl-th/0310042v1.
[7] P. Grassberger, Nucl. Phys. B120, 231 (1977).
[8] T. Csörgö et al., Eur. Phys. J. C9, 275 (1999).
[9] T. Csörgö, B. Lörstad, J. Zimányi, Z. Phys. C71, 491 (1996).
[10] T. Csörgö, Phys. Lett. 409B, 11 (1997).
[11] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics. A Foundation for Computer Science. Addison-Wesley, Reading, USA, 1994.

[^0]: * Supported in part by the Polish State Committee for Scientific Research (KBN) grant 2P03B 09322.

[^1]: ${ }^{1}$ Let us note, however an attempt to include partial coherence into this model [8].

