
Vol. 35 (2004) ACTA PHYSICA POLONICA B No 8

THE DEPENDENCE OF THE NUCLEON–NUCLEON

SCATTERING AMPLITUDE

ON THE MOMENTUM TRANSFER

M.Y.H. Farag†, E.H. Esmael and M.Y.M. Hassan

Physics Department, Faculty of Science, Cairo University, Cairo, Egypt

(Received February 16, 2004)

The ratio of the real part to the imaginary part of the nucleon–nucleon
elastic scattering amplitude is studied in terms of powers of the momentum
transfer squared q2. This study includes the dependence on the phase vari-
ation of the nucleon–nucleon elastic scattering amplitudes. The Gaussian
form of the effective nucleon–nucleon interaction is used to calculate the
nucleon–nucleon elastic scattering amplitudes. Analytical expressions for
the phase variation and for the ratios of the real to the imaginary parts
are obtained. The obtained expressions are new formulae and are found
to be important for the description of nucleon–nucleon elastic scattering
amplitudes. Introducing of the phase variation and the ratio of the real to
the imaginary parts of the elastic scattering amplitude proportional to q2

improves the theoretical calculations.

PACS numbers: 13.75.Cs, 21.30.–x, 24.10.–i, 25.55.Ci

1. Introduction

The ratio of the real to the imaginary parts of the nucleon–nucleon (NN)
amplitude, ρ, is of major interest both theoretically and experimentally be-
cause of its close relationship with the energy integrated inelasticity of the
collision via the dispersion relation. In the eikonal models, the dip of the
differential cross section is very sensitive to the value of ρ. The ratio of the
real to the imaginary parts of the nucleon–nucleon amplitude was parame-
terized by Alkhazov et al. [1] as a linear form of the square of the momentum
transfer q2. The coefficient of q2 was taken as a free parameter. Glauber’s
multiple scattering theory [2] of hadron-nucleus based on the eikonal approx-
imation theory has been successfully used to explain the main features of the
experimental phenomena [3, 4]. One of the attractive points of this theory
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is that it provides a microscopic description of the nucleus-nucleus scatter-
ing data in terms of the nucleon–nucleon elastic scattering amplitude. The
phase variation of the NN elastic scattering amplitude plays an important
role in the scattering calculations [5]. The phase variation of the NN elastic
scattering amplitude with q2 was used earlier to improve the agreement of
the hadron-nucleus [4–6] and nucleus-nucleus [7–9] calculations with the ex-
perimental data especially for increasing q2. Ahmed and Alvi [10] calculated
the phase variation parameter η in terms of an effective NN potential, which
is consistent with the small angles NN scattering data at 1.75 GeV/c. Block
and Pancheri [11] calculated the ratio of the real to the imaginary parts of
the forward elastic scattering amplitude of light on light, i.e., the reaction
γ + γ → γ + γ in the forward direction by fitting the total γγ cross section
data in the high energy region assuming a cross section that rises asymptot-
ically in terms of the energy. They have found a formula for the ratio ρ in
terms of both the total cross section and the energy.

The momentum transfer dependence of the NN amplitude phase and the
dependence of the ratio of the real to the imaginary parts of the nucleon–
nucleon amplitude are presented and discussed. The Gaussian form of the
NN effective potential is used to calculate the NN elastic scattering ampli-
tude. In the present work, the coefficient of q2 is determined by a method
similar to that of Ahmed and Alvi [10] for the determination of the phase
variation parameter of the scattering amplitude. The formalism of this work
is given in Section 2. The calculations and results are presented in Section 3.
Finally, the discussion and conclusions are given in Section 4.

2. Theory

The nucleon–nucleon scattering amplitude is given by a Gaussian param-
eterization in terms of the momentum transfer squared q2 [2,7,8,10,12–19]

fNN (q) =
ikσ(1 − iρ)

4π
exp

(

−
aq2

2

)

, (1)

where σ is the total nucleon–nucleon cross section, k is the momentum per
nucleon of the projectile, q is the momentum transfer, ρ is the ratio of the
real to the imaginary parts of the forward NN scattering amplitude, and a
is taken to be complex and is given by:

a = β + iη , (2)

where the real part is typically the slope parameter, β, of the NN elastic
scattering differential cross section given by dσ/dt, where t is the squared
momentum transfer t = −~

2q2. The imaginary part, η, is a free parameter
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considered as a phase variation of the nucleon–nucleon scattering amplitude.

The parameter η leads simply to an overall phase factor exp
(

−
iηq2

2

)

, which

cannot be obtained, directly from the nucleon–nucleon measurements [7,8].
The phase variation parameter η was treated as a free NN parameter; it
was taken to be fixed at any given velocity of the incident nucleus and thus
independent of the nuclei involved in the collision, provided that the kinetic
energies per nucleon are the same in all cases. Thus, the same value of η
would be used in describing all the nucleus–nucleus measurements at a given
kinetic energy per nucleon [7,8].

In this work, the parameters η and ρ are not considered as free param-
eters, but new formulae are given for determining them. The ratio ρ in
equation (1) is now considered as a function of the momentum transfer q2.
The nucleon–nucleon scattering amplitude, in equation (1), was parameter-
ized by Alkhazov et al. [1] in the form:

fNN (q) =
ikσ

4π

(

τ − iρ2q
2
)

exp

(

−
aq2

2

)

, (3)

where
ρ = ρ0 + ρ2q

2 (4)

and
τ = 1 − iρ0 . (5)

Expanding exp
(

−
aq2

2

)

in powers of q2 as:

exp

(

−
aq2

2

)

= 1 −
aq2

2
+

a2q4

8
+ . . . . (6)

Then inserting equation (6) into equation (3) one gets:

fNN (q) =
ikσ

4π

[

τ −

(aτ

2
+ iρ2

)

q2 +

(

τa2

8
+ i

a

2
ρ2

)

q4 + . . .

]

. (7)

The parameter a, which is in general complex, may be determined by con-
sidering the usual two-dimensional integral representation of the nucleon–
nucleon amplitude

f(q) =
ik

2π

∫

d2b exp(iq · b)Γ (b) , (8)

where the profile function Γ (b) is given in terms of the phase shift function
χ(b) as:

Γ (b) = 1 − exp(iχ(b)) . (9)
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Expanding equation (8) in powers of q2, one gets:

f(q) = ik

[

Γ1 − Γ3

q2

4
+ Γ5

q4

64
. . .

]

, (10)

where

Γn =

∞
∫

0

Γ (b)bndb ; n = 1, 3, 5, . . . . (11)

Comparing the coefficients of the different powers of q2 of equation (7) with
the eikonal expression (10), one obtains the following terms: The term in-
dependent of q gives:

τ = γ1 . (12)

The term proportional to q2 gives:

iρ2 =
1

4
(γ3 − 2aγ1) . (13)

The term proportional to q4 gives:

a2γ1 − aγ3 +
1

8
γ5 = 0 , (14)

where

γn =
4π

σ
Γn . (15)

Equation (14) shows that a has two values as follows:

a =
γ3 ±

√

γ2

3
− 0.5γ1γ5

2γ1

. (16)

It can be noticed that there is an ambiguity in determining a due to the
presence of the positive and negative signs of the square root. If as an
approximation the first term of this equation is only taken, i.e., neglecting
the square root, then one gets:

a =
γ3

2γ1

. (17)

This formula is like the formula that was given by Ahmed and Alvi [10].
If this expression is used to calculate the value of ρ2 in Eq. (13), one finds
it equals zero. This is consistent with the results obtained by Ahmed and
Alvi [10] and Block and Kaidalov [20] who did not consider the ρ2 term, and
obtained a simple formula for the parameter a as given by Eq. (17). But in
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the present work, the value of ρ2 has been considered and Eq. (14) has been
solved by another method. Since a is small, then a2 is much smaller and
can be neglected in Eq. (14), therefore, the solution of this equation yields:

a =
1γ5

8γ3

. (18)

Since a is complex, as given in Eq. (2), and also γn are complex, then the
real and imaginary parts of Eq. (18) are given, respectively, as follows:

β =
1

8

γr
3
γr
5

+ γi
3
γi
5

(γr
3
)2 + (γi

3
)2

, (19)

and

η =
1

8

γr
3
γi
5
− γi

3
γr
5

(γr
3
)2 + (γi

3
)2

, (20)

where the superscript of γ(r or i) represent the real or imaginary part. The
expression for the ρ2, given in equation (13), is a function of the energy and
the total nucleon–nucleon cross section as already seen [11,20]. Separating
ρ2 into the real and imaginary parts, and using Eq. (13), one gets:

Re ρ2 =
1

4

[

γi
3 − 2βγi

1 − 2ηγr
1

]

, (21)

and

Im ρ2 = −
1

4

[

γr
3 − 2βγr

1 + 2ηγi
1

]

. (22)

These equations show that when a and γn are complex then also ρ2 is com-
plex. The phase shift χ(b) can be written in the form [2,10,21]

χ(b) = −
1

~ν

∞
∫

−∞

V
(

√

b2 + z2

)

dz , (23)

where ν is the nucleon velocity, b is the impact parameter and V is the
effective nucleon–nucleon potential. The effective potential is local and en-
ergy dependent and is chosen such that it reproduces the small angle NN
scattering data [10]. The effective nucleon–nucleon potential is considered
to be in the Gaussian form as:

V (r) = −(VY + iWY ) exp(−α2r2) , (24)

where VY , WY , and α2 are the potential parameters. This gives the following
expression for the phase shift function:

χ(b) = χ0 exp(−α2b2) . (25)
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Here χ0 is a constant, which depends on the potential parameters and the
nucleon velocity ν; and is given by:

χ0 =

√

π

α2

VY + iWY

~ν
. (26)

3. Calculations and results

The ratio of the real to the imaginary parts of the forward elastic scat-
tering amplitude, ρ, has been studied in terms of the momentum transfer
parameter q. This ratio has been found to be dependent on the phase vari-
ation η as shown in Eqs. (21) and (22).

The calculation of the ratio, ρ, requires the knowledge of the NN cross
section, σ, which has been calculated in the present work as follows: From
equations (8), (9) and (25), one gets:

f(q) =
ik

2π

∫

d2b exp(iq · b)
[

1 − exp
(

iχ0 exp
(

−α2b2
))]

. (27)

This equation can be rewritten as:

f(q) = −
ik

2α2

∞
∑

n=1

inχn
0

nΓ (n + 1)
exp

(

−
q2

4nα2

)

, (28)

where χ0 is complex and may be written as:

χ0 = Reχ0 + i Im χ0 , (29)

and the total NN cross section is obtained from the elastic scattering am-
plitude using the optical theorem as follows:

σ =
4π

k
Im f(0) . (30)

Now, as an approximation considering only the first two terms of the ex-
pression (28), one gets:

σ =
2π

α2

[

Im χ0 +
1

4

(

(Reχ0)
2
− (Imχ0)

2

)

]

. (31)

The effective NN potential parameters VY , WY and α2 are considered at
the energies 1000 MeV and 1630 MeV from Refs. [10,22]. The corresponding
values of the real and imaginary parts of χ0 are calculated according to
Eq. (26). The results of these calculations and the calculations of the total
nucleon–nucleon cross section, σ, and the ratios of the real to imaginary
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TABLE I

The obtained results of the NN total cross section, σ, the slope parameter, β, the

phase variation, η, and the ρ’s ratios at 1 GeV for VY = 95 MeV and WY = 131 MeV

[10].

α2 Reχ0 Imχ0 β η σ ρ0 Re ρ2 Im ρ2

(GeV/c)2 (fm2) (GeV/c)−2 (mb) (fm2) (fm2)
0.0357a 0.61903 0.8536 0.2946 0.2392 66.17 -0.4355 -0.0096 -0.1739
0.041a 0.5776 0.7965 0.2557 0.196 53.44 -0.45 -0.0038 -0.151
0.14b 0.3126 0.4311 0.0733 0.0328 8.134 -0.5578 0.0092 -0.0423
a Ref. [22]
b Ref. [10]

TABLE II

The obtained results of the NN total cross section, σ the slope parameter, β, the

phase variation, η, and the ρ’s ratios at 1.63 GeV for VY = 95 MeV and WY =

131 MeV [10].

α2 Re χ0 Imχ0 β η σ ρ0 Re ρ2 Im ρ2

(GeV/c)2 (fm2) (GeV/c)−2 (mb) (fm2) (fm2)
0.0357 0.4849 0.6686 0.2915 0.1925 50.8 -0.485 0.0084 -0.1719
0.041 0.4524 0.6239 0.2532 0.1574 41.07 -0.4975 0.0115 -0.149
0.14 0.2448 0.3377 0.0729 0.02602 6.3 -0.59 0.0124 -0.0414

parts of the NN elastic scattering amplitude are given in Tables I and II.
Also, the slope parameter, β, and the phase variation; η which represents the
real and the imaginary parts of the parameter a are obtained from equations
(19) and (20) and the results are shown in Tables I and II for the energies
1GeV and 1.63GeV, respectively. Lombard and Maillet [6] have found that
the phase factor η has its strongest effects at places where the multiple
scattering contributions interfere and the influence is less obvious when only
one term dominates. As pointed out by Franco and Yin [7,8], the phase
factor is independent of the type of the nucleus. In the present work, as
shown in Tables I and II, the phase variation η is inversely proportional to
the parameter α2.

The results of the calculations of the ratio of the real to the imaginary
parts of the NN scattering amplitude for E = 1000 MeV with α2 = 0.0357
(GeV/c)2 are ρ0 = −.4355 and ρ2 = −0.00961–0.17385i. These values
are found to be ρ0 = −0.45 and ρ2 = −0.0038–0.15104i for α2 = 0.041
(GeV/c)2. The results of these values for α2 = 0.14 (GeV/c)2 are ρ0 =
−0.55778 and ρ2 = 0.0092–0.04231i. These results are shown in Table I.
At 1GeV there is an uncertainty in the values of the parameter ρ, see for
example Refs.[4,23,24]. The different values of ρ lead to different values of
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the potential parameters χ0 and α2. The calculations have been done also
for E = 1.63 GeV as shown in Table II. The ratios are found to be ρ0 =
−0.4847 and ρ2 = 0.0084–0.1719i for α2 = 0.0357 (GeV/c)2; ρ0 = −0.4975
and ρ2 = 0.0115–0.149i for α2 = 0.041 (GeV/c)2 and ρ0 = −0.58997 and
ρ2 = 0.01237–0.04136i for α2 = 0.14 (GeV/c)2. The values of ρ0 and ρ2,
given by Alkhazov et al. [1], are 0.25 and 0.065 fm2, respectively.

One can notice that the values obtained in the present work are slightly
different from the values of Refs. [10,22], which may be due to using differ-
ent approaches. Calculations of these values permit the description of the
region of the minimum in the differential cross sections for the scattering of
the proton with different nuclei [5] such as 4He, 12C and 16O. The depen-
dence on the momentum transfer of the ratio Re fNN / Im fNN appreciably
influences the fitting of the diffraction minima. However, in the case of the
proton scattering by nuclei having a large deformation (l ≥ 1), such as 9Be
and 11B, the principal mechanism of fitting the minima is due to the non-
sphericity of the nucleus and to the presence of several incoherent channels
of scattering, among which an important role is played by the channel in
which the rearrangement of the nucleus occurs.

4. Discussion and conclusions

The dependence on the momentum transfer of the ratio for the real
part to the imaginary part of the forward elastic scattering amplitude has
been studied. The phase variation has also been considered. The nucleon–
nucleon Gaussian form has been used to calculate the nucleon–nucleon elastic
scattering amplitude. New analytical expressions for the ratios ρ in terms of
the momentum transfer q2 and new formulae for the phase variation η have
been obtained. The obtained results agree well with the previous results
given by other authors such as Alkhazov et al. [1].

In the literature the parameter, a, was considered real. Then, introducing
an imaginary part of it as fitting parameter improved the fitting with the
experimental data. Ahmed and Alvi [10] derived analytical expressions to
determine the imaginary part. The dependence of ρ2 on q2 was introduced
as a free parameter. The obtained formulae in the present work show that
ρ2 is complex.

The formulae obtained in this work can be used to determine the phase
variation parameter and the ratio of the real to the imaginary parts of the
NN scattering amplitude as long as the values of the effective nucleon–
nucleon potential are found.
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