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BROWNIAN MOTION: A CASE OFTEMPERATURE FLUCTUATIONSJ. �uzka and B. ZaborekInstitute of Physis, University of SilesiaUniwersyteka 4, 40-007 Katowie, Poland(Reeived April 26, 2004)A di�usion proess of a Brownian partile in a medium of temperature

T is re-onsidered. We assume that temperature of the medium �utuatesaround its mean value. The veloity probability distribution is obtained. Itis shown that the stationary state is not a thermodynami equilibrium statedesribed by the Maxwell distribution. Instead a nonequilibrium state isprodued by temperature �utuations.PACS numbers: 05.40.J, 05.40.�a, 02.50.Ey, 05.10.Gg1. IntrodutionGeneralized statistis or `superstatistis' our in non-equilibrium sys-tems as a result of parameter (temperature, frition, energy dissipation,pressure, hemial potential, et.) �utuations [1℄. An example of super-statistis is the Tsallis statistis in nonextensive statistial mehanis [2℄.One of a dynamial realization of this statistis has been onstruted by aLangevin equation for the Brownian partile [3,4℄ with the inverse tempera-ture being a �utuating parameter. In the paper we onsider a more naturalmodel with �utuating temperature instead of its inverse. Flutuations oftemperature an play a signi�ant role in many proesses and phenomena.E.g., in astrophysis, the spetrum of temperature �utuations of the os-mi mirowave bakground radiation an hange our view on the universeat epohs from redshifts of the order of ten thousand to nearly the presentand an provide important lues to in�ationary models and the dark matter-energy problem [5℄. In plasma physis, an experimental evidene of substan-tial temperature �utuations has been found in mehanisms responsible foranomalous transport observed in tokamaks and stellarators [6℄. The oneptof temperature �utuations is used in the theory of heavy ion ollisions andmultipartile prodution [7℄. In the Rayleigh�Benard onvetion, tempera-ture �utuations an be passively transported in the turbulene regimes [8℄.(2151)



2152 J. �uzka, B. ZaborekCharateristis of temperature �utuations in living tissue has been stud-ied in [9℄. Below, we study the in�uene of temperature �utuations onmotion of the Brownian partile. As mentioned, the similar problem hasbeen studied previously, mainly in the ontext of the Tsallis statistis [3℄with appliation to veloity �utuations in a turbulent �ow [4℄. However,the studies have been limited to inverse temperature �utuations and tothe `stati' ase when �utuations are represented by a time-independentrandom variable. The problem is mathematially trivial in the sense thatthe probability density of veloity an be alulated for an arbitrary ran-dom variable modeling �utuations. The more realisti model seems to bethe `dynami' model based on time-dependent noise for whih temperature�utuations are represented by a stationary stohasti proess. Then, as isshown below, the problem beomes non-trivial, even for the simplest modelof temperature �utuations.Let us remind that in the lassial theory of di�usion, a position x = x(t)of a one-dimensional motion of a Brownian partile of mass m moving inan equilibrium homogeneous medium of temperature T is desribed by aNewton equation with a random fore whih, aording to the �utuation��dissipation theorem, has the form [10℄
mẍ + γẋ =

√

2γkT ξ(t) , (1)where γ is the frition oe�ient (given by e.g. the Stokes formula), k is theBoltzmann onstant and ξ(t) is a random fore modeled by the Gaussianwhite noise,
〈ξ(t)〉 = 0 , 〈ξ(t)ξ(s)〉 = δ(t − s) . (2)The veloity v = ẋ is the Ornstein�Uhlenbek stohasti proess and itsprobability density P (v, t) obeys the Fokker�Plank equation

∂P (v, t)

∂t
=

γ

m

∂P (v, t)

∂v
+

γkT

m2

∂2P (v, t)

∂v2
. (3)A general solution of this equation is given by the expression

P (v, t) =

∞
∫

−∞

p(v, t|v0, 0)P (v0, 0) dv0 , (4)where P (v, 0) is an initial distribution and the transition probability distri-bution
p(v, t|v0, 0) =

[

2πσ2(t)
]

−1/2 exp{−[v − v0e−γt/m
]2

2σ2(t)

}

. (5)



Brownian Motion: a Case of Temperature Flutuations 2153The variane
σ2(t) =

kT

m

(

1 − e−2γt/m
)

. (6)The stationary veloity distribution funtion PM (v) does not depend on theinitial distribution P (v, 0) and is the Maxwell distribution,
PM (v) =

√

m

2πkT
exp

(

−
mv2

2kT

)

. (7)It means that the stationary state in the veloity spae is a thermodynamiequilibrium state.Now, let us onsider the situation when the �uid is in a nonequilibriumsteady state. What is a stationary state of the Brownian partile in thisase? We should use a theoretial framework whih enables one to answerthis question in a uni�ed manner. For the moment, however, suh a universaltheory does not exist. First of all, we should speify a nonequilibrium stateof the �uid: We assume that this state is not far from equilibrium and anbe desribed similarly as an equilibrium state with the only exeption thatnow temperature T is time-dependent, T = T (t). We follow and extend theproposal of Bek [1,4℄ from adiabati to non-adiabati temperature hangesand apply Eq. (1) to this ase. The problem is whether and when we an useEq. (1) if T = T (t), f. also polemis in [11℄. Let us remember that when(1) is derived from the mirosopi Hamiltonian model [12℄, it is assumedthat the �uid (medium) is in the thermodynami equilibrium state of tem-perature T . If, however, the �uid is in the nonequilibrium steady state andan be haraterized by the time-dependent temperature T = T (t), then (1)annot be rigorously justi�ed. We are optimisti (beause of good agree-ment between theory and experimental data presented in [4℄) and believethat it an be used as a �rst approximation to an exat (but non-existing)theory. In Setion 2, we present a method how to treat suh a system whentemperature an �utuate with T (t) represented by a stohasti proess andhow to obtain the veloity distribution. In Setion 3, we onsider a urtailedharateristi funtional for whih an evolution equation is determined bythe in�nitesimal generator of the stohasti proess representing tempera-ture �utuations. In Setion 4, we onsider a ase of dihotomi temperature�utuations and solve the evolution equation for the urtailed harateristifuntional. In Setion 5, we disuss properties of the veloity probabilitydensity. In Setion 6, we analyze statistial moments of the veloity.



2154 J. �uzka, B. Zaborek2. Temperature �utuations: harateristi funtionalNow, let us assume that temperature of the �uid �utuates around itsmean value T0,
T = T (t) = T0 + η(t) . (8)The zero-mean stationary stohasti proess η(t) desribes temperature �u-tuations and is independent of the stohasti proess ξ(t) desribing thermalnoise (interation with surroundings). The formal restrition on this proessfollows from the ondition T (t) > 0 and its phase spae Y is
η(t) ∈ Y = (−T0,∞) . (9)The veloity probability distribution P (v, t) an be obtained from the re-lation (4), in whih the initial transition probability density p(v, t|v0, 0) isexpressed as

p(v, t|v0, 0) =
1

2π

∞
∫

−∞

dωe−iωvCv(ω, t; v0) , (10)where the onditional harateristi funtion Cv(ω, t; v0) of the veloity isde�ned by
Cv(ω, t; v0) =

〈eiωv(t)
〉

. (11)The veloity v(t) is a solution of Eq. (1) with time-dependent temperature
T = T (t), namely,

v(t) = v0 exp

(

−
γt

m

)

+

√

2kγ

m2

t
∫

0

ds exp

[

−
γ(t − s)

m

]

√

T (s) ξ(s) , (12)where v0 is the initial veloity of the Brownian partile. Inserting the aboveequation into (11) yields
Cv(ω, t; v0) = exp(iωv0e

−γt/m
)

C(ω, t), (13)where
C(ω, t) =

〈

exp

[

iω

√

2kγ

m2

t
∫

0

ds e−γ(t−s)/m
√

T (s) ξ(s)

]〉

ξ,η

. (14)



Brownian Motion: a Case of Temperature Flutuations 2155The subsripts ξ and η denote average over all realizations of thermal noise
ξ(t) and temperature �utuations η(t), respetively. The averaging over theGaussian white noise ξ(t) an be performed leading to the expression

C(ω, t) = exp

[

−
kT0

2m
ω2
(

1 − e−2γt/m
)

]

Φη(ω, t), (15)where
Φη(ω, t) =

〈

exp

[

−
γk

m2
ω2e−2γt/m

t
∫

0

ds e2γs/mη(s)

]〉

η

(16)is the harateristi funtional of the stohasti proess η(t). In this ap-proah, the veloity probability of the Brownian partile is determined bythe harateristi funtional of temperature �utuations. The expliit formof this funtional will be obtained by the method of the so-alled `urtailed'harateristi funtional.3. Curtailed harateristi funtionalIn order to alulate the funtional (16) we proeed in the followingway [13℄. For �xed time t = t̃ we de�ne [14℄
Ω =

γk

m2
ω2e−2γt̃/m . (17)Let us introdue the auxiliary funtional

Ψ [η;Ω , t̃] =

〈

exp

[

− Ω

t̃
∫

0

ds e2γs/mη(s)

]〉

η

. (18)Then the relation
Φη(ω, t) = Ψ [η;Ω , t̃ = t] (19)holds.The urtailed harateristi funtional orresponding to (18) is de�nedas [15℄

V (y, t) =

〈

δ(η(t), y) exp

[

− Ω

t
∫

0

ds e2γs/mη(s)

]〉

η

, (20)



2156 J. �uzka, B. Zaborekwhere y ∈ Y takes values from the phase spae of the stohasti proess
η(t) and δ(η(t), y) is the Kroneker delta when η(t) is a disrete proess orthe Dira delta for the ontinuous stohasti proesses η(t). The relationbetween these two funtions is the following

Φη(ω, t) =

∫

Y

V (y, t)dy , (21)where the integration for the ontinuous (or summation for disrete ) proessis over the phase spae Y . We introdue urtailed harateristi funtionalbeause for it, in ontrary to (16), an evolution equation is known. In theabbreviated notation, it has the form [15℄
∂

∂t
V (y, t) = L̂V (y, t) − Ωe2γt/m yV (y, t) , (22)where L̂ is an in�nitesimal generator (a forward operator) of the stohastiproess η(t). If η(t) is determined by an Ito stohasti equation, the in-�nitesimal generator is a di�erential operator whih ours in the forwardKolmogorov equation (i.e. in the Fokker�Plank equation). Now, the prob-lem redues to solving the evolution equation (22) whih, in dependene of

η(t), an be a single or a set of di�erential or integro-di�erential equations.Below, we present an example whih an be solved exatly.4. Dihotomi �utuationsHere, we onsider a ariature of temperature �utuations, i.e. a disrete,two-state model [1℄. An extension to a many-state or ontinuous model of�utuations is in priniple possible [16℄. However, physis should be similarbut mathematis would be muh more ompliated beause of di�ulties insolving the evolution equation (22). So, we represent temperature �utua-tions by dihotomi noise [17℄
η(t) = {−a, b} , 0 < a < T0 , b > 0 . (23)Transition probabilities per unit time from one state to the other are givenby the relations

Pr(−a → b) = µ =
1

τa
,

P r(b → −a) = λ =
1

τb
, (24)



Brownian Motion: a Case of Temperature Flutuations 2157where τa and τb are mean waiting times in states −a and b, respetively. Weassume that
bµ = aλ . (25)Then the proess is stationary and the probabilities

Pr(η(t) = −a) =
λ

µ + λ
=

b

a + b
,

Pr(η(t) = b) =
µ

µ + λ
=

a

a + b
. (26)The �rst two moments read

〈η(t)〉 = 0 , 〈η(t)η(s)〉 = ab exp (−|t − s|/τc) , (27)where the orrelation time τc is given by the formula 1/τc = µ + λ.The relation (21) takes the form
Φη(ω, t) = V (−a, t) + V (b, t) (28)and the expliit form of (22) reads

∂

∂t
V (−a, t) = −µV (−a, t) + λV (b, t) + Ωe2γt/maV (−a, t) , (29)
∂

∂t
V (b, t) = µV (−a, t) − λV (b, t) − Ωe2γt/mbV (b, t) . (30)The initial onditions follow from (20) and read (f. (26))

V (−a, 0) = 〈δ(η(t),−a)〉 =
λ

µ + λ
, (31)

V (b, 0) = 〈δ(η(t), b)〉 =
µ

µ + λ
. (32)Let us de�ne a new time variable

τ = τ(t) = Ωe2γt/m (33)and two new funtions Ṽ (−a, τ) and Ṽ (b, τ) via the relations
V (−a, t) = Ṽ (−a, τ(t)) , (34)

V (b, t) = Ṽ (b, τ(t)) . (35)Then Eqs (30) and (29) an be transformed to the form
2γτ

m

∂

∂τ
Ṽ (−a, τ) = −µṼ (−a, τ) + λṼ (b, τ) + τaṼ (−a, τ) , (36)

2γτ

m

∂

∂τ
Ṽ (b, τ) = µṼ (−a, τ) − λṼ (b, τ) − τbṼ (b, τ) (37)



2158 J. �uzka, B. Zaborekwith the initial onditions at τ(t = 0) = Ω ,
Ṽ (−a,Ω) =

λ

µ + λ
, (38)

Ṽ (b,Ω) =
µ

µ + λ
. (39)We de�ne two new funtions in the following way

F (τ) = Ṽ (−a, τ) + Ṽ (b, τ) , (40)
G(τ) = bṼ (b, τ) − aṼ (−a, τ) . (41)Then from Eqs (36) and (37) one gets

2γ

m
Ḟ (τ) = −G(τ) , (42)

2γτ

m
Ġ(τ) + (µ + λ − τ(a − b))G(τ) + τabF (τ) = 0 , (43)where the dot denotes a derivative with respet to the argument. The initialonditions follow from (40)�(43) and take the form

F (Ω) = 1 , G(Ω) = 0 . (44)The funtion F (τ) is ruial beause the harateristi funtional (16) isrelated to it in a simple way. Indeed,
Φη(ω, t) = F (τ) for τ = Ωe2γt/m and Ω =

γk

m2
ω2e−2γt/m . (45)From the above system of two oupled di�erential equations (42) and (43),we obtain a losed di�erential equation for the funtion F (τ) only. It hasthe form

τF̈ (τ) +
m

2γ
[µ + λ + τ(b − a)] Ḟ (τ) −

m2abτ

4γ2
F (τ) = 0 (46)with the initial onditions

F (Ω) = 1 , Ḟ (Ω) = 0 . (47)It belongs to a lass of hypergeometri equations. Its solution is the funtion[18℄
F (τ) = e−mbτ/2γ {C1(Ω) Φ[α, β, χ(τ)] + C2(Ω) Ψ [α, β, χ(τ)]} , (48)



Brownian Motion: a Case of Temperature Flutuations 2159where Φ and Ψ stand for the on�uent hypergeometri Kummer and Triomifuntions, respetively [19℄. The parameters
α =

mb

2γ

µ + λ

a + b
=

mb

2γτc(a + b)
, (49)

β =
m(µ + λ)

2γ
=

m

2γτc
(50)and

χ(τ) =
m(a + b)

2γ
τ . (51)The onstants C1(Ω) and C2(Ω) are determined from the onditions (47)and read

C1(Ω) =
bΓ (α)

(a + b)Γ (β)
χ(Ω)β e−maΩ/2γ

×

(

Ψ [α, β, χ(Ω)] +
m(µ + λ)

2γ
Ψ [α + 1, β + 1, χ(Ω)]

) (52)and
C2(Ω) =

bΓ (α)

(a + b)Γ (β)
χ(Ω)β e−maΩ/2γ

× (Φ[α + 1, β + 1, χ(Ω)] − Φ[α, β, χ(Ω)]) , (53)where Γ (z) is the Euler Gamma funtion. In this way we found the funtion
F (τ) and via the expressions in (45) we an �nd the harateristi funtional
Φη(ω, t). 5. Probability distributionThe probability distribution is obtained from Eqs (10)�(16) and the re-lations (45). It has the form

p(v, t|v0, 0) =
1

2π

∞
∫

∞

dω eiωv

× exp

[

iωv0e−γt/m −
kT0

2m
ω2
(

1 − e−2γt/m
)

]

Φη(ω, t). (54)



2160 J. �uzka, B. ZaborekThe expliit form of the harateristi funtional is
Φη(ω, t) =

bΓ (α)

(a + b)Γ (β)
e−bkω2/2m

(

Aω2e−2γt/m
)β

exp

[

−
akω2

m
e−2γ t/m

]

×

{

Φ
[

α, β,Aω2
]

(

Ψ

[

α, β,Aω2e−2γt/m
]

+
m

2γτc
Ψ

[

α + 1, β + 1, Aω2e−2γt/m
]

)

+Ψ
[

α, β,Aω2
]

(

Φ

[

α + 1, β + 1, Aω2e−2γt/m
]

−Φ

[

α, β,Aω2e−2γt/m
]

)}

, (55)where the onstant A = k(a + b)/2m. By use of (4), the distribution
p(v, t|v0, 0) allows to determine evolution of the one-dimensional veloityprobability density P (v, t) for an arbitrary initial state de�ned by the distri-bution P (v, 0) and analyze relaxation of the system to the stationary state.5.1. Stationary distributionThe stationary veloity distribution funtion Pst(v) does not depend onthe initial distribution P (v, 0). It is obtained from (4) and (54) performingthe long time limit, t → ∞. We use the relations [19℄

lim
z→0

Φ[α, β, z] = 1 (56)and
Ψ [α, β, z] =

Γ (1 − β)

Γ (α − β + 1)
+

Γ (β − 1)

Γ (α)
z1−β , (57)whih represents the leading terms for small z = Aω2e−2γt/m ≪ 1 when

t → ∞. Then the stationary distribution takes the form
Pst(v) =

1

π

∞
∫

0

dω cos(ωv)e−(T0+b)kω2/2m
Φ

[

b m

2γτc(a + b)
,

m

2γτc
,
a + b

2m
kω2

]

.(58)



Brownian Motion: a Case of Temperature Flutuations 2161It is not a Maxwell distribution and we an onlude that the stationarystate is not an equilibrium state: It is a nonequilibrium state. In the ase ofabsene of temperature �utuations, i.e. when a = 0 and next b = 0, then
Φ

[

m

2 τcγ
,

m

2γτc
, 0

]

= 1 (59)and the Maxwell distribution (7) is obtained for T = T0.5.2. Limiting ases of short and long orrelation timeThe orrelation time τc of temperature �utuations is de�ned belowEq. (27). For very fast �utuations when the orrelation time is short,
lim
τc→0

Φ

[

b m

2γτc(a + b)
,

m

2γτc
,
a + b

2 m
k ω2

]

= ebk ω2/2m (60)and (58) redues to the Maxwell distribution (7) with temperature T = T0.The short orrelation time limit an be ahieved when (f. (25)):(i) µ → ∞ and b → 0 but bµ = aλ = const.(ii) λ → ∞ and a → 0 but aλ = bµ = const.(iii) b → ∞ and λ → ∞ but b/λ = const. (the latter orresponds to thePoisson white shot noise)(iv) µ → ∞ and λ → ∞ but µ/λ = const.In these limits, the system is not able to reat to very fast �utuations ande�etively it feels the mean temperature T = T0.The opposite limit is the adiabati limit when �utuations are slow andthe orrelation time is very long, τc → ∞. The Kummer funtion takes theform
lim

τc→∞

Φ

[

bm

2γτc(a + b)
,

m

2γτc
,
a + b

2m
k ω2

]

=
a

a + b
+

b

a + b
e(a+b)kω2/2m (61)and Eq. (58) redues to the funtion

Pst(v) =
b

a + b

√

m

2πk(T0 − a)
exp

[

−
mv2

2k(T0 − a)

]

+
a

a + b

√

m

2πk(T0 + b)
exp

[

−
mv2

2k(T0 + b)

]

. (62)



2162 J. �uzka, B. ZaborekIt is a linear ombinations of two Maxwellian distributions for two temper-atures T0 − a and T0 + b and with the weights given by Eqs (26). Thelong orrelation time limit an be ahieved when µ, λ → 0 and the meanresidene times in the states −a and b tend to in�nity, τa, τb → ∞. Theadiabati limit for other models of inverse temperature �utuations has beenonsidered in [1℄.
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Fig. 1. The stationary veloity distribution Pst(v) for three values of the orrelation time
τc of temperature �utuations: τc = 0 (dotted line, the Maxwell distribution), τc = 5(dashed line) and τc → ∞ (solid line).6. DisussionApplying a method of the urtailed harateristi funtional we obtaineda time-dependent probability distribution of veloity of the Brownian par-tile moving in medium in whih temperature �utuates. We onsideredtemperature �utuations to be as simple as possible, i.e., a two-state sta-tionary Markovian proess η(t). Nevertheless, the problem is formulated foran arbitrary Markovian stohasti proess η(t) beause what we need is thein�nitesimal generator L̂ of the proess η(t), see Eq. (22). We note that theorrelation funtion of the fore F (t) =

√

2γkT (t) ξ(t) in Eq. (1) has theform
〈F (t)F (s)〉 = 2γkT0δ(t − s), (63)independently of statistis of �utuations η(t) and has the same form asin the ase without temperature �utuations. It resembles the dissipation-�utuation relation. However, we showed that the stationary state is anonequilibrium state. We an ask how far the system is from equilibrium.



Brownian Motion: a Case of Temperature Flutuations 2163To this aim, let us analyze statistial moments of the veloity. From Eq. (58)it follows that the stationary harateristi funtion Cv(ω) of the veloity is
Cv(ω) = e−(T0+b)kω2/2m

Φ

[

b m

2γτc(a + b)
,

m

2γτc
,
a + b

2 m
k ω2

]

. (64)The statistial moments 〈vn〉, (n = 1, 2, 3, . . .) an be obtained from therelation 〈vn〉 = indnCv(ω)/dωn|ω=0. The odd order moments are equal tozero. The seond moment
〈v2〉 =

kT0

2
. (65)It does not depend on the statistis of temperature �utuations and is thesame as for the Maxwell distribution! The forth order moment measure adeviation from the Maxwell distribution. We use it to alulate the kurtosis,

Kurt (v) =
〈v4〉

3〈v2〉2
− 1 =

2ab

T 2
0 (2 + τd/τc)

, (66)where τd = m/γ is the relaxation time of the veloity in the deterministiase (f. Eq. (12) when ξ(t) = 0) and τc is the orrelation time of �utuations(see Eq. (27)). For the equilibrium state, i.e. for the Maxwell distribution,the kurtosis is zero. In the ase onsidered, the kurtosis is always positiveand it means that Pst(v) is more peaked than the Maxwell distribution. It isan inreasing funtion of the variane 〈η2(t)〉 = ab and the orrelation time
τc of temperature �utuations. As a funtion of the orrelation time, it growsfrom zero for τc = 0 to the maximal value ab/T 2

0 when τc → ∞. Generally,all even order moments are greater than for the Maxwell distribution.One an determine the moments for the position of the Brownian partile.E.g., for long times, t ≫ τd, the mean squared displaement
〈x2(t)〉 ∼ 2Dt , (67)where the di�usion oe�ient D = kT0/γ is the same as in the ase with-out temperature �utuations. It means that for long time, the proess inthe position spae is the standard normal di�usion with the same di�usiononstant. We an onlude that the �rst two moments of position and ofveloity are the same in both ases: without and with temperature �utua-tions. So, when we measure only �rst two moments, we annot distinguishthese two states. We emphasize that it does not depend on the model oftemperature �utuations.The work partially supported by the European Siene Foundation (theProgram Stohasti Dynamis: Fundamentals and Appliations).
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