
Vol. 35 (2004) ACTA PHYSICA POLONICA B No 9
ENTROPY FOR COLOR SUPERCONDUCTIVITYIN QUARK MATTERD.E. MillerDepartment of PhysisHazleton, Pennsylvania 18201, USAandRudjer Boskovi¢ InstituteP.O. Box 180, HR-10002 Zagreb, Croatiaand A. TawfikFakultät für Physik, Universität BielefeldPostfah 100131, 33501 Bielefeld, Germany(Reeived May 19, 2004)We study a known model for olor superondutivity with three olorsand three massless quark �avors inluding pairing e�ets. By using theHamiltonian in the olor��avor basis we an alulate the quantum entropy.From this alulation we are able to further investigate the phases of theolor superondutor, for whih we �nd a rather sharp transition to olorsuperondutivity above a hemial potential around 290 MeV.PACS numbers: 03.75.Gg, 03.75.Ss, 12.40.Ee1. IntrodutionAt high quark hemial potentials and low temperatures the internalstruture of hadroni matter has been onjetured to dissolve into a degen-erate system of quarks. Suh material onsisting of very old dense quarksmight exist in the interior of ompat stellar objets. However, due to thedi�ulties of performing lattie simulations with high hemial potentials,it is still not possible to simulate the physis of these phases by using theusual lattie gauge omputations. Nevertheless, a nonperturbative analysisat �nite baryon density has been quite reently arried out on the lattie byusing the Nambu�Jona-Lasinio model. The degenerate quarks near to the(2165)



2166 D.E. Miller, A. TawfikFermi surfaes are generally expeted to interat aording to quantum hro-modynamis (QCD) so that they an build up Cooper pairs. This proessmay lead to superonduting quark matter [1℄.Before we disuss the atual model for alulating the quantum entropy
S in olor superonduting quark matter, one might well ask: �Why should
S be taken as a signi�ant physial quantity, whih is in no way onnetedto the properties of the phase transition to a superonduting state?� Thesimplest answer to this question is that S relates diretly to the order pa-rameters, whih are for the superondutors simply the energy gaps. Thequantum entropy puts all the information from all the gaps into a singlephysial quantity, whih is then harateristi of the ordered phase. Weshall later �nd a single parameter alled σ, whih is alulated diretly fromthe momentum spread of S at a given quark hemial potential µ. We showthat σ is e�etively zero for µ below a ritial value µc and is �nite andmonotonially inreasing above this value. This behavior learly re�ets theexpeted nature of an order parameter.There are a number of physial systems, whih we have previously dis-ussed [2�4℄, for whih we have reonsidered the meaning of the third law ofthermodynamis when stated in its original form. There we have found thatthe entropy remains �nite even at absolute zero. However, when we hadtaken this fat into onsideration, there were some aspets of the usual ther-modynamial formulation whih had beome more ompliated [2, 4℄. Ourobjetive here in this work is to further interpret the reason for the �nitenessof this entropy at absolute zero in quark matter in relation to the quantumorrelations present in the superonduting ground state at large values ofthe quark hemial potential µ. How the presene of this �nite quantum en-tropy term would a�et the atual thermodynamis at �nite temperatureswill be disussed elsewhere. In partiular, the e�ets of inluding S in thehadroni equation of state at low temperatures we have already studied inspeial ases [4℄.To our knowledge, the works of Elze [6℄ have provided the start foraddressing the question about the origin of the entropy puzzle in the high-energy ollisions. These works established a theoretial framework for thedisussion of how two hadroni sattering initial states undergo hard olli-sions in quantum mehanially pure initial states. This situation an resultin a high-multipliity event orresponding to a highly impure thermal den-sity matrix on the partoni level before hadronization. Aording to theseworks [6℄ the entropy is an unambiguous harateristi property of the quan-tum nature of the system. The entropy prodution is learly due to theenvironmentally indued quantum deoherene in the observable subsystem.



Entropy for Color Superondutivity in Quark Matter 2167Therefore, we onsider that there is no obvious theoretial reason to onsider�nite entropy for the interpretation of the partile multipliity, while thenexpliitly setting its value to zero in other omparable ases.In our previous works [2�4℄ we have also used the presription of von Neu-mann for the entropy, whih make use of the eigenvalues of the redueddensity matries. Thus we are able to give a �rst quantitative evaluationfor the quarks' entropy inside the hadrons under the ondition that in thesinglet state of the hadroni groundstates the individual quarks' olors aremaximally mixed. In a more reent work [5℄ we have also given a generalevaluation of the entropy for the ondensate in quark olor superondutiv-ity using a nonrelativisti model based on the BCS theory. In partiularwe studied the pair struture in the BCS model whih relates to the SU(2)cof the broken olor symmetry [7℄. In general for SU(2) symmetry [2℄ it iswell known that one �nds simply that the entropy is ln 2. For a pair of suhonstituents there is the fator two so that the result is 2 ln 2. We shall lateruse this result for any given number N of paired states with this doublydegenerate groundstate as the fator N ln 4.In the present work we start with an ultrarelativisti model Hamiltonianfor quarks with three olors and �avors whih was proposed a few yearsago [8, 9℄ for olor superondutivity. In this framework we shall apply ourprevious alulations for the quantum ground state entropy [2�4℄ to thesequarks at large values of the quark hemial potential. As mentioned above,the quantum entropy is learly that entropy whih arises from the quantumorrelations in the hadroni groundstates. Thereupon, these orrelationsrelate diretly to the presene of quantum �utuations whih are harater-isti of a quantum phase transition [10℄. Furthermore, we state that theseentities di�er from the usual thermal �utuations of a statistial system inthat they an also exist at zero temperature. Thus in the above mentionedmodel with three olors and �avors a total of nine mixed quark states arepresent. As we have explained above for the pair states whih onsist of twoolored quarks, the quantum entropy an be expeted to be temperatureindependent and equal to just 9 ln 4 in maximally mixed states [5℄.2. Color superondutor modelWe now look more expliitly at the e�ets on the ground state in ourmodel with three olors and three �avors for the struture of the super-ondutivity. In this part we shall alulate the quantum entropy from thegap equations for the olor superonduting state. For massless quarks theform for the Hamiltonian already has been written down for the three olorsand �avors. This olor superondutivity [8℄ arises from the quark-pairs atlow temperatures and high quark hemial potentials. It takes the following



2168 D.E. Miller, A. Tawfikform:
H =

∑

ρ,k>µ

(k − µ)a†ρ(k )aρ(k )

+
∑
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(µ − k)a†ρ(k )aρ(k ) +
∑
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(k + µ)b†ρ(k)bρ(k )
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2

∑
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F (p)2Qρe
−iφ(p)
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)

+
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ρ,p

F (p)2Qρe
iφ(p)
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a†ρ(p)a†ρ(−p) + bρ(p)bρ(−p)
)

. (1)
F (p)2 is the form fator ontaining the ut-o� Λ. Qρ stands for the diagonal-ized form for the gap parameters, for whih ρ = 1 yields the olor��avor sin-glet gap-parameter ∆1 and ρ = 2, · · · , 9 result in the olor��avor gap ±∆8.The �rst two lines of the Hamiltonian represent only the non-interatingparts, while the third and fourth lines thereof are the omplex onjugateterms of the interations with opposite momenta. a†ρ and aρ together with
b†ρ and bρ are the reation and annihilation operators of the partile and an-tipartile states, respetively. The index ρ, as given above, stands for boththe olor and �avor degrees of freedom.For our present purpose we an treat ρ in the same way as we hadpreviously taken only the olor degrees of freedom sine the �avors nowprovide an exat symmetry in the limit of massless quarks. We take µ as thequark hemial potential, for whih all the momenta up to µ = pF have allthe partile and antipartile states ompletely oupied in the groundstate.A proper parameterization for the annihilation and reation operators,respetively, had been already suggested [8℄ as follows:
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ξz
ρ(k ) = −φ(k ) . (9)We may ompare these omplex expressions with the usual forms for theBogoliubov transformations, from whih we an expliitly write down theparameters as follows:

uρ(k ) ≡ cos[θρ(k )] , (10)
vρ(k ) ≡ sin[θρ(k )]eiξρ(k) . (11)Obviously, we get the neessary relationship between these quantities

u∗
ρ(k )uρ(k) + v∗ρ(k)vρ(k ) = 1 (12)whih shows the anonial nature of these transformations.After we have arried out these anonial transformations, the form of theHamiltonian for noninterating quasiquarks takes on the quadrati anonialstruture:
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∑
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]

. (13)We now write out the results using the above given de�nitions for uρ(k ) and
vρ(k). These quantities are easily derived using elementary trigonometrialidentities and the previously given de�nitions of the angles. After a smallamount of algebra we �nd that two new quantities an be simply de�ned,
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. (15)The quantum entropy of entanglement for an ideal Bose gas at T = 0 van-ishes, whih means that the oupied state with zero momentum does notontribute. For �nite interations between onstituents there appears anentropy, whih requires a momentum exhange between the partiles [11℄.



2170 D.E. Miller, A. TawfikIn the same ontext in the BCS model without a �nite momentum arisingin the interation there would be no Cooper pairs with oppositely diretedmomenta. Thus for k 6= 0 we an write down the quantum entropy of entan-glement for this olor superonduting model following the method we havepreviously used for the BCS model [5℄ for �nding SBCS. The main di�erenefrom the simple BCS model is that in the olor superonduting model wehave nine states with two di�erent ontributions from the gaps. Now wewrite down SCSM with the degeneray fator g = 2 for the spins.
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. (16)In order to atually evaluate the above ontributions to SCSM, we must �rstset up the equations for the gaps ∆1 and ∆8, whih have been previouslystudied by Alford, Rajagopal and Wilzek [8℄. Before we write down theomplete gap equations, we brie�y disuss the two olor��avor superon-duting model known as the 2SC Model. In struture it is very similar tothe simple nonrelativisti BCS model with the addition of the antipartileontribution. A not too great generalization of this type of model leads toa two �avor and three olor model [8℄, whih is the prior step to the abovemodel. The 2SC phase is suh that the diquarks ondense while the hiralsymmetry is restored. It has a simple equation for the gap ∆ similar to theabove BCS Model. We write the gap equation in the form [9℄
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. (17)We an onvert the sum over all the momenta p into an integral I[∆] so that
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. (18)This form of the gap equation
1 = I[∆] (19)an be evaluated and substituted in the above equation for the entropy.However, it does not properly re�et the fully extended olor��avor symme-try of our above model Hamiltonian. Nevertheless, we an use this simpler



Entropy for Color Superondutivity in Quark Matter 2171equation with the onstituent quark mass M replaing the gap parameterat vanishing hemial potential in order to determine the oupling G. Theoupled integral equations for the gaps represent the singlet and otet deom-position of this extended symmetry [8℄. In our evaluation of the equationsfor the gaps ∆1 and ∆8 we use the step-funtion ut-o� with Λ = 800 MeV.Thus we write the two gap equations [9℄ in the following form:
∆1 = −2∆8I[∆8] , (20)
∆8 = −∆1 (1 + I[∆1])

4
. (21)We use these gap equations for ∆1 and ∆8 in order to obtain Υ

y
ρ (k ) and

Υ
z
ρ (k ) with F (k) = 1 for k < Λ and zero above. These quantities aresubstituted into the above equation for the quantum entropy SCSM. Theresults for 9 ln 4−SCSM are shown in Fig. 1 for di�erent values of the quarkhemial potential µ. We an see the e�ets of the gaps ∆1 and ∆8 on thequantum entropy. Below a ritial value of the hemial potential around

290 MeV the gaps vanish so that the spread of SCSM also vanishes. We seethis in a very narrow line that extends downwards to zero at values of µunder 290 MeV.
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2172 D.E. Miller, A. Tawfik3. Results and disussionNow we disuss the results from the omputation of the quantum entropy
SCSM derived in the equation 16. Figure 1 shows the di�erene between theentropy from the quark pairing in olor superondutors Eq. 16 and themaximum value of the groundstate entropy for nine states given by 9 ln 4 .The dependene of 9 ln 4−SCSM upon the momenta k is plotted for di�erentvalues of the hemial potential µ. This di�erene has a zero-point when thevalue of the momentum k = µ. In this �gure we notie that for the zero-point values above a ritial value µc = 290 MeV there is always a �nitespread in the urve around the zero-point. From this fat we an extratat the halfheight value the fullwidth Γ . By means of a diret omparisonwith the Gaussian distribution we take the dispersion to be the standarddeviation σ. In this ase we have simply the fullwidth Γ = 2

√
2 ln 2 σ athalf maximum. Then we an ompute the dispersion σ from the distributionsgiven in the next �gure 2 as a funtion of the orresponding µ value. Wean make a �t of these points as a funtion of µ as is shown in the seond�gure with

σ(µ) = A + B(µ − µc)
β . (22)In this �t the best values are found to be A = − 3.095 and B = 3.294.The best value of the exponent is β = 0.506, whih is notably very nearto the lassial value of one-half. If we were to set the proper units for the
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Entropy for Color Superondutivity in Quark Matter 2173saling variable from the forefator B, whih we shall all r. Then we mayrewrite σ as
σ(r) = A + B′(r)β , (23)whereby r = (µ − µc)/µc and B′ = Bµc

β. Thus the dispersion σ(r) withthe proper saling relations serves as an order parameter for the ritialregion of the hemial potential near to µc. These results then show approx-imately the usual mean �eld behavior at the ritial point with β = 1/2.4. ConlusionFinally we an onlude that the quantum entropy is a good indiator ofthe phase transition arising from the presene of the two gaps ∆1 and ∆8.As we have seen in �gure 2, the dispersion σ beomes �nite at a hemialpotential of about 290 MeV, whih is very near the previously alulatedvalue of around 300 MeV for the gaps appearing in the CFL phase [8, 9℄.Further disussion of these models and their properties relating to the phe-nomena of olor superondutivity has appeared quite reently [13℄. In thismodel with three massless �avors taken together with the three olors fromthe usual SU(3)c we are able to analyze the dependene of the gaps ∆1 and
∆8 on the quark hemial potential µ using the physial quantity SCSM.In our present work we have shown that by using the quantum entropy
SCSM we have a quantity in addition to the gaps whih an be omputedto show the transition to olor superondutivity. Although the gaps ingeneral relate to the quantum struture of the quark pairs, the entropy SCSMis a thermodynamial quantity. Nevertheless, its deviation omes from thepairing struture in this three olor and �avor model, whih gives rise tothe two gaps ∆1 and ∆8. Furthermore, we have derived the dispersion σ torelate diretly to the fullwidth of the peak in SCSM. This fullwidth is diretlyrelated to the quark pair struture in momentum spae, whih we have shownin the �rst �gure as a dip around the Fermi momentum, whih is just µ inthis massless quark model. The gap is well known to be harateristi ofthe orrelations between the fermions with oppositely direted momenta andspins as in the BCS model. In this ase these orrelations are between thequarks within the pairs with di�erent olors and �avors. That these �avorsand olors form given states together is quite harateristi of the phenomenaknown as olor��avor loking [8, 9℄.This pairing struture is atually quite similar to the quark�quark orre-lations oftentimes referred to as the diquark struture. This phenomenon hasbeen noted in onnetion with various results in experimental high-energyphysis. The diquark di�ers from the usual quark pairs used in superon-dutivity in that the full 3⊗ 3 is taken into onsideration. Nevertheless, the
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