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We study a known model for color superconductivity with three colors
and three massless quark flavors including pairing effects. By using the
Hamiltonian in the color—flavor basis we can calculate the quantum entropy.
From this calculation we are able to further investigate the phases of the
color superconductor, for which we find a rather sharp transition to color
superconductivity above a chemical potential around 290 MeV.

PACS numbers: 03.75.Gg, 03.75.Ss, 12.40.Ee

1. Introduction

At high quark chemical potentials and low temperatures the internal
structure of hadronic matter has been conjectured to dissolve into a degen-
erate system of quarks. Such material consisting of very cold dense quarks
might exist in the interior of compact stellar objects. However, due to the
difficulties of performing lattice simulations with high chemical potentials,
it is still not possible to simulate the physics of these phases by using the
usual lattice gauge computations. Nevertheless, a nonperturbative analysis
at finite baryon density has been quite recently carried out on the lattice by
using the Nambu-Jona-Lasinio model. The degenerate quarks near to the
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Fermi surfaces are generally expected to interact according to quantum chro-
modynamics (QCD) so that they can build up Cooper pairs. This process
may lead to superconducting quark matter [1].

Before we discuss the actual model for calculating the quantum entropy
S in color superconducting quark matter, one might well ask: “Why should
S be taken as a significant physical quantity, which is in no way connected
to the properties of the phase transition to a superconducting state?” The
simplest answer to this question is that S relates directly to the order pa-
rameters, which are for the superconductors simply the energy gaps. The
quantum entropy puts all the information from all the gaps into a single
physical quantity, which is then characteristic of the ordered phase. We
shall later find a single parameter called ¢, which is calculated directly from
the momentum spread of S at a given quark chemical potential u. We show
that o is effectively zero for pu below a critical value . and is finite and
monotonically increasing above this value. This behavior clearly reflects the
expected nature of an order parameter.

There are a number of physical systems, which we have previously dis-
cussed [2-4], for which we have reconsidered the meaning of the third law of
thermodynamics when stated in its original form. There we have found that
the entropy remains finite even at absolute zero. However, when we had
taken this fact into consideration, there were some aspects of the usual ther-
modynamical formulation which had become more complicated [2,4]. Our
objective here in this work is to further interpret the reason for the finiteness
of this entropy at absolute zero in quark matter in relation to the quantum
correlations present in the superconducting ground state at large values of
the quark chemical potential . How the presence of this finite quantum en-
tropy term would affect the actual thermodynamics at finite temperatures
will be discussed elsewhere. In particular, the effects of including S in the
hadronic equation of state at low temperatures we have already studied in
special cases [4].

To our knowledge, the works of Elze [6] have provided the start for
addressing the question about the origin of the entropy puzzle in the high-
energy collisions. These works established a theoretical framework for the
discussion of how two hadronic scattering initial states undergo hard colli-
sions in quantum mechanically pure initial states. This situation can result
in a high-multiplicity event corresponding to a highly impure thermal den-
sity matrix on the partonic level before hadronization. According to these
works [6] the entropy is an unambiguous characteristic property of the quan-
tum nature of the system. The entropy production is clearly due to the
environmentally induced quantum decoherence in the observable subsystem.



Entropy for Color Superconductivity in Quark Matter 2167

Therefore, we consider that there is no obvious theoretical reason to consider
finite entropy for the interpretation of the particle multiplicity, while then
explicitly setting its value to zero in other comparable cases.

In our previous works [2—4] we have also used the prescription of von Neu-
mann for the entropy, which make use of the eigenvalues of the reduced
density matrices. Thus we are able to give a first quantitative evaluation
for the quarks’ entropy inside the hadrons under the condition that in the
singlet state of the hadronic groundstates the individual quarks’ colors are
maximally mixed. In a more recent work [5] we have also given a general
evaluation of the entropy for the condensate in quark color superconductiv-
ity using a nonrelativistic model based on the BCS theory. In particular
we studied the pair structure in the BCS model which relates to the SU(2).
of the broken color symmetry [7]. In general for SU(2) symmetry [2] it is
well known that one finds simply that the entropy is In 2. For a pair of such
constituents there is the factor two so that the result is 21n 2. We shall later
use this result for any given number N of paired states with this doubly
degenerate groundstate as the factor NV In4.

In the present work we start with an ultrarelativistic model Hamiltonian
for quarks with three colors and flavors which was proposed a few years
ago [8,9] for color superconductivity. In this framework we shall apply our
previous calculations for the quantum ground state entropy [2-4| to these
quarks at large values of the quark chemical potential. As mentioned above,
the quantum entropy is clearly that entropy which arises from the quantum
correlations in the hadronic groundstates. Thereupon, these correlations
relate directly to the presence of quantum fluctuations which are character-
istic of a quantum phase transition [10]. Furthermore, we state that these
entities differ from the usual thermal fluctuations of a statistical system in
that they can also exist at zero temperature. Thus in the above mentioned
model with three colors and flavors a total of nine mixed quark states are
present. As we have explained above for the pair states which consist of two
colored quarks, the quantum entropy can be expected to be temperature
independent and equal to just 9In4 in maximally mixed states [5].

2. Color superconductor model

We now look more explicitly at the effects on the ground state in our
model with three colors and three flavors for the structure of the super-
conductivity. In this part we shall calculate the quantum entropy from the
gap equations for the color superconducting state. For massless quarks the
form for the Hamiltonian already has been written down for the three colors
and flavors. This color superconductivity [8] arises from the quark-pairs at
low temperatures and high quark chemical potentials. It takes the following
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form:

H =Y (k- pal(k)ay(k)

pk>p
+ > (n—k)ah(k)ay(k) + > (k + )bl (k)b,(k)
pk<p p.k
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F(p)? is the form factor containing the cut-off 4. Q, stands for the diagonal-
ized form for the gap parameters, for which p = 1 yields the color—flavor sin-
glet gap-parameter A; and p = 2,---,9 result in the color-flavor gap +As.
The first two lines of the Hamiltonian represent only the non-interacting
parts, while the third and fourth lines thereof are the complex conjugate
terms of the interactions with opposite momenta. aL and a, together with

bj; and b, are the creation and annihilation operators of the particle and an-
tiparticle states, respectively. The index p, as given above, stands for both
the color and flavor degrees of freedom.

For our present purpose we can treat p in the same way as we had
previously taken only the color degrees of freedom since the flavors now
provide an exact symmetry in the limit of massless quarks. We take p as the
quark chemical potential, for which all the momenta up to p = pr have all
the particle and antiparticle states completely occupied in the groundstate.

A proper parameterization for the annihilation and creation operators,
respectively, had been already suggested [8] as follows:

yp(k) = cos[0y(k)]a,(k) + sin[62 (k)]e’* ®)af (~k) 2)
2p(k) = cos[OZ (k)b (k) + sin[63 (k)] bl (— k). (3)
yi(k) = cos[6d(k)]a}(k) + sin[9% (k)] & Fa,(—k), (4)
2h(k) = cos[0(k)Jb) (k) + sin[6z (k)e = R, (—k) (5)

Therefrom the following definitions are given:

1 |k — ul
0Y(k) = = arccos , 6
S V= w2+ Fhy Q3 "

§k) = ¢(k)+, (7)
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1 k
05(k) = 5 arceos [k + 1l , (8)

U+ ) + F (k) Q3
§ (k) = —o(k). (9)
We may compare these complex expressions with the usual forms for the

Bogoliubov transformations, from which we can explicitly write down the
parameters as follows:

up(k) = cosl0,(k)], (10)
v,(k) = sin[f,(k)]e®) . (11)

Obviously, we get the necessary relationship between these quantities

w,(k)up(k) + v, (k)vp(k) = 1 (12)
which shows the canonical nature of these transformations.

After we have carried out these canonical transformations, the form of the
Hamiltonian for noninteracting quasiquarks takes on the quadratic canonical
structure:

H = 7 [((k = 1) + F()*Q2) " yf k), (k)
k.p

+ (k4 1)* + F(R)*Q2) " 21 (k)2 (k)] - (13)

We now write out the results using the above given definitions for u,(k) and
v,(k). These quantities are easily derived using elementary trigonometrical
identities and the previously given definitions of the angles. After a small
amount of algebra we find that two new quantities can be simply defined,

ul* ()l (k) \/(k —p)* + F(k)*Q3 + [k — pf

K 3 10 R T e S R
ri(k) = uZ* (kyui(k) \/(kﬂa) F(k)*Q3 + |k + pl 15)
g vp* (k)uz(k) V4 )2 + F(R)'Q2 - e+ pl

The quantum entropy of entanglement for an ideal Bose gas at T' = 0 van-
ishes, which means that the occupied state with zero momentum does not
contribute. For finite interactions between constituents there appears an
entropy, which requires a momentum exchange between the particles [11].
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In the same context in the BCS model without a finite momentum arising
in the interaction there would be no Cooper pairs with oppositely directed
momenta. Thus for k # 0 we can write down the quantum entropy of entan-
glement for this color superconducting model following the method we have
previously used for the BCS model [5] for finding Spcs. The main difference
from the simple BCS model is that in the color superconducting model we
have nine states with two different contributions from the gaps. Now we
write down Scgm with the degeneracy factor g = 2 for the spins.

In Ty 1
Scsm = ¢ Z{ -i-ln <1+7Tg(k)>

In T;(k) 1
T <1 T —sz(k))}- (16)

In order to actually evaluate the above contributions to Scgy, we must first
set up the equations for the gaps A; and Ag, which have been previously
studied by Alford, Rajagopal and Wilczek [8]. Before we write down the
complete gap equations, we briefly discuss the two color-flavor supercon-
ducting model known as the 25C Model. In structure it is very similar to
the simple nonrelativistic BCS model with the addition of the antiparticle
contribution. A not too great generalization of this type of model leads to
a two flavor and three color model [8], which is the prior step to the above
model. The 25C phase is such that the diquarks condense while the chiral
symmetry is restored. It has a simple equation for the gap A similar to the
above BCS Model. We write the gap equation in the form [9]

2G 1 n 1
Vo We-—m+4a J+p?+ 4]

We can convert the sum over all the momenta p into an integral Z[A] so that

1 = (17)

A
714) = & / k2dk ! (8
V(k — ) +A2 V(k+ p)? 4 A2
This form of the gap equation
1 = Z[A] (19)

can be evaluated and substituted in the above equation for the entropy.
However, it does not properly reflect the fully extended color—flavor symme-
try of our above model Hamiltonian. Nevertheless, we can use this simpler
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equation with the constituent quark mass M replacing the gap parameter
at vanishing chemical potential in order to determine the coupling G. The
coupled integral equations for the gaps represent the singlet and octet decom-
position of this extended symmetry [8]. In our evaluation of the equations
for the gaps A; and Ag we use the step-function cut-off with A = 800 MeV.
Thus we write the two gap equations [9] in the following form:

A = —2A4T[As)], (20)
4y = A0 TA)) a

We use these gap equations for A; and Ag in order to obtain 177 (k) and
T;(k) with F(k) = 1 for k < A and zero above. These quantities are
substituted into the above equation for the quantum entropy Scsm. The
results for 91ln4 — Scgm are shown in Fig. 1 for different values of the quark
chemical potential u. We can see the effects of the gaps A; and Ag on the
quantum entropy. Below a critical value of the chemical potential around
290 MeV the gaps vanish so that the spread of Scgy also vanishes. We see
this in a very narrow line that extends downwards to zero at values of pu
under 290 MeV.
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Fig.1. The momentum dependence of the difference between the maximum entropy
in the ground state 91n4 and the entropy from the excitation of color supercon-
ductors is shown for different values of the chemical potential y indicated by the
zero-point on the graph.
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3. Results and discussion

Now we discuss the results from the computation of the quantum entropy
Scsum derived in the equation 16. Figure 1 shows the difference between the
entropy from the quark pairing in color superconductors Eq. 16 and the
maximum value of the groundstate entropy for nine states given by 91In4 .
The dependence of 9In4—Scsy upon the momenta k is plotted for different
values of the chemical potential u. This difference has a zero-point when the
value of the momentum &k = p. In this figure we notice that for the zero-
point values above a critical value u. = 290 MeV there is always a finite
spread in the curve around the zero-point. From this fact we can extract
at the halfheight value the fullwidth I'. By means of a direct comparison
with the Gaussian distribution we take the dispersion to be the standard
deviation o. In this case we have simply the fullwidth I' = 24/2In2 o at
half maximum. Then we can compute the dispersion ¢ from the distributions
given in the next figure 2 as a function of the corresponding p value. We
can make a fit of these points as a function of y as is shown in the second
figure with

o) = A + Blu — o). (22)

In this fit the best values are found to be A = —3.095 and B = 3.294.
The best value of the exponent is 8 = 0.506, which is notably very near
to the classical value of one-half. If we were to set the proper units for the
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Fig.2. The dispersion o is taken from the distributions given in Fig. 1 plotted
against the corresponding quark chemical potential. Finite values for the quark
chemical potential first appear above the critical value g > 290 MeV.
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scaling variable from the forefactor B, which we shall call r. Then we may
rewrite o as

o(r) = A + B'(r)°, (23)

whereby r = (u — pic)/ptc and B’ = Bpuc”. Thus the dispersion o(r) with
the proper scaling relations serves as an order parameter for the critical
region of the chemical potential near to p.. These results then show approx-
imately the usual mean field behavior at the critical point with 5 = 1/2.

4. Conclusion

Finally we can conclude that the quantum entropy is a good indicator of
the phase transition arising from the presence of the two gaps A; and Ag.
As we have seen in figure 2, the dispersion o becomes finite at a chemical
potential of about 290 MeV, which is very near the previously calculated
value of around 300 MeV for the gaps appearing in the CFL phase [8,9].
Further discussion of these models and their properties relating to the phe-
nomena of color superconductivity has appeared quite recently [13]. In this
model with three massless flavors taken together with the three colors from
the usual SU(3). we are able to analyze the dependence of the gaps A; and
Ag on the quark chemical potential p using the physical quantity Scsm-

In our present work we have shown that by using the quantum entropy
Scsm we have a quantity in addition to the gaps which can be computed
to show the transition to color superconductivity. Although the gaps in
general relate to the quantum structure of the quark pairs, the entropy Scsm
is a thermodynamical quantity. Nevertheless, its deviation comes from the
pairing structure in this three color and flavor model, which gives rise to
the two gaps A; and Ag. Furthermore, we have derived the dispersion o to
relate directly to the fullwidth of the peak in Scgy. This fullwidth is directly
related to the quark pair structure in momentum space, which we have shown
in the first figure as a dip around the Fermi momentum, which is just p in
this massless quark model. The gap is well known to be characteristic of
the correlations between the fermions with oppositely directed momenta and
spins as in the BCS model. In this case these correlations are between the
quarks within the pairs with different colors and flavors. That these flavors
and colors form given states together is quite characteristic of the phenomena
known as color—flavor locking [8,9].

This pairing structure is actually quite similar to the quark—quark corre-
lations oftentimes referred to as the diquark structure. This phenomenon has
been noted in connection with various results in experimental high-energy
physics. The diquark differs from the usual quark pairs used in supercon-
ductivity in that the full 3 ® 3 is taken into consideration. Nevertheless, the
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ideas relating to the quantum entropy could possibly lead to further future
investigations relating to the expected correlations between the diquarks as
well as, perhaps, find future applications in the theoretical studies of the re-
cently experimentally discovered pentaquark states [14]. These states have
been interpreted [15] as a bound state of four quarks and an antiquark, which
consist of two correlated diquarks.
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