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FOLDED LOCALIZED EXCITATIONS
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Using the variable separation approach, a quite general variable sepa-
ration solution of the (2+1)-dimensional Maccari systems can be derived.
Special type of soliton solutions, folded solitary waves (FSWs) and foldons,
are obtained by selecting some types of multi-valued functions appropri-
ately. The FSWs and foldons may be “folded” in quite complicated waves
and possess interesting interaction properties.
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1. Introduction

In the study of nonlinear physical models, to find some accurate local-
ized soliton solutions and study the interaction of the soliton solutions in
the cases of (2+1) dimensions is very important. In recent years much ef-
fort has been focused on this aspect and many types of localized excitations
such as solitoffs, dromions, rings, lumps, breathers, instantons, peakons ,
campactons and localized chaotic and fractal patterns, etc., are found in
many (2+1)-dimensional physical models. Meanwhile many interesting in-
teraction properties for these soliton solutions or localized soliton structures
were revealed [1–8]. However, in the real natural world, there exist very
complicated folded phenomena such as the folded protein [9], folded brain
and skin surface and many other kinds of folded biology system [10]. The
bubbles on (or under) a fluid surface may be thought to be the simplest
folded waves. Various ocean waves are really folded waves, too. The loop
solitons [11,12], which are thought to be class of the simplest folded waves
in(1+1)-dimensional case, have been found in many (1+1)-dimensional in-
tegrable systems and have been applied in some possible physical fields like
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the string interaction with external field [13], quantum field theory [14] and
particle physics [15]. Recently, Tang and Lou [16] first considered these
special folded localized excitations and found folded solitary waves in some
(2+1)-dimensional nonlinear models, such as the (2+1)-dimensional disper-
sive long wave equation, the(2+1)-dimensional Broer–Kaup–Kupershmidt
equation and the (2+1)-dimensional Burgers equation, etc. They defined a
new type of soliton, i.e. foldon if the interactions among the folded solitary
waves are completely elastic. In this paper, we consider the Maccari system,
so called “new (2+1)-dimensional nonlinear system” [2,3]

iAt + Axx + LA = 0 , (1)

iBt + Bxx + LB = 0 , (2)

Ly = (AA∗ + BB∗)x . (3)

Using the variable separation approach, we convert the systems into simple
variable separation solution. Because some types of the usual localized exci-
tations of Eqs. (1)–(3) such as solitoffs, dromions, dromion lattice, breathers,
instantons, peakons and compactons are obtained by selecting some types of
lower-dimensional appropriate functions, [4,5] here we only try to find some
kinds of FSWs and foldon structures. In particular, we are interested in the
possible interaction behavior of the foldons.

2. Variable separation solutions for Maccari system

In Ref. [4], using the variable separation approach, we have proved that
the Maccari system (1)–(3) possesses a quite general solution

A =
2δ1δ2

√

λa1a2pxqy exp(ir + is1)

a1p − a2q + a3pq
, (4)

B =
2δ3δ4

√

(2 − λ)a1a2pxqy exp(ir + is2)

a1p − a2q + a3pq
, (5)

L = 2

(

a1pxx + a3pxxq

a1p − a2q + a3pq
−

(a1px + a3pxq)2

(a1p − a2q + a3pq)2

)

+ L0x , (6)

where λ, a1, a2, a3 are arbitrary constants and δ2
1

= δ2
1

= δ2
3

= δ2
4

= 1.
In Eqs. (4)–(6), p ≡ p(x, t) is an arbitrary function of (x, t) due to the
arbitrariness of the introduced seed function L0 = p0(x, t),

p0x = (4p2

x)−1(4rtp
2

x + 4p2

xr2

x + p2

xx − 2pxpxx) , (7)

r ≡ r(x, t) is related to p with

pt + 2pxrx = c1(−a2 + a3p)2 + c2(−a2 + a3p) − a1a2c3 , (8)
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si ≡ si(y)(i = 1, 2) are arbitrary functions of (y) satisfies

sit = 0 , (9)

and q ≡ q(y, t) satisfies the following Riccati equation

qt = −c3(a1 + a3q)
2 − c2(a1 + a3q) + a1a2c1 , (10)

with ci ≡ ci(t)(i = 1, 2, 3). If we select

c1 =
−1

a1a2a
2
3
H1

[

(a1 + a3H2)
2H3t +

(

a1a3 + a2

3H2

)

H1t − a2

3H1H2t

]

, (11)

c2 =
−1

a2
3
H1

[2(a1 + a3H2)H3t + a3H1t] , (12)

c3 =
H3t

a2
3
H1

, (13)

then the Riccati Eq. (10) has a solution

q =
H1

H3 + F (y)
+ H2 , (14)

where Hi ≡ Hi(t)(i = 1, 2, 3) are arbitrary functions of (t) and F ≡ F (y) is
an arbitrary function of (y), which means that q = q(y, t) can also be viewed
as an arbitrary function of (y, t) due to the arbitrariness of Hi(t)(i = 1, 2, 3)
and F ≡ F (y). Especially, the module squares of the field A and B read

U = |A|2 =
λa1a2pxqy

(a1p − a2q + a3pq)2
, (15)

V = |B|2 =
(2 − λ)a1a2pxqy

(a1p − a2q + a3pq)2
. (16)

3. Folded solitary waves and foldons of the Maccari system

Because of the arbitrariness of the functions of p and q, many kinds of
stable coherent localized excitations for the field U (or V ) can be obtained.
Here we construct the FSWs and foldons directly from the expression (15)
and (16). For briefness, we only discuss the field U , and the field V can
be treated in the same way. It is considered that these special excitations
should be described by multi-valued functions, we first concentrate on how
to find some types of FSWs and foldons of the field U briefly. A localized
functions px can be written in the form

px =
M
∑

j=1

fj(ξ + vjt) , x = ξ +
M
∑

j=1

gj(ξ + vjt) , (17)
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where v1 < v2 < . . . vM are all arbitrary constants and (fj, gj), ∀j are all lo-
calized functions with the properties fj(±∞), gj(±∞) = G±

j = constants.

From the second equation of (17), we know that ξ may be a multi-valued
functions in some possible regions of x by selecting the functions gj suitably.
Therefore the functions px may be a multi-valued function of x in these
regions though it is a single valued function of ξ. Besides, px is an interac-
tion solution of M localized excitations due to the property ξ |x→∞→ ∞.
Actually, most of the known (1+1)-dimensional multi-loop solutions are the
special cases of (17). If we take the arbitrary functions of formula (15), we
can get various types of FSWs and/or foldons.

In Fig. 1, six typical special FSWs are plotted for the field quantity U

shown by (15) with px in Eq. (17) and p =
∫ ξ

pxxξdξ +K0 and the functions
qy, q being given in a similar way

qy =

M
∑

j=1

Qj(θ) , y = θ +

M
∑

j=1

Rj(θ) , q =

θ
∫

qyyθdθ + H0 , (18)

where K0 and H0 are arbitrary integration constants. In (18), Qj(θ) and
Rj(θ), ∀j are localized functions of θ. The more detailed function selections
of the figures of the field U (15) are given as

px = sech2(ξ − v1t) , (19)

qy = sech2θ + L0sech
6θ , (20)

x = ξ + k0 tanh(ξ − v1t) + k1 tanh2(ξ − v1t) + k2 tanh3(ξ − v1t) , (21)

y = θ + l0 tanh θ + l1 tanh2(θ) + l2 tanh3(θ) , (22)

p =

ξ
∫

pxxξdξ + K0 , (23)

q =

θ
∫

qyyθdθ + H0 , (24)

with λ = 1, a1 = 2, a2 = 1, a3 = 0 at t = 0. The corresponding selections
of the parameters are

k0 = −1.2, l0 = 1,K0 = 8, L0 = H0 = k1 = k2 = l1 = l2 = 0 (25)

for Fig. 1(a),

k0 = −1.2, l0 = −1.1,K0 = 8, L0 = H0 = k1 = k2 = l1 = l2 = 0 (26)

for Fig. 1(b),
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k0 = −1.2, k1 = l0 = 1, K0 = 8, L0 = H0 = k2 = l1 = l2 = 0 (27)

for Fig. 1(c),

L0 = k1 = l1 = 1, k0 = l0 = 2, k2 = 0, l2 = −5.5, K0 = H0 = 50 (28)

for Fig. 1(d),

L0 = k1 = l1 = 1, k0 = l0 = 2, k2 = l2 = −5.5, K0 = H0 = 50 (29)

for Fig. 1(e), and

L0 = k1 = l1 = 1, k0 = l0 = 2, k2 = l2 = −10, K0 = 50, H0 = 250 (30)

for Fig. 1(f).
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Fig. 1. Six typical FSWs for the field U expressed by (15) with λ = 1, a1 = 2, a2 =

1, a3 = 0 at t=0 and the selections (19)–(24) and the related concrete parameter

selections are given in (25) for (a), (26) for (b), (27) for (c), (28) for (d), (29) for

(e) and (30) for (f), respectively.
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From Fig. 1 we can see that the FSWs may be “folded” in quite compli-
cated waves and possess rich structures.

Figs. 2(a)–(e) are plotted to show the possible existence of foldons which
are given by (15) and the concrete function selections are given

px = 0.8sech2ξ + 0.5sech2(ξ − 0.25t) , (31)

qy = sech2θ , (32)

x = ξ − 1.5 tanh ξ − 1.5 tanh(ξ − 0.25t) , (33)

y = θ − 2 tanh θ , (34)

p =

ξ
∫

pxxξdξ + 20 , (35)

q =

θ
∫

qyyθdθ (36)

with λ = 1, a1 = 2, a2 = 1, a3 = 0 at times (a)t = −18,(b)t = −8, (c)
t = 0, (d)t = 8, (e) t = 18.
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Fig. 2. Evolution plots of two foldon for the field U expressed by (15) with λ =

1, a1 = 2, a2 = 1, a3 = 0 and the selection (31)–(36) at the times (a) t = −18,

(b) t = −8, (c) t = 0, (d) t = 8, and (e) t = 18, respectively.
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From Fig. 2(a) and Fig. 2(e), we can see that the interaction of two
foldons is completely elastic. Because one of the velocities of foldons has
been selected as zero, which makes it easy to survey their phase shifts. It
can also be seen that there are phase shifts for two foldons. Especially, before
the interaction, the static foldon (the large one) is located at x = −1.5 and
after the interaction, the large foldon is shifted to x = 1.5.

4. Summary and discussion

In summary, using the variable separation approach, a quite general
variable separation solution of the (2+1)-dimensional Maccari systems can
be derived. For the (2+1)-dimensional Maccari system, there are folded
excitations. Starting from the formula of the module quantity U expressed
by (15) of the Maccari system directly, we obtain many types of FSWs and
foldons by selecting arbitrary multi-valued functions appropriately. The
foldons may be folded quite freely and complicated and possess quite rich
structures and interaction behaviors. In reality, there are a large number
of complicated folded and/or the multi-valued phenomena, so to find the
FSWs and foldons in other high dimensional nonlinear models and put the
general (or special) foldons into its real possible applications is worthy of
further study.
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