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Using a more accurate approximation than that applied by Lee–Oehme–
Yang we show that the interpretation of the tests, measuring the difference
between the K0 mass and the K̄0 mass as the CPT-symmetry test is wrong.
We find that in fact such tests should rather be considered as tests for the
existence of the hypothetical interaction allowing the first order |∆S| = 2
transitions K0 ⇋ K̄0.
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1. Introduction

CPT symmetry is a fundamental theorem of axiomatic quantum field the-
ory which follows from locality, Lorentz invariance, and unitarity [1]. Many
tests of CPT-invariance consist in searching for decay of neutral kaons. The
proper interpretation of them is crucial. All known CP- and hypothetically
possible CPT-violation effects in neutral kaon complex are described by solv-
ing the Schrödinger-like evolution equation [2–9] (we use ~ = c = 1 units)

i
∂

∂t
|ψ; t〉‖ = H‖|ψ; t〉‖ (1)

for |ψ; t〉‖ belonging to the subspace H‖ ⊂ H (where H is the state space
of the physical system under investigation), e.g., spanned by orthonormal

neutral kaons states |K0〉
def
= |1〉, |K̄0〉

def
= |2〉, and so on, (then states corre-

sponding to the decay products belong to H⊖H‖
def
= H⊥). The nonhermitian

effective Hamiltonian H‖ acts in H|| and

H‖ ≡M −
i

2
Γ , (2)

where M = M+, Γ = Γ+, are (2 × 2) matrices.

(2069)
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Relations between matrix elements ofH‖ implied by CPT-transformation
properties of the Hamiltonian H of the total system, containing neutral kaon
complex as a subsystem, are crucial for designing CPT-invariance and CP-
violation tests and for the proper interpretation of their results.

The eigenstates of H‖, |Kl〉 and |Ks〉, for the eigenvalues µl and µs,
respectively [2–9, 11–21]

µl(s) = h0 − (+)h ≡ ml(s) −
i

2
γl(s) , (3)

where ml(s), γl(s) are real, and

h0 =
1

2
(h11 + h22) , (4)

h ≡
√

h2
z + h12h21 , (5)

hz =
1

2
(h11 − h22) , (6)

hjk = 〈j |H‖|k 〉 , (j, k = 1, 2) , (7)

correspond to the long (the vector |Kl〉) and short (the vector |Ks〉) living
superpositions of K0 and K̄0.

Using the eigenvectors

|K1(2)〉
def
= 2−1/2(|1 〉 + (−)|2 〉) (8)

of the CP-transformation for the eigenvalues ±1 (we define CP|1 〉 = −|2 〉,
CP|2 〉 = −|1 〉), vectors |Kl〉 and |Ks〉 can be expressed as follows [4,6,10,14]:

|Kl(s)〉 ≡
(

1 + |εl(s)|
2
)−1/2 [

|K2(1)〉 + εl(s)|K1(2)〉
]

, (9)

where

εl =
h12 − h11 + µl

h12 + h11 − µl
≡ −

h21 − h22 + µl

h21 + h22 − µl
, (10)

εs =
h12 + h11 − µs

h12 − h11 + µl
≡ −

h21 + h22 − µs

h21 − h22 + µs
. (11)

This form of |Kl〉 and |Ks〉 is used in many papers when possible departures
from CP- or CPT-symmetry in the system considered are discussed.

One can easily verify that if µl 6= µs then:

h11 = h22 ⇐⇒ εl = εs . (12)
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The experimentally measured values of the parameters εl, εs are very
small for neutral kaons. Assuming

|εl| ≪ 1 , |εs| ≪ 1 , (13)

one can, e.g., find:

h11 − h22 ≃ (µs − µl)(εs − εl) . (14)

Keeping in mind that hjk = Mjk −
i
2Γjk, Mkj = M∗

jk, Γkj = Γ ∗
jk (where

Mjj
def
= Mj , (j = 1, 2)) and using (14) one can find, among others that [10,14]

ℜ (h11 − h22) ≡M1 −M2 ≃ −(γs − γl)

[

tanφSW ℜ

(

εs − εl

2

)

−ℑ

(

εs − εl

2

)]

, (15)

where ℜ (z) denotes the real part, ℑ (z) — the imaginary part of a complex
number (z), and

tan φSW
def
=

2(ml −ms)

γs − γl
. (16)

Usually it is assumed that M1,M2 denote the masses of the particle “1” and
its antiparticle “2” [2–15]).

One should remember that relations (14), (15) are valid only if condi-
tion (13) holds. On the other hand it is appropriate to emphasize at this
point that all relations (9)–(15) do not depend on the specific form of the
effective Hamiltonian H‖ and that they do not depend on the approximation
used to calculate H|| . They are induced by geometric relations between var-
ious base vectors in two-dimensional subspace H‖ but the interpretation of
the relation, e.g., (15), depends on properties of the matrix elements hjk of
the effective Hamiltonian H‖. This means that, if for example, H‖ 6= HLOY,
where HLOY is the Lee–Oehme–Yang effective Hamiltonian, then the inter-
pretation of the relation (15), e.g., as the CPT symmetry test, and other
similar relations need not be the same for H‖ and for HLOY.

The aim of this note is to analyze the interpretation of the test based on
the relation (15) which is commonly considered as the CPT violation test
[4–6, 10, 14, 15, 17]. Such an interpretation follows from the properties of the
matrix elements of HLOY.

In the kaon rest frame, the time evolution is governed by the Schrödinger
equation

i
∂

∂t
U(t)|φ〉 = HU(t)|φ〉 , U(0) = I , (17)
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where I is the unit operator in H, |φ〉 ≡ |φ; t0 = 0〉 ∈ H is the initial state
of the system:

|φ〉 ≡ |ψ〉‖ ≡ q1|1 〉 + q2|2 〉 ∈ H|| ⊂ H (18)

(in our case |φ; t〉 = U(t)|φ〉), H is the total (selfadjoint) Hamiltonian, acting
in H. Thus the total evolution operator U(t) is unitary.

Starting from the Schrödinger equation and using the Weisskopf–Wigner
method Lee, Oehme and Yang derived the following formula for the matrix
elements hLOY

jk , (j, k = 1, 2) of their effective Hamiltonian HLOY

(see [2–4,16]):

hLOY
jk = m0 δj,k − Σjk(m0) (19)

= MLOY
jk −

i

2
ΓLOY

jk , (j, k = 1, 2) , (20)

where Σjk(ǫ) = 〈j |Σ(ǫ)|k 〉, (j, k = 1, 2), and

Σ(ǫ) = PHQ
1

QHQ− ǫ− i0
QHP = ΣR(ǫ) + iΣI(ǫ) , (21)

and ΣR(ǫ = ǫ∗) = ΣR(ǫ = ǫ∗)+, ΣI(ǫ = ǫ∗) = ΣI(ǫ = ǫ∗)+, P is the
projector operator onto the subspace H||:

P ≡ |1 〉〈1 | + |2 〉〈2 | , (22)

Q is the projection operator onto the subspace of decay products H⊥:

Q ≡ I − P , (23)

and vectors |1 〉, |2 〉 considered above are the eigenstates of the free Hamil-
tonian, H(0), (here H ≡ H(0) +HI), for 2-fold degenerate eigenvalue m0:

H(0)|j 〉 = m0|j 〉 , (j = 1, 2) , (24)

HI denotes the interaction which is responsible for the decay process. This
means that

[

P,H(0)
]

= 0 . (25)

The condition guaranteeing the occurrence of transitions between subspaces
H‖ and H⊥, i.e., the decay process of states in H‖, can be written as follows

[

P,HI
]

6= 0 , (26)

that is
[P,H] 6= 0 . (27)
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The operator HLOY has the following form

HLOY = PHP −Σ(m0) ≡ PHP −Σ(m0) , (28)

where PHP ≡ PH(0)P + PHIP , and, in the considered case

PH(0)P ≡ m0P , (29)

and (see [2–4])
PHIP ≡ 0 . (30)

Following the method used by LOY, assumption (30) may be either kept
or dropped. This has no effect on the CP- and CPT-transformation proper-
ties of the matrix elements of HLOY and conclusions derived in this paper.
The assumption (30) is a reflection of the opinion of physicists following the
ideas of [2] and deriving and then applying HLOY that matrix elements of
HI are too small in comparison with m0 in order to have any measurable ef-
fect on time evolution in H|| (see [2–4]). In some papers (see, e.g., [5–7,17]),

instead of (30) the assumption that PHIP 6= 0 is introduced into formu-
lae for matrix elements of HLOY. It appears that the properties of such
HLOY do not differ from the properties of the LOY effective Hamiltonian
derived within the use of the assumption (30). In other words, the approx-
imation applied by LOY in [2] leads to the operator HLOY whose CP- and
CPT-transformation properties do not depend on whether PHIP 6= 0, that

is H12
def
= 〈1 |H|2 〉 6= 0, or not. (Note that within the LOY assumptions

H12 ≡ 〈1 |HI |2 〉.) This property of the LOY approximation means that,
for example, the verification of the presence (or absence) of the hypothetical
superweak interactions causing the direct, first order K0 ⇋ K̄0, |∆S| = 2,
transitions [18, 19] in experiments designed within use of the LOY theory
is very difficult and that the interpretation of results of such experiments
cannot be considered as definitive. The same refers to the problem of how to
identify within the LOY theory effects caused by such hypothetical interac-
tions and similar effects predicted by the Standard Model (SM) [20–22]. In
this place, in order to avoid possible misunderstandings, one should explain
that from the point of view of the problems discussed in this paper, SM
effective Hamiltonians, Heff , for the problem under consideration, should be
identified with H|| (or HLOY) but they cannot be identified with the operator
PHP .

Usually, in LOY and related approaches, it is assumed that

ΘH(0)Θ−1 = H(0)+ ≡ H(0) , (31)

where Θ is the anti-unitary operator [23–25]:

Θ
def
= CPT . (32)
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The subspace of neutral kaons H‖ is assumed to be invariant under Θ:

ΘPΘ−1 = P+ ≡ P . (33)

Now, if in addition to (31) ΘHIΘ−1 = HI , that is if

[Θ,H] = 0 , (34)

then using, e.g., the following phase convention

Θ|1 〉
def
= eiαΘ |2 〉, Θ|2 〉

def
= eiαΘ |1 〉 , (35)

and taking into account that 〈ψ|ϕ〉 = 〈Θϕ|Θψ〉, one easily finds from (19),
(21) that

hLOY
11 − hLOY

22 = 0 (36)

in the CPT-invariant system. This is the standard result of the LOY ap-
proach and this is the picture which one meets in the literature [2–9, 14, 17].
Property (36) leads to the conclusion that (see (12))

εl − εs = 0 . (37)

Therefore the tests based on the relation (15) are considered as the test of
CPT-invariance and the results of such tests are interpreted that the masses
of the particle “1” (the K0 meson) and its antiparticle “2” (the K̄0 meson)
must be equal if CPT-symmetry holds. Parameters appearing in the right
hand side of the relation (15) can be extracted from experiments in such
tests and then these parameters can be used to estimate the left side of this
relation. The estimation for the mass difference obtained in this way with
the use of the recent data [15] reads

|M1 −M2|

mK0

=
|mK0

−mK̄0
|

mK0

≤ 10−18 (38)

and this estimation is considered as indicating no CPT-violation effect. This
interpretation follows from the properties of the HLOY.

Note that in fact the above interpretation of the relation (38) could be
considered as the confirmation of the CPT invariance only if the property
(36) were the exact relation. The accuracy of the LOY approximation was
discussed, e.g., in [9, 26–29]. According to these and other papers one can
determine all parameters needed for the time evolution formulae in LOY
theory up to the accuracy of ΓX

mX
∼ 10−15, where X = Ks,Kl, in terms of

known quantities. In the light of such considerations an especial meaning
has the rigorous result that for the exact effective Hamiltonian h11 cannot
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be equal to h22 in CPT invariant and CP noninvariant system (see [30]).
All these considerations show that the interpretation of tests for neutral K
subsystem within the LOY theory can have more than one meaning and it
cannot be considered as crucial. This remark concerns especially tests of
type (15) (where the result is of order given in (38)). So one should look
for much more accurate approximations describing the time evolution in
neutral K complex and should try to interpret results of tests, e.g., of type
(15) within the use of this more accurate approximation and of the exact
theory.

2. Beyond the LOY approximation

The more exact approximate formulae for H|| than those obtained within
the LOY approach (i.e. than HLOY) can be derived using the Krolikowski–
Rzewuski (KR) equation for the projection of a state vector [31,32,11–13,33].
KR equation results from the Schrödinger equation (17) for the total system
under consideration [31] (see also, e.g., [34]) and it is the exact evolution
equation for the subspace H|| ⊂ H. In the case of initial conditions of the
type (18), KR equation takes the following form

(

i
∂

∂t
− PHP

)

U‖(t)|ψ〉|| = −i

∞
∫

0

K(t− τ)U‖(τ)|ψ〉||dτ , (39)

where U||(t) ≡ PU(t)P is the non-unitary evolution operator for the sub-
space H||, U||(t)|ψ〉|| = |ψ; t〉|| ∈ H||, U‖(0) = P , and

K(t) = Θ(t)PHQ exp(−itQHQ)QHP , (40)

Θ(t) = {1 for t ≥ 0, 0 for t < 0} .

The integro-differential equation (39) can be replaced by the following
differential one (see [31, 32, 11–13, 33])

(

i
∂

∂t
− PHP − V||(t)

)

U‖(t)|ψ〉|| = 0 . (41)

This equation has the required form of the Schrödinger-like equation (1) with
the effective Hamiltonian H||, which in general depends on time t [31, 35],

H|| ≡ H‖(t)
def
= PHP + V‖(t) . (42)

In the case (27), to the lowest nontrivial order, the following formula for
V||(t) has been found in [12, 32]

V‖(t) ∼= V
(1)
‖ (t)

def
= −i

∞
∫

0

K(t− τ) exp [i(t− τ)PHP ]dτ . (43)
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All steps leading to the approximate formula (43) for V
(1)
‖ (t) are well defined

(see [12, 32]).
We are rather interested in the properties of the system at long time

period, at the same for which the LOY approximation was calculated, and
therefore we will consider the properties of

V||
def
= lim

t→∞
V

(1)
|| (t) (44)

instead of the general case V||(t) ∼= V
(1)
|| (t).

For simplicity we assume that the CPT-symmetry is conserved in our
system, which is that the condition (34) holds. The consequence of this
assumption is that

H11 = H22
def
= H0 , (45)

where

Hjk = 〈j |H|k 〉 , (46)

and (j, k = 1, 2). In this case the matrix elements of Σ(ǫ) have the following
properties [12, 13, 36]

Σ11(ǫ = ǫ∗) ≡ Σ22(ǫ = ǫ∗)
def
= Σ0(ǫ = ǫ∗) . (47)

So, in the case of the projector P given by the formula (22) for

PHP ≡ H0 P , (48)

that is for

H12 = H21 = 0 , (49)

one finds that

V|| = −Σ(H0) . (50)

This means that in the case (48)

H|| = H0 P − Σ(H0) , (51)

(where H||
def
= limt→∞H||(t) ≡ PHP +limt→∞ V||(t)), which is exactly as in

the LOY approach (see (28)). This also means that in such a case simply
(h11 − h22) = 0 when CPT symmetry is conserved.

On the other hand, in the case

H12 = H∗
21 6= 0 , (52)
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and conserved CPT, one obtains [33]

V|| = −
1

2
Σ (H0 + |H12|)

[(

1 −
H0

|H12|

)

P +
1

|H12|
PHP

]

−
1

2
Σ(H0 − |H12|)

[(

1 +
H0

|H12|

)

P −
1

|H12|
PHP

]

. (53)

Matrix elements vjk = 〈j |V|||k 〉, (j, k = 1, 2) of this V|| we are interested in
take the following form

vj1 = −
1

2

{

Σj1 (H0 + |H12|) +Σj1(H0 − |H12|)

+
H21

|H12|
Σj2(H0 + |H12|) −

H21

|H12|
Σj2(H0 − |H12|)

}

,

(54)

vj2 = −
1

2

{

Σj2(H0 + |H12|) +Σj2(H0 − |H12|)

+
H12

|H12|
Σj1(H0 + |H12|) −

H12

|H12|
Σj1(H0 − |H12|)

}

.

The form of these matrix elements is rather inconvenient for searching
for their properties depending on the matrix elements H12 of PHP . It can
be done relatively simply assuming [13, 36]

|H12| ≪ |H0| . (55)

Within such an assumption one finds [13, 36]

vj1 ≃ − Σj1(H0) −H21
∂Σj2(x)

∂x

∣

∣

∣

∣

x=H0

, (56)

vj2 ≃ − Σj2(H0) −H12
∂Σj1(x)

∂x

∣

∣

∣

∣

x=H0

, (57)

where j = 1, 2. One should stress that due to the presence of resonance terms,
derivatives ∂

∂xΣjk(x) need not be small, and so the products Hjk
∂
∂xΣjk(x)

in (56), (57).
From this formulae we conclude that, e.g., the difference between the

diagonal matrix elements which plays an important role in designing tests of
type (15) for the neutral kaons system, equals to the lowest order of |H12|,

h11 − h22 ≃ H12
∂Σ21(x)

∂x

∣

∣

∣

∣

x=H0

− H21
∂Σ12(x)

∂x

∣

∣

∣

∣

x=H0

6= 0 . (58)
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So, in a general case, in contradiction to the property (36) obtained
within the LOY theory, one finds for diagonal matrix elements of H‖ cal-
culated within the above described approximation that in CPT-invariant
system the nonzero matrix elements, H12 6= 0, of PHP cause that (h11 −
h22) 6= 0.

From the formula (58) it follows that the left side of the relation (15)
takes the following form in the case of very weak interactions allowing for
the nonzero first order transitions |1 〉 ⇋ |2 〉

M1 −M2 = ℜ(h11 − h22) = 2ℑ

(

H21
∂ΣI

12(x)

∂x

∣

∣

∣

∣

x=H0

)

+ . . . 6= 0 . (59)

(Note that as a matter of fact assuming (24) one has H21 ≡ 〈2 |HI |1 〉
in (59).) Thus taking into account this result and the implications of the
assumptions (48), (49) one can conclude that

ℜ (h11 − h22) = 0 ⇔ |H12| = 0 (60)

within the considered approximation. Finally, using result (59) one can
replace the relation (15) by the following one:

2ℑ

(

〈2 |HI |1 〉
∂ΣI

12(x)

∂x

∣

∣

∣

∣

x=H0

)

≃ −(γs − γl)

[

tanφSW ℜ

(

εs − εl

2

)

−ℑ

(

εs − εl

2

)]

. (61)

3. Discussion

The results (58) and (59) are in full agreement with the conclusions
drawn in [30] on the ground of basic assumptions of quantum theory. Note
that similar relation to (58) was obtained for CPT invariant system in [37]
by means of another, more accurate than LOY, approximation. In [30] it has
been shown that the diagonal matrix elements of the exact effective Hamil-
tonian governing the time evolution in the subspace of states of an unstable
particle and its antiparticle cannot be equal at t > t0 = 0 (t0 is the instant
of creation of the pair) when the total system under consideration is CPT
invariant but CP noninvariant. The proof of this property is rigorous. The
unusual consequence of this result is that in such a case, contrary to the
properties of stable particles, the masses of the unstable particle “1” and its
antiparticle “2” need not be equal for t≫ t0. In fact there is nothing strange
in this conclusion. From (34) (or from the CPT theorem [1] of axiomatic
quantum field theory) it only follows that the masses of particle and an-
tiparticle eigenstates of H (i.e., masses of stationary states for H) should be
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the same in the CPT invariant system. Such a conclusion cannot be drawn
from (34) for particle “1” and its antiparticle “2” if they are unstable, i.e.,
if states |1 〉, |2 〉 are not eigenstates of H. There is no axiomatic quantum
field theory of unstable particles.

In this place one should explain that the property H12 = H21 = 0,
which according to (58) implies that (h11 − h22) = 0 in the considered
approximation, does not mean that the predictions following from the use of
the exact effective Hamiltonian (or the more accurate effective Hamiltonian
than the LOY theory) should lead to the same masses for K0 and for K̄0.
This does not contradict the above mentioned conclusion about masses of
unstable particles drawn in [30] for the exact H||: Simply, in the case H12 =
H21 = 0 the mass difference is very, very small and should arise at higher
orders of the more accurate approximation described in Sec. 2.

Using the above, briefly described formalism, one can find (h11 − h22)
for the generalized Fridrichs–Lee model [9, 12]. Within this toy model one
finds [36]

ℜ (h11 − h22)
def
= ℜ (hFL

11 − hFL
22 ) ≃ i

m21Γ12 −m12Γ21

4(m0 − µ)

≡
ℑ (m12Γ21)

2(m0 − µ)
. (62)

This estimation has been obtained in the case of conserved CPT-symmetry
for |m12| ≪ (m0 − µ), which corresponds to (55). In (62) Γ12, Γ21 can be
identified with those appearing in the LOY theory, m0 ≡ H11 = H22 can be
considered as the kaon mass [9], mjk ≡ Hjk (j, k = 1, 2), µ can be treated as
the mass of the decay products of the neutral kaon [9].

For neutral K-system, to evaluate (hFL
11 −hFL

22 ) one can follow, e.g., [9,14]
and one can take 1

2Γ21 = 1
2Γ

∗
12 ∼ 1

2Γs ∼ 5 × 1010sec−1 and (m0 − µ) =

mK − 2mπ ∼ 200 MeV ∼ 3 × 1023sec−1 [15]. Thus

ℜ (h11 − h22) ∼
Γs

4(mK − 2mπ)
ℑ (H12) , (63)

that is,
∣

∣ℜ
(

hFL
11 − hFL

22

)
∣

∣ ∼ 1, 7 × 10−13 |ℑ (m12)| ≡ 1, 7 × 10−13 |ℑ (H12)| . (64)

Note that the relation (63) is equivalent to the following one

ℜ (h11 − h22) ∼ −i
Γs

4(mK − 2mπ)
〈1 |H−|2 〉 , (65)

where H− is the CP odd part of the total Hamiltonian H ≡ H+ + H−.

There are H−
def
= 1

2 [H − (CP)H(CP)+] and H+
def
= 1

2 [H + (CP)H(CP)+]
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(see [17, 21]). H+ denotes the CP even part of H. We have 〈1 |H−|2 〉 ≡
iℑ (〈1 |H|2 〉) = iℑ (H12). According to the literature, in the case of the
superweak model for CP violation it should be 〈1 |H−|2 〉 ≡ iℑ (H12) 6= 0 to
the lowest order and 〈1 |H−|2 〉 = 0 in the case of a miliweak model [17,21].

For the Fridrichs–Lee model it has been found in [12] that hjk(t) ≃

hjk practically for t ≥ Tas ≃ 102

π(m0−|m12|−µ) . This leads to the following

estimation of Tas for the neutral K-system: Tas ∼ 10−22 sec.
Dividing both sides of (64) by m0 one arrives at the relation correspond-

ing to (38):

∣

∣ℜ
(

hFL
11 − hFL

22

)∣

∣

m0
∼ 1, 7 × 10−13 |ℑ (m12)|

m0
≡ 1, 7 × 10−13 |ℑ (H12)|

m0
. (66)

So, if we suppose for a moment that the result (38) is the only experimental

result for neutral K complex then it is sufficient for |ℑ (H12)|
m0

to be |ℑ (H12)|
m0

<

10−5 in order to fulfill the estimation (38). Of course this could be considered

as the upper bound for a possible value of the ratio |ℑ (H12)|
m0

only if there were

no other experiments and no other data for the K0, K̄0 complex. Note that

from such a point o view the suitable order of |ℑ (H12)|
m0

is easily reached by

the hypothetical Wolfenstein superweak interactions [18], which admits first
order |∆S| = 2 transitions K0 ⇋ K̄0, that is, which assumes a non-vanishing
first order transition matrix H12 = 〈1 |HI |2 〉 ∼ gGF 6= 0 with g ≪ GF .

The more realistic estimation for |ℑ (H12)|
m0

can be found using the property
|ℑ (H12)|

m0
≡ |〈1 |H

−
|2 〉|

m0
. One can assume that |〈1 |H

−
|2 〉|

m0
∼ H

−

Hstrong
. There is

H
−

Hstrong
∼ 10−14|ε| for the case of the hypothetical superweak interactions

(see [17], formula (15.138)) and thus |ℑ (H12)|
m0

∼ 10−14|ε|. (Using this last
estimation one should remember that it follows from the LOY theory of
neutral K complex.) This estimation allows one to conclude that

∣

∣ℜ
(

hFL
11 − hFL

22

)∣

∣

m0
∼ 1, 7 × 10−27|ε| . (67)

This estimation is the estimation of type (38) and it can be considered as a

lower bound for |ℜ (h11−h22)|
m0

(see also [38]).
Note that contrary to the approximation described in Sec. 2, the LOY

approximation, as well as the similar approximation leading to the Bell–
Strinberger unitary relations [39] are unable to detect and correctly identify
effects caused by the existence (or absence) of the superweak interactions
(the interactions for which H12 6= 0) in the system.
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Let us analyze some important observations following from (59), (61) and
from the rigorous result obtained in [30]. The non-vanishing of the right hand
side of the relation (15) cannot be considered as the proof that the CPT-
symmetry is violated. So, there are two general conclusions following from
(59), (60), (61) and [30]. The first one: the tests based on the relation (15)
cannot be considered as CPT-symmetry tests and this is the main conclusion
of this paper. The second one: such tests should rather be considered as
the tests for the existence of new hypothetical (superweak (?)) interactions
allowing for the first order |∆S| = 2 transitions. Simply, the left hand side
of the relation (59) can differ from zero only if the matrix element 〈2 |H|1 〉
is different from zero and thus the nonzero value of the right hand side of
the relation (61) means that it should be 〈2 |HI |1 〉 6= 0.

Note that within the LOY theory one can also obtain nonzero first order
|∆S| = 2 transitions in Standard Model for K0−K̄0 complex [22]. The main
difference between such an effect and the effect discussed in this paper and
connected with the relations (15), (59)–(61) is that within the LOY theory
the first order |∆S| = 2 transitions can appear only for off-diagonal matrix
elements, hLOY

jk , (j 6= k), of the effective Hamiltonian, HLOY, whereas within
the more accurate approximation, discussed in the previous section, diagonal
matrix elements, h11, h22, as well as off-diagonal matrix elements of the
effective Hamiltonian H|| depend on H12,H21. Within the LOY approach,
diagonal matrix elements of HLOY do not depend on H12,H21. Therefore
the effect discussed in this paper is absent in the LOY theory.

On the other hand, one should remember that the non-vanishing right
hand side of the relations (15), (61) can be considered as the conclusive
proof that new interactions allowing for the first order |∆S| = 2 transitions
K0 ⇋ K̄0 exist only if an another experiment, based on other principles,
definitively confirms that the CPT-symmetry is not violated in K0 − K̄0

system.

Unfortunately the accuracy of the today’s experiments is not sufficient
to improve the estimation (38) to the order required by (66). This espe-
cially concerns the accuracy required by our “more realistic estimation” for
|ℑ (H12)|

m0
. Simply it is beyond today’s experiments reach. In the light of

the above estimations, keeping in mind (59), only much more accurate tests
based on the relation (15) can give the answer whether the mentioned new
hypothetical interactions exists or not.

Last remark, other results [12,13,36] obtained within the approximation
described in Sec. 2 suggest also that the form of other parameters usually
used to describe properties ofK0−K̄0 system is different for the caseH12 6= 0
and for the case H12 = 0. This can be used as the basis for designing other
tests for the hypothetical new interactions.
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