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BROWNIAN MOTION: A CASE OFTEMPERATURE FLUCTUATIONSJ. �u
zka and B. ZaborekInstitute of Physi
s, University of SilesiaUniwersyte
ka 4, 40-007 Katowi
e, Poland(Re
eived April 26, 2004)A di�usion pro
ess of a Brownian parti
le in a medium of temperature

T is re-
onsidered. We assume that temperature of the medium �u
tuatesaround its mean value. The velo
ity probability distribution is obtained. Itis shown that the stationary state is not a thermodynami
 equilibrium statedes
ribed by the Maxwell distribution. Instead a nonequilibrium state isprodu
ed by temperature �u
tuations.PACS numbers: 05.40.J
, 05.40.�a, 02.50.Ey, 05.10.Gg1. Introdu
tionGeneralized statisti
s or `superstatisti
s' o

ur in non-equilibrium sys-tems as a result of parameter (temperature, fri
tion, energy dissipation,pressure, 
hemi
al potential, et
.) �u
tuations [1℄. An example of super-statisti
s is the Tsallis statisti
s in nonextensive statisti
al me
hani
s [2℄.One of a dynami
al realization of this statisti
s has been 
onstru
ted by aLangevin equation for the Brownian parti
le [3,4℄ with the inverse tempera-ture being a �u
tuating parameter. In the paper we 
onsider a more naturalmodel with �u
tuating temperature instead of its inverse. Flu
tuations oftemperature 
an play a signi�
ant role in many pro
esses and phenomena.E.g., in astrophysi
s, the spe
trum of temperature �u
tuations of the 
os-mi
 mi
rowave ba
kground radiation 
an 
hange our view on the universeat epo
hs from redshifts of the order of ten thousand to nearly the presentand 
an provide important 
lues to in�ationary models and the dark matter-energy problem [5℄. In plasma physi
s, an experimental eviden
e of substan-tial temperature �u
tuations has been found in me
hanisms responsible foranomalous transport observed in tokamaks and stellarators [6℄. The 
on
eptof temperature �u
tuations is used in the theory of heavy ion 
ollisions andmultiparti
le produ
tion [7℄. In the Rayleigh�Benard 
onve
tion, tempera-ture �u
tuations 
an be passively transported in the turbulen
e regimes [8℄.(2151)
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zka, B. ZaborekChara
teristi
s of temperature �u
tuations in living tissue has been stud-ied in [9℄. Below, we study the in�uen
e of temperature �u
tuations onmotion of the Brownian parti
le. As mentioned, the similar problem hasbeen studied previously, mainly in the 
ontext of the Tsallis statisti
s [3℄with appli
ation to velo
ity �u
tuations in a turbulent �ow [4℄. However,the studies have been limited to inverse temperature �u
tuations and tothe `stati
' 
ase when �u
tuations are represented by a time-independentrandom variable. The problem is mathemati
ally trivial in the sense thatthe probability density of velo
ity 
an be 
al
ulated for an arbitrary ran-dom variable modeling �u
tuations. The more realisti
 model seems to bethe `dynami
' model based on time-dependent noise for whi
h temperature�u
tuations are represented by a stationary sto
hasti
 pro
ess. Then, as isshown below, the problem be
omes non-trivial, even for the simplest modelof temperature �u
tuations.Let us remind that in the 
lassi
al theory of di�usion, a position x = x(t)of a one-dimensional motion of a Brownian parti
le of mass m moving inan equilibrium homogeneous medium of temperature T is des
ribed by aNewton equation with a random for
e whi
h, a

ording to the �u
tuation��dissipation theorem, has the form [10℄
mẍ + γẋ =

√

2γkT ξ(t) , (1)where γ is the fri
tion 
oe�
ient (given by e.g. the Stokes formula), k is theBoltzmann 
onstant and ξ(t) is a random for
e modeled by the Gaussianwhite noise,
〈ξ(t)〉 = 0 , 〈ξ(t)ξ(s)〉 = δ(t − s) . (2)The velo
ity v = ẋ is the Ornstein�Uhlenbe
k sto
hasti
 pro
ess and itsprobability density P (v, t) obeys the Fokker�Plan
k equation

∂P (v, t)

∂t
=

γ

m

∂P (v, t)

∂v
+

γkT

m2

∂2P (v, t)

∂v2
. (3)A general solution of this equation is given by the expression

P (v, t) =

∞
∫

−∞

p(v, t|v0, 0)P (v0, 0) dv0 , (4)where P (v, 0) is an initial distribution and the transition probability distri-bution
p(v, t|v0, 0) =

[

2πσ2(t)
]

−1/2 exp{−[v − v0e−γt/m
]2

2σ2(t)

}

. (5)
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tuations 2153The varian
e
σ2(t) =

kT

m

(

1 − e−2γt/m
)

. (6)The stationary velo
ity distribution fun
tion PM (v) does not depend on theinitial distribution P (v, 0) and is the Maxwell distribution,
PM (v) =

√

m

2πkT
exp

(

−
mv2

2kT

)

. (7)It means that the stationary state in the velo
ity spa
e is a thermodynami
equilibrium state.Now, let us 
onsider the situation when the �uid is in a nonequilibriumsteady state. What is a stationary state of the Brownian parti
le in this
ase? We should use a theoreti
al framework whi
h enables one to answerthis question in a uni�ed manner. For the moment, however, su
h a universaltheory does not exist. First of all, we should spe
ify a nonequilibrium stateof the �uid: We assume that this state is not far from equilibrium and 
anbe des
ribed similarly as an equilibrium state with the only ex
eption thatnow temperature T is time-dependent, T = T (t). We follow and extend theproposal of Be
k [1,4℄ from adiabati
 to non-adiabati
 temperature 
hangesand apply Eq. (1) to this 
ase. The problem is whether and when we 
an useEq. (1) if T = T (t), 
f. also polemi
s in [11℄. Let us remember that when(1) is derived from the mi
ros
opi
 Hamiltonian model [12℄, it is assumedthat the �uid (medium) is in the thermodynami
 equilibrium state of tem-perature T . If, however, the �uid is in the nonequilibrium steady state and
an be 
hara
terized by the time-dependent temperature T = T (t), then (1)
annot be rigorously justi�ed. We are optimisti
 (be
ause of good agree-ment between theory and experimental data presented in [4℄) and believethat it 
an be used as a �rst approximation to an exa
t (but non-existing)theory. In Se
tion 2, we present a method how to treat su
h a system whentemperature 
an �u
tuate with T (t) represented by a sto
hasti
 pro
ess andhow to obtain the velo
ity distribution. In Se
tion 3, we 
onsider a 
urtailed
hara
teristi
 fun
tional for whi
h an evolution equation is determined bythe in�nitesimal generator of the sto
hasti
 pro
ess representing tempera-ture �u
tuations. In Se
tion 4, we 
onsider a 
ase of di
hotomi
 temperature�u
tuations and solve the evolution equation for the 
urtailed 
hara
teristi
fun
tional. In Se
tion 5, we dis
uss properties of the velo
ity probabilitydensity. In Se
tion 6, we analyze statisti
al moments of the velo
ity.



2154 J. �u
zka, B. Zaborek2. Temperature �u
tuations: 
hara
teristi
 fun
tionalNow, let us assume that temperature of the �uid �u
tuates around itsmean value T0,
T = T (t) = T0 + η(t) . (8)The zero-mean stationary sto
hasti
 pro
ess η(t) des
ribes temperature �u
-tuations and is independent of the sto
hasti
 pro
ess ξ(t) des
ribing thermalnoise (intera
tion with surroundings). The formal restri
tion on this pro
essfollows from the 
ondition T (t) > 0 and its phase spa
e Y is
η(t) ∈ Y = (−T0,∞) . (9)The velo
ity probability distribution P (v, t) 
an be obtained from the re-lation (4), in whi
h the initial transition probability density p(v, t|v0, 0) isexpressed as

p(v, t|v0, 0) =
1

2π

∞
∫

−∞

dωe−iωvCv(ω, t; v0) , (10)where the 
onditional 
hara
teristi
 fun
tion Cv(ω, t; v0) of the velo
ity isde�ned by
Cv(ω, t; v0) =

〈eiωv(t)
〉

. (11)The velo
ity v(t) is a solution of Eq. (1) with time-dependent temperature
T = T (t), namely,

v(t) = v0 exp

(

−
γt

m

)

+

√

2kγ

m2

t
∫

0

ds exp

[

−
γ(t − s)

m

]

√

T (s) ξ(s) , (12)where v0 is the initial velo
ity of the Brownian parti
le. Inserting the aboveequation into (11) yields
Cv(ω, t; v0) = exp(iωv0e

−γt/m
)

C(ω, t), (13)where
C(ω, t) =

〈

exp

[

iω

√

2kγ

m2

t
∫

0

ds e−γ(t−s)/m
√

T (s) ξ(s)

]〉

ξ,η

. (14)



Brownian Motion: a Case of Temperature Flu
tuations 2155The subs
ripts ξ and η denote average over all realizations of thermal noise
ξ(t) and temperature �u
tuations η(t), respe
tively. The averaging over theGaussian white noise ξ(t) 
an be performed leading to the expression

C(ω, t) = exp

[

−
kT0

2m
ω2
(

1 − e−2γt/m
)

]

Φη(ω, t), (15)where
Φη(ω, t) =

〈

exp

[

−
γk

m2
ω2e−2γt/m

t
∫

0

ds e2γs/mη(s)

]〉

η

(16)is the 
hara
teristi
 fun
tional of the sto
hasti
 pro
ess η(t). In this ap-proa
h, the velo
ity probability of the Brownian parti
le is determined bythe 
hara
teristi
 fun
tional of temperature �u
tuations. The expli
it formof this fun
tional will be obtained by the method of the so-
alled `
urtailed'
hara
teristi
 fun
tional.3. Curtailed 
hara
teristi
 fun
tionalIn order to 
al
ulate the fun
tional (16) we pro
eed in the followingway [13℄. For �xed time t = t̃ we de�ne [14℄
Ω =

γk

m2
ω2e−2γt̃/m . (17)Let us introdu
e the auxiliary fun
tional

Ψ [η;Ω , t̃] =

〈

exp

[

− Ω

t̃
∫

0

ds e2γs/mη(s)

]〉

η

. (18)Then the relation
Φη(ω, t) = Ψ [η;Ω , t̃ = t] (19)holds.The 
urtailed 
hara
teristi
 fun
tional 
orresponding to (18) is de�nedas [15℄

V (y, t) =

〈

δ(η(t), y) exp

[

− Ω

t
∫

0

ds e2γs/mη(s)

]〉

η

, (20)



2156 J. �u
zka, B. Zaborekwhere y ∈ Y takes values from the phase spa
e of the sto
hasti
 pro
ess
η(t) and δ(η(t), y) is the Krone
ker delta when η(t) is a dis
rete pro
ess orthe Dira
 delta for the 
ontinuous sto
hasti
 pro
esses η(t). The relationbetween these two fun
tions is the following

Φη(ω, t) =

∫

Y

V (y, t)dy , (21)where the integration for the 
ontinuous (or summation for dis
rete ) pro
essis over the phase spa
e Y . We introdu
e 
urtailed 
hara
teristi
 fun
tionalbe
ause for it, in 
ontrary to (16), an evolution equation is known. In theabbreviated notation, it has the form [15℄
∂

∂t
V (y, t) = L̂V (y, t) − Ωe2γt/m yV (y, t) , (22)where L̂ is an in�nitesimal generator (a forward operator) of the sto
hasti
pro
ess η(t). If η(t) is determined by an Ito sto
hasti
 equation, the in-�nitesimal generator is a di�erential operator whi
h o

urs in the forwardKolmogorov equation (i.e. in the Fokker�Plan
k equation). Now, the prob-lem redu
es to solving the evolution equation (22) whi
h, in dependen
e of

η(t), 
an be a single or a set of di�erential or integro-di�erential equations.Below, we present an example whi
h 
an be solved exa
tly.4. Di
hotomi
 �u
tuationsHere, we 
onsider a 
ari
ature of temperature �u
tuations, i.e. a dis
rete,two-state model [1℄. An extension to a many-state or 
ontinuous model of�u
tuations is in prin
iple possible [16℄. However, physi
s should be similarbut mathemati
s would be mu
h more 
ompli
ated be
ause of di�
ulties insolving the evolution equation (22). So, we represent temperature �u
tua-tions by di
hotomi
 noise [17℄
η(t) = {−a, b} , 0 < a < T0 , b > 0 . (23)Transition probabilities per unit time from one state to the other are givenby the relations

Pr(−a → b) = µ =
1

τa
,

P r(b → −a) = λ =
1

τb
, (24)
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tuations 2157where τa and τb are mean waiting times in states −a and b, respe
tively. Weassume that
bµ = aλ . (25)Then the pro
ess is stationary and the probabilities

Pr(η(t) = −a) =
λ

µ + λ
=

b

a + b
,

Pr(η(t) = b) =
µ

µ + λ
=

a

a + b
. (26)The �rst two moments read

〈η(t)〉 = 0 , 〈η(t)η(s)〉 = ab exp (−|t − s|/τc) , (27)where the 
orrelation time τc is given by the formula 1/τc = µ + λ.The relation (21) takes the form
Φη(ω, t) = V (−a, t) + V (b, t) (28)and the expli
it form of (22) reads

∂

∂t
V (−a, t) = −µV (−a, t) + λV (b, t) + Ωe2γt/maV (−a, t) , (29)
∂

∂t
V (b, t) = µV (−a, t) − λV (b, t) − Ωe2γt/mbV (b, t) . (30)The initial 
onditions follow from (20) and read (
f. (26))

V (−a, 0) = 〈δ(η(t),−a)〉 =
λ

µ + λ
, (31)

V (b, 0) = 〈δ(η(t), b)〉 =
µ

µ + λ
. (32)Let us de�ne a new time variable

τ = τ(t) = Ωe2γt/m (33)and two new fun
tions Ṽ (−a, τ) and Ṽ (b, τ) via the relations
V (−a, t) = Ṽ (−a, τ(t)) , (34)

V (b, t) = Ṽ (b, τ(t)) . (35)Then Eqs (30) and (29) 
an be transformed to the form
2γτ

m

∂

∂τ
Ṽ (−a, τ) = −µṼ (−a, τ) + λṼ (b, τ) + τaṼ (−a, τ) , (36)

2γτ

m

∂

∂τ
Ṽ (b, τ) = µṼ (−a, τ) − λṼ (b, τ) − τbṼ (b, τ) (37)
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zka, B. Zaborekwith the initial 
onditions at τ(t = 0) = Ω ,
Ṽ (−a,Ω) =

λ

µ + λ
, (38)

Ṽ (b,Ω) =
µ

µ + λ
. (39)We de�ne two new fun
tions in the following way

F (τ) = Ṽ (−a, τ) + Ṽ (b, τ) , (40)
G(τ) = bṼ (b, τ) − aṼ (−a, τ) . (41)Then from Eqs (36) and (37) one gets

2γ

m
Ḟ (τ) = −G(τ) , (42)

2γτ

m
Ġ(τ) + (µ + λ − τ(a − b))G(τ) + τabF (τ) = 0 , (43)where the dot denotes a derivative with respe
t to the argument. The initial
onditions follow from (40)�(43) and take the form

F (Ω) = 1 , G(Ω) = 0 . (44)The fun
tion F (τ) is 
ru
ial be
ause the 
hara
teristi
 fun
tional (16) isrelated to it in a simple way. Indeed,
Φη(ω, t) = F (τ) for τ = Ωe2γt/m and Ω =

γk

m2
ω2e−2γt/m . (45)From the above system of two 
oupled di�erential equations (42) and (43),we obtain a 
losed di�erential equation for the fun
tion F (τ) only. It hasthe form

τF̈ (τ) +
m

2γ
[µ + λ + τ(b − a)] Ḟ (τ) −

m2abτ

4γ2
F (τ) = 0 (46)with the initial 
onditions

F (Ω) = 1 , Ḟ (Ω) = 0 . (47)It belongs to a 
lass of hypergeometri
 equations. Its solution is the fun
tion[18℄
F (τ) = e−mbτ/2γ {C1(Ω) Φ[α, β, χ(τ)] + C2(Ω) Ψ [α, β, χ(τ)]} , (48)
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tuations 2159where Φ and Ψ stand for the 
on�uent hypergeometri
 Kummer and Tri
omifun
tions, respe
tively [19℄. The parameters
α =

mb

2γ

µ + λ

a + b
=

mb

2γτc(a + b)
, (49)

β =
m(µ + λ)

2γ
=

m

2γτc
(50)and

χ(τ) =
m(a + b)

2γ
τ . (51)The 
onstants C1(Ω) and C2(Ω) are determined from the 
onditions (47)and read

C1(Ω) =
bΓ (α)

(a + b)Γ (β)
χ(Ω)β e−maΩ/2γ

×

(

Ψ [α, β, χ(Ω)] +
m(µ + λ)

2γ
Ψ [α + 1, β + 1, χ(Ω)]

) (52)and
C2(Ω) =

bΓ (α)

(a + b)Γ (β)
χ(Ω)β e−maΩ/2γ

× (Φ[α + 1, β + 1, χ(Ω)] − Φ[α, β, χ(Ω)]) , (53)where Γ (z) is the Euler Gamma fun
tion. In this way we found the fun
tion
F (τ) and via the expressions in (45) we 
an �nd the 
hara
teristi
 fun
tional
Φη(ω, t). 5. Probability distributionThe probability distribution is obtained from Eqs (10)�(16) and the re-lations (45). It has the form

p(v, t|v0, 0) =
1

2π

∞
∫

∞

dω eiωv

× exp

[

iωv0e−γt/m −
kT0

2m
ω2
(

1 − e−2γt/m
)

]

Φη(ω, t). (54)



2160 J. �u
zka, B. ZaborekThe expli
it form of the 
hara
teristi
 fun
tional is
Φη(ω, t) =

bΓ (α)

(a + b)Γ (β)
e−bkω2/2m

(

Aω2e−2γt/m
)β

exp

[

−
akω2

m
e−2γ t/m

]

×

{

Φ
[

α, β,Aω2
]

(

Ψ

[

α, β,Aω2e−2γt/m
]

+
m

2γτc
Ψ

[

α + 1, β + 1, Aω2e−2γt/m
]

)

+Ψ
[

α, β,Aω2
]

(

Φ

[

α + 1, β + 1, Aω2e−2γt/m
]

−Φ

[

α, β,Aω2e−2γt/m
]

)}

, (55)where the 
onstant A = k(a + b)/2m. By use of (4), the distribution
p(v, t|v0, 0) allows to determine evolution of the one-dimensional velo
ityprobability density P (v, t) for an arbitrary initial state de�ned by the distri-bution P (v, 0) and analyze relaxation of the system to the stationary state.5.1. Stationary distributionThe stationary velo
ity distribution fun
tion Pst(v) does not depend onthe initial distribution P (v, 0). It is obtained from (4) and (54) performingthe long time limit, t → ∞. We use the relations [19℄

lim
z→0

Φ[α, β, z] = 1 (56)and
Ψ [α, β, z] =

Γ (1 − β)

Γ (α − β + 1)
+

Γ (β − 1)

Γ (α)
z1−β , (57)whi
h represents the leading terms for small z = Aω2e−2γt/m ≪ 1 when

t → ∞. Then the stationary distribution takes the form
Pst(v) =

1

π

∞
∫

0

dω cos(ωv)e−(T0+b)kω2/2m
Φ

[

b m

2γτc(a + b)
,

m

2γτc
,
a + b

2m
kω2

]

.(58)
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tuations 2161It is not a Maxwell distribution and we 
an 
on
lude that the stationarystate is not an equilibrium state: It is a nonequilibrium state. In the 
ase ofabsen
e of temperature �u
tuations, i.e. when a = 0 and next b = 0, then
Φ

[

m

2 τcγ
,

m

2γτc
, 0

]

= 1 (59)and the Maxwell distribution (7) is obtained for T = T0.5.2. Limiting 
ases of short and long 
orrelation timeThe 
orrelation time τc of temperature �u
tuations is de�ned belowEq. (27). For very fast �u
tuations when the 
orrelation time is short,
lim
τc→0

Φ

[

b m

2γτc(a + b)
,

m

2γτc
,
a + b

2 m
k ω2

]

= ebk ω2/2m (60)and (58) redu
es to the Maxwell distribution (7) with temperature T = T0.The short 
orrelation time limit 
an be a
hieved when (
f. (25)):(i) µ → ∞ and b → 0 but bµ = aλ = const.(ii) λ → ∞ and a → 0 but aλ = bµ = const.(iii) b → ∞ and λ → ∞ but b/λ = const. (the latter 
orresponds to thePoisson white shot noise)(iv) µ → ∞ and λ → ∞ but µ/λ = const.In these limits, the system is not able to rea
t to very fast �u
tuations ande�e
tively it feels the mean temperature T = T0.The opposite limit is the adiabati
 limit when �u
tuations are slow andthe 
orrelation time is very long, τc → ∞. The Kummer fun
tion takes theform
lim

τc→∞

Φ

[

bm

2γτc(a + b)
,

m

2γτc
,
a + b

2m
k ω2

]

=
a

a + b
+

b

a + b
e(a+b)kω2/2m (61)and Eq. (58) redu
es to the fun
tion

Pst(v) =
b

a + b

√

m

2πk(T0 − a)
exp

[

−
mv2

2k(T0 − a)

]

+
a

a + b

√

m

2πk(T0 + b)
exp

[

−
mv2

2k(T0 + b)

]

. (62)
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zka, B. ZaborekIt is a linear 
ombinations of two Maxwellian distributions for two temper-atures T0 − a and T0 + b and with the weights given by Eqs (26). Thelong 
orrelation time limit 
an be a
hieved when µ, λ → 0 and the meanresiden
e times in the states −a and b tend to in�nity, τa, τb → ∞. Theadiabati
 limit for other models of inverse temperature �u
tuations has been
onsidered in [1℄.
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Fig. 1. The stationary velo
ity distribution Pst(v) for three values of the 
orrelation time
τc of temperature �u
tuations: τc = 0 (dotted line, the Maxwell distribution), τc = 5(dashed line) and τc → ∞ (solid line).6. Dis
ussionApplying a method of the 
urtailed 
hara
teristi
 fun
tional we obtaineda time-dependent probability distribution of velo
ity of the Brownian par-ti
le moving in medium in whi
h temperature �u
tuates. We 
onsideredtemperature �u
tuations to be as simple as possible, i.e., a two-state sta-tionary Markovian pro
ess η(t). Nevertheless, the problem is formulated foran arbitrary Markovian sto
hasti
 pro
ess η(t) be
ause what we need is thein�nitesimal generator L̂ of the pro
ess η(t), see Eq. (22). We note that the
orrelation fun
tion of the for
e F (t) =

√

2γkT (t) ξ(t) in Eq. (1) has theform
〈F (t)F (s)〉 = 2γkT0δ(t − s), (63)independently of statisti
s of �u
tuations η(t) and has the same form asin the 
ase without temperature �u
tuations. It resembles the dissipation-�u
tuation relation. However, we showed that the stationary state is anonequilibrium state. We 
an ask how far the system is from equilibrium.



Brownian Motion: a Case of Temperature Flu
tuations 2163To this aim, let us analyze statisti
al moments of the velo
ity. From Eq. (58)it follows that the stationary 
hara
teristi
 fun
tion Cv(ω) of the velo
ity is
Cv(ω) = e−(T0+b)kω2/2m

Φ

[

b m

2γτc(a + b)
,

m

2γτc
,
a + b

2 m
k ω2

]

. (64)The statisti
al moments 〈vn〉, (n = 1, 2, 3, . . .) 
an be obtained from therelation 〈vn〉 = indnCv(ω)/dωn|ω=0. The odd order moments are equal tozero. The se
ond moment
〈v2〉 =

kT0

2
. (65)It does not depend on the statisti
s of temperature �u
tuations and is thesame as for the Maxwell distribution! The forth order moment measure adeviation from the Maxwell distribution. We use it to 
al
ulate the kurtosis,

Kurt (v) =
〈v4〉

3〈v2〉2
− 1 =

2ab

T 2
0 (2 + τd/τc)

, (66)where τd = m/γ is the relaxation time of the velo
ity in the deterministi

ase (
f. Eq. (12) when ξ(t) = 0) and τc is the 
orrelation time of �u
tuations(see Eq. (27)). For the equilibrium state, i.e. for the Maxwell distribution,the kurtosis is zero. In the 
ase 
onsidered, the kurtosis is always positiveand it means that Pst(v) is more peaked than the Maxwell distribution. It isan in
reasing fun
tion of the varian
e 〈η2(t)〉 = ab and the 
orrelation time
τc of temperature �u
tuations. As a fun
tion of the 
orrelation time, it growsfrom zero for τc = 0 to the maximal value ab/T 2

0 when τc → ∞. Generally,all even order moments are greater than for the Maxwell distribution.One 
an determine the moments for the position of the Brownian parti
le.E.g., for long times, t ≫ τd, the mean squared displa
ement
〈x2(t)〉 ∼ 2Dt , (67)where the di�usion 
oe�
ient D = kT0/γ is the same as in the 
ase with-out temperature �u
tuations. It means that for long time, the pro
ess inthe position spa
e is the standard normal di�usion with the same di�usion
onstant. We 
an 
on
lude that the �rst two moments of position and ofvelo
ity are the same in both 
ases: without and with temperature �u
tua-tions. So, when we measure only �rst two moments, we 
annot distinguishthese two states. We emphasize that it does not depend on the model oftemperature �u
tuations.The work partially supported by the European S
ien
e Foundation (theProgram Sto
hasti
 Dynami
s: Fundamentals and Appli
ations).
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