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The core/halo model describes the Bose–Einstein correlations in multi-
hadron production taking into account the effects of long-lived resonances.
The model contains the combinatorial coefficients αj which were originally
calculated from a recurrence relation. We show that αj is the integer closest
to the number j!/e.

PACS numbers: 25.75.Gz, 13.65.+i

Bose–Einstein correlations in multiple particle production processes are
much studied in order to get information about the interaction regions and
about the hadronization processes. For detailed reviews see e.g. [1–3]. The
starting point is, usually, the factorizeable approximation (see e.g. [4, 5]),
where the n-particle density matrix for n indistinguishable particles is:

ρ(p1, . . . ,pn;p ′

1, . . . ,p
′

n) =
1

n!

∑

P,Q

n
∏

j=1

ρ(pjP
;p ′

jQ
) , (1)

ρ(p;p ′) is some single particle density matrix and the summation is over
all the permutations of the indices of p and p

′. The corresponding unsym-
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metrized density matrix is:

ρU (p1, . . . ,pn;p ′

1, . . . ,p
′

n) =

n
∏

j=1

ρ(pj ;p
′

j) . (2)

The quantities usually presented are the n-body correlation functions

Cn(p1, . . . ,pn) =
ρ(p1, . . . ,pn;p1, . . . ,pn)

ρU (p1, . . . ,pn;p1, . . . ,pn)
. (3)

As seen from the definitions Cn(p, . . . ,p) = n!. There is a number of difficul-
ties to check this prediction. On the experimental side, a pair of momenta,
say p i and pj, can be reliably measured only if Qij =

√

−(pi − pj)2 exceeds
some Qmin. At present it is difficult to go with Qmin below some (5–10)
MeV (see e.g. [6] and references given there). This is important, because the
very small Q region is expected to contain narrow peaks due to long-lived
resonances [7]. There are other difficulties in the small Q region: Coulomb
corrections, misidentified particles, perhaps effects of coherence. A model
which assumes that these other factors can be either corrected for or ne-
glected is the core/halo model1 [9, 10]. According to this model for a group
of identical particles close to each other in momentum space, but not so
close as not to be resolved experimentally, the single particle density ma-
trices ρ(pjP

;p ′

jQ
) reach for jQ 6= jP a common limit f(p)ρ(p ;p), where

p is some average momentum of the particles in the group. Of course for
jQ = jP the matrix element in the numerator cancels with the corresponding
matrix element in the denominator. Thus the correlation function extrapo-
lated from the region accessible experimentally to the point p1 = . . . ,= pn

is

Cextr

n (p , . . . ,p) =

n
∑

j=0

(

n
j

)

αjf(p)j , (4)

where αj is the number of permutations of j elements where no element
keeps its place.

Let us note the identity

k! =
k

∑

j=0

(

k
j

)

αj , (5)

following from the remark that every permutation of k elements can be
characterized by the number j of elements which changed their places and

1 Let us note, however an attempt to include partial coherence into this model [8].
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that the number of choices of these elements is

(

k
j

)

. The formula can

be used to calculate the coefficient αj when all the coefficients αk with
indices k < j are known [10]. In this note we derive a simpler formula
for the coefficients αn. Several derivations of this result can be found in
mathematical textbooks. Here we use the idea of the proof from Ref. [11].

Let us multiply both sides of (5) by (−1)k
(

n
k

)

and sum over k from

zero to n. On the left-hand side we get

n!

n
∑

k=0

(−1)k

(n − k)!
= n!(−1)n

n
∑

k=0

(−1)k

k!
(6)

and on the right-hand side

n
∑

k=0

(−1)k
(

n
k

) n
∑

j=0

(

k
j

)

αj

=

n
∑

j=0

αj(−1)j
(

n
j

) n
∑

k=j

(

n − j
k − j

)

(−1)k−j = (−1)nαn , (7)

where the second equality follows from the remark that the sum over k yields
1 for j = n and (1− 1)n−j = 0 for j < n. Comparing the two sides one finds

αn = n!
n

∑

k=0

(−1)k

k!
. (8)

The coefficient of n! tends to e−1 when n increases. It is, however, an
alternating series with monotonically decreasing, non-zero terms. For such
series the sum of the first n elements approximates the limit with an error
less than the absolute value of the first rejected term. Thus

∣

∣

∣

∣

αn −
n!

e

∣

∣

∣

∣

<
1

n + 1
(9)

and αn, for n > 0, can be calculated as the integer closest to n!/e.

The author thanks T. Csörgö for a stimulating exchange of e-mails as
well as R. Wit and M. Zalewski for discussions on the mathematical aspects
of the problem.
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