
Vol. 35 (2004) ACTA PHYSICA POLONICA B No 8

GUESSWORK FOR DIRAC AND MAJORANA

NEUTRINO MASS MATRICES∗

Wojciech Królikowski

Institute of Theoretical Physics, Warsaw University

Hoża 69, 00–681 Warszawa, Poland

(Received March 4, 2004)

In the framework of seesaw mechanism with three neutrino flavors, we
propose tentatively an efficient parametrization for the spectra of Dirac and
righthanded Majorana neutrino mass matrices in terms of three free param-
eters. Two of them are related to (and determined by) the corresponding
parameters introduced previously for the mass spectra of charged leptons
and up and down quarks. The third is determined from the experimental
estimate of solar ∆m2

21
. Then, the atmospheric ∆m2

32
is predicted close to

its experimental estimation. With the use of these three parameters all light
active-neutrino masses m1 < m2 < m3 and heavy sterile-neutrino masses
M1 < M2 < M3 are readily evaluated. The latter turn out much more
hierarchical than the former. The lightest heavy mass M1 comes out to be
of the order O(106 GeV) so, it is too light to imply that the mechanism of
baryogenesis through thermal leptogenesis might work.

PACS numbers: 12.15.Ff, 12.15.Hh, 14.60.Pq

From the ideological point of view, the spectra of Dirac and righthanded
Majorana neutrino mass matrices presented in this note are connected with
the efficient empirical mass formula we proposed for charged leptons ei =
e−, µ−, τ− some time ago [1]. The formula reads

mei
= ρiµ

(e)

(

N2
i +

ε(e) − 1

N2
i

)

, (1)

where

Ni = 1, 3, 5 , (2)
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and

ρi =
1

29
,

4

29
,

24

29
(3)

(
∑

i ρi = 1), while µ(e) > 0 and ε(e) > 0 are constants. With the experi-
mental values me = 0.510999 MeV and mµ = 105.658 MeV as an input, the
formula (1) rewritten explicitly as

me =
µ(e)

29
ε(e) , mµ =

µ(e)

29

4

9
(80 + ε(e)) , mτ =

µ(e)

29

24

25
(624 + ε(e)) (4)

leads to the prediction

mτ =
6

125
(351mµ − 136me) = 1776.80 MeV (5)

and also determines both constants

µ(e) =
29(9mµ − 4me)

320
= 85.9924 MeV , ε(e) =

320me

9mµ − 4me

= 0.172329 .

(6)
The prediction (5) lies really close to the experimental value mexp

τ =
1776.99+0.29

−0.26 MeV [2].
Though the formula (1) has essentially the empirical character, there is

a speculative background for it based on a Kähler-like extension of Dirac
equation which the interested reader may find in Ref. [1]. In particular,
the numbers Ni and ρi (i = 1, 2, 3) given in Eqs. (2) and (3) are inter-
preted there. Let us only mention that Ni − 1 = 0, 2, 4 is the number of
additional bispinor indices appearing in the extended Dirac equation, and
obeying Fermi statistics that enforces their antisymmetrization and so, re-
stricts to zero the related additional spin. This Fermi statistics is also the
reason, why there are precisely three Standard Model fermion generations
i.e., Ni−1 = 0, 2, 4, since any additional bispinor index can assume four val-
ues, what implies Ni − 1 ≤ 4. So, an analogue of Pauli principle works here,
restricting to ≤ 4 the number of additional bispinor indices, what results
into three generations of leptons and quarks (all with spin 1/2).

The charged-lepton mass formula (1) was recently extended to up and
down quarks, ui = u, c, t and di = d, s, b, by introducing an extra term for
the third quark generation, leading to [3]

mui
= ρiµ

(u)

(

N2
i +

ε(u) − 1

N2
i

+ δi 3β
(u)

)

(7)

and

mdi
= ρiµ

(d)

(

N2
i +

ε(d) − 1

N2
i

+ δi 3β
(d)

)

, (8)
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where Ni and ρi are given as before in Eqs. (2) and (3), while µ(u,d) > 0,
ε(u,d) > 0 and β(u,d) > 0 are constants. It is seen that a priori Eqs. (7) and
(8) cannot give us any mass predictions, since there are six quark masses
and six free parameters. However, the latter are uniquely determined. In
fact, assuming for quark masses their mean experimental estimates [2]

mu ∼ 3 MeV , mc ∼ 1.2 GeV , mt ∼ 174 GeV (9)

and

md ∼ 6.75 MeV , ms ∼ 118 MeV , mb ∼ 4.25 GeV , (10)

one can calculate

mt,b =
6

125
(351mc,s − 136mu,d) +

24

29
µ(u,d)β(u,d)

∼
{

20 + 0.81 β(u)

1.94 + 0.078β(d)

}

GeV (11)

and

µ(u,d) =
29(9mc,s − 4mu,d)

320
∼
{

978
93.8

}

MeV ,

ε(u,d) =
320mu,d

9mc,s − 4mu,d

∼
{

0.0890
2.09

}

. (12)

From Eqs. (11) it follows that

β(u) ∼ 190 , β(d) ∼ 30 , (13)

thus
β(u)

β(d)
∼ 6.3 . (14)

It may be interesting to note that the experimental ratio (14) is nicely
reproduced by the ansatz

β(u,d) ∝ (3B + Q(u,d))2 =

{

25/9
4/9

}

, (15)

where B = 1/3 and Q(u,d) =
{

2/3
−1/3

}

are the baryon number and electric

charge of quarks. Then, β(u)/β(d) = 6.25. Note also that the analogical
constant for charged leptons vanishes, β(e) ∝ (L + Q(e))2 = 0, where L = 1
and Q(e) = −1 are their lepton number and electric charge (F = 3B + L
is the fermion number as defined for quarks and charged leptons). Notice
that for the Majorana neutrinos νiL + (νiL)c and νiR + (νiR)c the analogical
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constant β(ν) ought to be zero, since for them the average L is zero and
Q(ν) = 0.

In the present note we discuss the mass spectrum of three active (left-
handed) neutrinos ναL = νeL, νµL, ντL related to their mass states νiL =
ν1L, ν2L, ν3L through the unitary mixing transformation

ναL =
∑

i

Uαi νiL . (16)

Here, the neutrino mixing matrix U = (Uαi) is experimentally consistent
with the bilarge form [4]

U =







c12 s12 0
− 1√

2
s12

1√
2
c12

1√
2

1√
2
s12 − 1√

2
c12

1√
2






, (17)

where c12 = cos θ12 and s12 = sin θ12 with large θ12 ∼ 33◦, while c23 =
cos θ23 = 1/

√
2 and s23 = sin θ23 = 1/

√
2 with maximal θ23 = 45◦ (notice

that numerically θ23 ≃ θ12 + θC where θC ≃ 12◦ is the Cabibbo angle,
the largest quark mixing angle). In Eq. (17) the matrix element Ue3 =
s13 exp(−iδ) is neglected, where s13 = sin θ13 with s2

13 < 0.03. Three sterile
(righthanded) neutrinos ναR = νeR, νµR, ντR and their mass states νiR =
ν1R, ν2R, ν3R appear as a background.

Our starting point will be the generic 6 × 6 mass matrix

(

0 M (D)

M (D) T M (R)

)

(18)

(in the basis of active ναL and sterile ναR), involving Dirac and righthanded
Majorana 3 × 3 mass matrices, M (D) and M (R). Accepting the familiar
seesaw mechanism [5] we will use for active neutrinos the effective Majorana
3 × 3 mass matrix of the form

M (ν) = M (D)M (R)−1
M (D) T , (19)

where M (R) is assumed to dominate over M (D). For the eigenvalues m
(D)
νi

=

m
(D)
ν1

, m
(D)
ν2

,m
(D)
ν3

of the Dirac neutrino mass matrix M (D) we will accept
tentatively the formula of the same type as Eq. (1) for charged leptons,

m(D)
νi

= ρiµ
(ν)

(

N2
i +

ε(ν) − 1

N2
i

)

, (20)

where µ(ν) > 0 and ε(ν) > 0 are new constants.
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In the flavor representation, where the charged-lepton mass matrix M (e)

is diagonal, the neutrino mixing matrix U is at the same time the neutrino
diagonalizing matrix,

U †M (ν)U = diag(mν1
,mν2

,mν3
) . (21)

Here, for simplicity, M (ν)∗ = M (ν) and U∗ = U [as in Eq. (17)]. In the case
of seesaw form (19) of M (ν), it seems natural to conjecture that U is also
the diagonalizing matrix for the Dirac neutrino mass matrix M (D),

U †M (D)U = diag(m(D)
ν1

,m(D)
ν2

,m(D)
ν3

) . (22)

Notice that then the inverse M (R)−1
in Eq. (19) is diagonalized by U as

well, since from Eq. (19) M (R)−1
= M (D)−1

M (ν)M (D)T −1
(if the inverse

M (D)−1
exists i.e., all m

(D)
νi

6= 0) and both M (ν) and M (D)−1
on the rhs are

diagonalized by U . Hence

U †M (R)U = diag(Mν1
,Mν2

,Mν3
) , (23)

when Eq. (22) is conjectured. One may argue also in another way by ac-
cepting the conjecture that both components M (D) and M (R) of the generic
6×6 mass matrix (18) commute and so, can be diagonalized simultaneously,
leading to the diagonalization (21) of M (ν) when this matrix is given in the
seesaw form (19).

Thus, under the conjecture (22) we obtain from the seesaw form (19)
of M (ν) the following Majorana mass spectrum for light active (lefthanded)
neutrinos νiL:

mνi
=

m
(D)2
νi

Mνi

(24)

with Mνi
≫ m

(D)
νi

≫ mνi
, where Mνi

are the Majorana masses of heavy

sterile (righthanded) neutrinos νiR. Here, for simplicity, M (R)∗ = M (R).

In order to proceed further with calculations of m
(D)
νi

[from Eq. (20)] and
mνi

[from Eq. (24)] we are forced to make some tentative conjectures about

µ(ν) and ε(ν) as well as Mνi
. We will propose tentatively that

µ(ν) : µ(e) = µ(u) : µ(d) ε(ν) :ε(e) = ε(u) : ε(d) (25)

and also
Mνi

∝ N2
i m(D)

νi
, (26)

where Ni = 1, 3, 5 as before in Eq. (2) (in Refs. [6] and [3] we conjectured
tentatively that Mνi

∝ N2
i mei

instead of Eqs. (26), what may mean that
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there m
(D)
νi

∝ mei
). With the use of values (6) and (12), Eqs. (25) imply

that
µ(ν) ∼ 896 MeV , ε(ν) ∼ 7.35 × 10−3 . (27)

Then, the mass formula (20) gives the following hierarchical estimates of
Dirac neutrino masses:

m(D)
ν1

=
µ(ν)

29
ε(ν) ∼ 0.227 MeV ≪ µ(ν)

µ(e)
me ,

m(D)
ν2

=
µ(ν)

29

4

9

(

80 + ε(ν)
)

∼ 1.10 GeV ∼ µ(ν)

µ(e)
mµ ,

m(D)
ν3

=
µ(ν)

29

24

25

(

624 + ε(ν)
)

∼ 18.5 GeV ∼ µ(ν)

µ(e)
mτ (28)

(here, m
(D)
ν2

: m
(D)
ν3

∼ mµ : mτ , but m
(D)
ν1

: m
(D)
ν2

≪ me :mµ, thus m
(D)
νi

are not
proportional to mei

). The (weighted) proportionality relation (26), when
applied to the seesaw spectrum (24), leads to

mνi
∝ 1

N2
i

m(D)
νi

. (29)

This shows that mνi
are less hierarchical than m

(D)
νi

. From Eqs. (29) we can
see that

mν1

mν2

= 9
m

(D)
ν1

m
(D)
ν2

∼ 1.86 × 10−3 ,
mν2

mν3

=
25

9

m
(D)
ν2

m
(D)
ν3

∼ 0.165 . (30)

Thus, taking the experimental estimate mexp
ν2

=
√

(∆m2
21)

exp∼
√

7×10−5 eV
= 8.4 × 10−3eV as an input, we predict from Eqs. (30) that

mν1
∼ 1.6 × 10−5 eV , mν3

∼
√

2.6 × 10−3 eV = 5.1 × 10−2 eV . (31)

The prediction mν3
∼

√
2.6 × 10−3 eV gives ∆m2

32 = m2
ν3
− (mexp

ν2
)2 ∼ 2.5×

10−3 eV2 close to the experimental estimate (∆m2
32)

exp ∼ 2.5 × 10−3 eV2

(the lower estimate (∆m2
32)

exp ∼ 2 × 10−3 eV2 would correspond to the

lower prediction mν3
∼

√
2.1 × 10−3 eV). Thus, our tentative conjectures

(25) and (26) about µ(ν), ε(ν) and mνi
works all right, predicting correctly

∆m2
32 from the input of ∆m2

21. So, their interplay with the mass formula

(20) for m
(D)
νi

seems to be successful in the framework of seesaw mechanism.
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Denoting the proportionality coefficient in Eq. (26) by ζ, we have

Mνi
= ζN2

i m(D)
νi

(32)

and so, mνi
= (1/ζ)m

(D)
νi

/N2
i = (1/ζ2)Mνi

/N4
i due to the seesaw spectrum

(24), what is consistent with Eq. (29). Thus, ζ may be calculated e.g. from
the relation

ζ = m(D)
ν2

/9mν2
∼ 1.46 × 1010 , (33)

where the experimental estimate mexp
ν2

∼
√

7 × 10−5 eV is applied. Then,
using the values (28), we obtain from Eqs. (32) the following hierarchical

estimates of Majorana sterile-neutrino masses:

Mν1
= ζm(D)

ν1
∼ 3.3 × 106 GeV ,

Mν2
= 9ζm(D)

ν2
∼ 1.4 × 1011 GeV ,

Mν3
= 25ζm(D)

ν3
∼ 6.8 × 1012 GeV . (34)

It is seen that m
(D)
νi

are less hierarchical than Mνi
(and mνi

less than m
(D)
νi

).
Note that the Majorana mass Mν1

of the lightest heavy sterile neutrino
ν1R is too light by two orders of magnitude to reach the estimated lower

bound Mν1

>∼ 108 GeV required for the working of baryogenesis through
thermal leptogenesis [7] (of course, in this mechanism M (ν)∗ 6= M (ν) and
M (R)∗ 6= M (R)).

In conclusion, our tentative proposal presented here for the Dirac and
Majorana neutrino mass matrices M (D) and M (R) in the framework of see-
saw mechanism contains two items: (i) the parametrization (20) of Dirac

neutrino masses m
(D)
νi

in terms of two constants µ(ν) and ε(ν) determined
through the conditions (25), and (ii) the additional parametrization (32)
of Majorana neutrino masses Mνi

by one constant ζ determined from the
experimental estimation of solar ∆m2

21. Then, the atmospheric ∆m2
32 is pre-

dicted close to its experimental estimate. All neutrino seesaw masses mνi
and

heavy Majorana masses are evaluated. The mass spectra mν1
< mν2

< mν3
,

m
(D)
ν1

< m
(D)
ν2

< m
(D)
ν3

and Mν1
< Mν2

< Mν3
are hierarchical, behaving as

1 : 5.4×102 : 3.3×103, 1 : 4.8×103 : 8.2×104 and 1 : 4.4×104 : 2.0×106, respec-

tively, with mν1
∼1.6×10−5 eV, m

(D)
ν1

∼0.23 MeV, and Mν1
∼3.3×106 GeV.
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