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We demonstrate that hadron production viewed as formation of specific
stochastic network can explain in natural way the power-law distributions
of transverse mass spectra of pions found recently, which seem to substitute
the expected Boltzmann statistical factor.
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Recently it has been pointed out [1] that properly normalized transverse
mass spectra of π0 mesons for mT > 1 GeV/c2 obey specific mT scaling,
namely they follow the universal power-law curve,
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(which after integration over transverse momenta results in similar power law
in masses and, according to [1], describes well the yields of neutral mesons
from η to Υ , i.e., for m ≃ 0.5–10 GeV/c2) with P ∼ 8–10, depending
on energy and type of particles. This has been regarded as purely phe-
nomenological observation of the apparent violation of the usual Boltzmann
behaviour,
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in the region of high mT. In [2] we have noticed that this finding can be
regarded also as confirmation that in describing hadronization process one
should apply not the usual Boltzmann–Gibbs (BG) statistics but rather its
nonextensive generalization, for example in the form of the Tsallis statistics
[3], in which Eq. (2) is replaced by
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. (3)

Obviously, for large values of mT (where dependence to scale Λ can be ne-
glected) Eq. (3) becomes Eq. (1). However, contrary to Eq. (1) the above
distribution offers simple interpretation of the fitted parameters, q and Λ.
In particular, as demonstrated in [4] 1, q is entirely given by fluctuations
of parameter 1/Λ in the usual BG approach, i.e., in Eq. (2) 2, with nonex-
tensivity parameter q = 1 + 1/P . Notice that for q → 1 Tsallis statistics
becomes the usual BG one and Eq. (3) becomes Eq. (2).

This, however, does not solve the puzzle noticed by [1], namely what
is dynamical origin leading to the apparent scale-free character of the ob-
served mT spectra seen in Eq. (1) 3. We would like to propose here one
possible scenario resulting in Eq. (1). To this aim let us first mention that
Tsallis distribution (3) describes also very well the formation of the so called
complex free networks [6] (if one replaces mT by the number of links k)4.
Inspired by this observation we shall investigate in what follows the pos-
sibility that power law seen in Eq. (3) signals that hadronization can be
viewed (at least from the limited perspective considered here) as a process
of formation of some specific network taking place in the environment of glu-
ons and quark–antiquark pairs (qq̄), process in which their original actual
energy–momentum distributions would be of second importance in compar-
ison to the fact that, because of their mutual interactions, they connect to
each other and that this process of connection has its distinctive dynamical
consequences.

The proposed line or reasoning is the following. Suppose that we start
with some initial state consisting of number n0 of already existing (qq̄) pairs,
which we shall consider as equivalent to vertices in the usual network. We

1 We refer interested reader to [3,4] for details and further references.
2 Notice that usually Λ = T , i.e., it is regarded as the “temperature” of the hadronizing

system treated as a kind of “heat bath”. Fluctuations could arise, for example, from
the fact that, in cases considered here, such heat bath is in obvious way finite [5].

3 Notice that scale parameter Λ in Eq. (1) can be absorbed in the normalization con-
stant, as it was done in [1].

4 Actually, in [6] the so called escort probability distribution was used, which results

in (. . .)
q

1−q instead of (. . .)
1

1−q as here. This has no consequences in what concerns
our work as both q can be simply translated to each other.
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shall now add to them, in each consecutive time step, another vertex (i.e., a
new (qq̄) pair), which can have k0 possible connections to the old state. To
be more specific, we regard our quarks as dressed by interaction with sur-
rounding gluons and therefore somehow “excited”. Each quark is supposed
to interact with k other quarks, what in network terminology would mean
that each quark has k links. We shall now assume that the “excitation” of
quark mentioned above is proportional to k. We expect also that the number
of links k should be proportional to the number of gluons participating in
such “excitation”, i.e., existing in the vicinity of a given quark. In this case
the natural consequence would be that the chances to interact with a given
quark grow with the number of links k attached to it and are equal to

w(ki) =
ki

∑

ki
, (4)

i.e., that new links will be preferentially attached to quarks with already
large values of k. This corresponds to building up of the so called preferential
network, which evolves due to the occurrence of new (qq̄) pairs from decaying
gluons. Because of this the number of links is here twice the number of links
in the usual network (cf. [7]). After time t one has therefore

∑

ki = 2(2k0t) = 4k0t (5)

links. This leads to the following growth equation for the i-th object (the
i-th (qq̄) pair):

∂ki

ki
=

1

δ

∂t

t
, (6)

where δ = 4. Solving this equation for the initial condition stating that the
i-th object appears in time ti with the number of links equal to k0 one gets
that

ki(t) = k0

(

t

ti

)1/δ

. (7)

Notice that probability of forming ki(t) < k links is then given by

P (ki(t) < k) = P

(

ti >
kδ

i t

kδ
0

)

. (8)

Assuming now uniform probability distribution of occurrence of objects (qq̄),
the probability of adding to our system a new such object in the unit of time
is given by

P (ti) =
1

t
. (9)
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It means therefore that, because of Eq. (8),
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and probability of forming an object with k links can be written as

P (k) =
∂P (ki(t) < k)

∂k
=

kδ
0

1 + δ
k−(1+δ) , (11)

i.e., the resulting distribution of the number of links is independent of time
and has the characteristic power-like form:

P (k) ∼ k−γ (12)

with γ = 1 + δ (for (5) γ = 5). For the general case of 5

∑

ki = 2t(2k0 − 1) (13)

one has δ = 2(2k0−1)
k0

= 4− 2
k0

, i.e., the same Eq. (12) but with γ = 5− 2
k0

6.
The crucial point now is our conjecture that the number of links k de-

termines the transverse mass of emitted particle mT. Assuming that

mT ∼ kα (14)

one gets immediately

P (mT) ∼ m
−

γ

α

T m
1−α

α

T = m−β
T , where β = 1 +

γ − 1

α
. (15)

This completes our derivation of (1) with P = β. It arises because of the
conjecture (14) connecting the actual value of mT with the number of links in
some directional network growing process defined above. The first parameter
here is k0, which denotes the number of links with which the new vertex
(here the (qq̄) pair) will join the already existing network of such vertices.
However, as one can see, with increasing k0 one quickly obtains asymptotic
value of γ = 5. The other parameter, α, describes in what way the new
links can be chosen in momentum space in respect to allowed directions.
For example, for totally random distribution one should choose, analogously

5 It accounts for the fact that new vertex (qq̄) arises from the gluon → qq̄ process, i.e.,
one gluon disappears and this corresponds to diminishing the number of links by one
for each two vertices.

6 Notice that in the approach to networks using Tsallis statistics [6] one gets P (k) ∼

k
q

1−q , i.e., γ = 5 corresponds to q = 1.25.
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to deterministic diffusion process, α = 1
2

7. Other values of parameter α
would correspond to other special diffusion cases (see below). In the case
of α = 1

2 one has β = 9 for Eq. (5) and β = 9 − 4
k0

for Eq. (13), which
numerically gives us values of P equal to 7.66, 8.0 and 8.5 for, respectively,
k0 = 3, 4 and 8. As one can see, they agree with those quoted in [1] (and
listed before).

It is worth to stress that the proposed approach leads naturally to distinct
possible behaviours of transverse mass distributions (all others will be their
suitable combination):

(a) The power-like distribution of the type given by Eq. (12) (which was
our main motivation). It corresponds to the case of large excitations for
which probability of connecting a new quark to the one already existing
in the system depends on the number of the actual connections realised
so far. Large number of connections results then in large excitation,
what means that one has large emission of gluons and what, finally,
enhances chances of connection to such a quark.

(b) If one assumes instead that the new quark attaches itself to the al-
ready existing one with equal probability (such would be the situation
for small excitations, i.e., for small pT) one gets instead exponential
distribution of links,

P (k) ∼ exp

(

−
k

〈k〉

)

, (16)

which results in different distributions of mT depending on the type
of diffusion given by parameter α in Eq. (14) and ranging from

P (mT) ∼ exp

(

−
m2

T

〈m2
T〉

)

for α =
1

2
(17)

when the full fledged diffusion is allowed, to

P (mT) ∼ exp

(

−
mT

〈mT〉

)

for α = 1 , (18)

when there is no diffusion. This would be the case of quarks located on
the periphery of the region of hadronization in which case they could
interact only with interior quarks, and in such case mT ∼ k.

7 Deterministic diffusion concept is widely discussed in [8]. Notice that lack of such
diffusion in momentum space would mean that interactions are highly correlated, its
presence indicates chaotic evolution in momentum space.
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To summarize — prompted by the observation of the power-like be-
haviour of the transverse mass spectra reported in [1] we have considered
here a possibility that they can be a reflection not so much of any spe-
cial kind of equilibrium (resulting in some specific statistics) but rather
of the formation process, which follows (directs) free networks formation
pattern discussed widely in the literature and found in many branches of
sciences [6, 7]. Identifing vertices in such network as (qq̄) pairs and gluons
as links we were able to derive Eq. (1), obtained in [1] by analysis of some
experimental data, when we assume that the observed mT reflects somehow
the number of links in such network (Eq. (14)). The resulting power-like
distribution is rather universal (see, for example [9] where similar power-like
distributions observed in other branches of high energy phenomenology have
been attributed to the apparent self organizing character of the correspond-
ing processes) and its power index depends mainly on the type of the allowed
diffusion process as given by parameter α. The type of this deterministic
diffusion process in the momentum space which is allowed in a given exper-
imental scenario leads then to three kinds of distinct characteristic spectra
of mT out of which all observed spectra could be composed.
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