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ENTROPY FOR COLOR SUPERCONDUCTIVITYIN QUARK MATTERD.E. MillerDepartment of Physi
sHazleton, Pennsylvania 18201, USAandRudjer Boskovi¢ InstituteP.O. Box 180, HR-10002 Zagreb, Croatiaand A. TawfikFakultät für Physik, Universität BielefeldPostfa
h 100131, 33501 Bielefeld, Germany(Re
eived May 19, 2004)We study a known model for 
olor super
ondu
tivity with three 
olorsand three massless quark �avors in
luding pairing e�e
ts. By using theHamiltonian in the 
olor��avor basis we 
an 
al
ulate the quantum entropy.From this 
al
ulation we are able to further investigate the phases of the
olor super
ondu
tor, for whi
h we �nd a rather sharp transition to 
olorsuper
ondu
tivity above a 
hemi
al potential around 290 MeV.PACS numbers: 03.75.Gg, 03.75.Ss, 12.40.Ee1. Introdu
tionAt high quark 
hemi
al potentials and low temperatures the internalstru
ture of hadroni
 matter has been 
onje
tured to dissolve into a degen-erate system of quarks. Su
h material 
onsisting of very 
old dense quarksmight exist in the interior of 
ompa
t stellar obje
ts. However, due to thedi�
ulties of performing latti
e simulations with high 
hemi
al potentials,it is still not possible to simulate the physi
s of these phases by using theusual latti
e gauge 
omputations. Nevertheless, a nonperturbative analysisat �nite baryon density has been quite re
ently 
arried out on the latti
e byusing the Nambu�Jona-Lasinio model. The degenerate quarks near to the(2165)
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es are generally expe
ted to intera
t a

ording to quantum 
hro-modynami
s (QCD) so that they 
an build up Cooper pairs. This pro
essmay lead to super
ondu
ting quark matter [1℄.Before we dis
uss the a
tual model for 
al
ulating the quantum entropy
S in 
olor super
ondu
ting quark matter, one might well ask: �Why should
S be taken as a signi�
ant physi
al quantity, whi
h is in no way 
onne
tedto the properties of the phase transition to a super
ondu
ting state?� Thesimplest answer to this question is that S relates dire
tly to the order pa-rameters, whi
h are for the super
ondu
tors simply the energy gaps. Thequantum entropy puts all the information from all the gaps into a singlephysi
al quantity, whi
h is then 
hara
teristi
 of the ordered phase. Weshall later �nd a single parameter 
alled σ, whi
h is 
al
ulated dire
tly fromthe momentum spread of S at a given quark 
hemi
al potential µ. We showthat σ is e�e
tively zero for µ below a 
riti
al value µc and is �nite andmonotoni
ally in
reasing above this value. This behavior 
learly re�e
ts theexpe
ted nature of an order parameter.There are a number of physi
al systems, whi
h we have previously dis-
ussed [2�4℄, for whi
h we have re
onsidered the meaning of the third law ofthermodynami
s when stated in its original form. There we have found thatthe entropy remains �nite even at absolute zero. However, when we hadtaken this fa
t into 
onsideration, there were some aspe
ts of the usual ther-modynami
al formulation whi
h had be
ome more 
ompli
ated [2, 4℄. Ourobje
tive here in this work is to further interpret the reason for the �nitenessof this entropy at absolute zero in quark matter in relation to the quantum
orrelations present in the super
ondu
ting ground state at large values ofthe quark 
hemi
al potential µ. How the presen
e of this �nite quantum en-tropy term would a�e
t the a
tual thermodynami
s at �nite temperatureswill be dis
ussed elsewhere. In parti
ular, the e�e
ts of in
luding S in thehadroni
 equation of state at low temperatures we have already studied inspe
ial 
ases [4℄.To our knowledge, the works of Elze [6℄ have provided the start foraddressing the question about the origin of the entropy puzzle in the high-energy 
ollisions. These works established a theoreti
al framework for thedis
ussion of how two hadroni
 s
attering initial states undergo hard 
olli-sions in quantum me
hani
ally pure initial states. This situation 
an resultin a high-multipli
ity event 
orresponding to a highly impure thermal den-sity matrix on the partoni
 level before hadronization. A

ording to theseworks [6℄ the entropy is an unambiguous 
hara
teristi
 property of the quan-tum nature of the system. The entropy produ
tion is 
learly due to theenvironmentally indu
ed quantum de
oheren
e in the observable subsystem.
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ondu
tivity in Quark Matter 2167Therefore, we 
onsider that there is no obvious theoreti
al reason to 
onsider�nite entropy for the interpretation of the parti
le multipli
ity, while thenexpli
itly setting its value to zero in other 
omparable 
ases.In our previous works [2�4℄ we have also used the pres
ription of von Neu-mann for the entropy, whi
h make use of the eigenvalues of the redu
eddensity matri
es. Thus we are able to give a �rst quantitative evaluationfor the quarks' entropy inside the hadrons under the 
ondition that in thesinglet state of the hadroni
 groundstates the individual quarks' 
olors aremaximally mixed. In a more re
ent work [5℄ we have also given a generalevaluation of the entropy for the 
ondensate in quark 
olor super
ondu
tiv-ity using a nonrelativisti
 model based on the BCS theory. In parti
ularwe studied the pair stru
ture in the BCS model whi
h relates to the SU(2)cof the broken 
olor symmetry [7℄. In general for SU(2) symmetry [2℄ it iswell known that one �nds simply that the entropy is ln 2. For a pair of su
h
onstituents there is the fa
tor two so that the result is 2 ln 2. We shall lateruse this result for any given number N of paired states with this doublydegenerate groundstate as the fa
tor N ln 4.In the present work we start with an ultrarelativisti
 model Hamiltonianfor quarks with three 
olors and �avors whi
h was proposed a few yearsago [8, 9℄ for 
olor super
ondu
tivity. In this framework we shall apply ourprevious 
al
ulations for the quantum ground state entropy [2�4℄ to thesequarks at large values of the quark 
hemi
al potential. As mentioned above,the quantum entropy is 
learly that entropy whi
h arises from the quantum
orrelations in the hadroni
 groundstates. Thereupon, these 
orrelationsrelate dire
tly to the presen
e of quantum �u
tuations whi
h are 
hara
ter-isti
 of a quantum phase transition [10℄. Furthermore, we state that theseentities di�er from the usual thermal �u
tuations of a statisti
al system inthat they 
an also exist at zero temperature. Thus in the above mentionedmodel with three 
olors and �avors a total of nine mixed quark states arepresent. As we have explained above for the pair states whi
h 
onsist of two
olored quarks, the quantum entropy 
an be expe
ted to be temperatureindependent and equal to just 9 ln 4 in maximally mixed states [5℄.2. Color super
ondu
tor modelWe now look more expli
itly at the e�e
ts on the ground state in ourmodel with three 
olors and three �avors for the stru
ture of the super-
ondu
tivity. In this part we shall 
al
ulate the quantum entropy from thegap equations for the 
olor super
ondu
ting state. For massless quarks theform for the Hamiltonian already has been written down for the three 
olorsand �avors. This 
olor super
ondu
tivity [8℄ arises from the quark-pairs atlow temperatures and high quark 
hemi
al potentials. It takes the following
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H =

∑

ρ,k>µ

(k − µ)a†ρ(k )aρ(k )

+
∑

ρ,k<µ

(µ − k)a†ρ(k )aρ(k ) +
∑

ρ,k

(k + µ)b†ρ(k)bρ(k )

+
1

2

∑

ρ,p

F (p)2Qρe
−iφ(p)

(

aρ(p)aρ(−p) + b†ρ(p)b†ρ(−p)
)

+
1

2

∑

ρ,p

F (p)2Qρe
iφ(p)

(

a†ρ(p)a†ρ(−p) + bρ(p)bρ(−p)
)

. (1)
F (p)2 is the form fa
tor 
ontaining the 
ut-o� Λ. Qρ stands for the diagonal-ized form for the gap parameters, for whi
h ρ = 1 yields the 
olor��avor sin-glet gap-parameter ∆1 and ρ = 2, · · · , 9 result in the 
olor��avor gap ±∆8.The �rst two lines of the Hamiltonian represent only the non-intera
tingparts, while the third and fourth lines thereof are the 
omplex 
onjugateterms of the intera
tions with opposite momenta. a†ρ and aρ together with
b†ρ and bρ are the 
reation and annihilation operators of the parti
le and an-tiparti
le states, respe
tively. The index ρ, as given above, stands for boththe 
olor and �avor degrees of freedom.For our present purpose we 
an treat ρ in the same way as we hadpreviously taken only the 
olor degrees of freedom sin
e the �avors nowprovide an exa
t symmetry in the limit of massless quarks. We take µ as thequark 
hemi
al potential, for whi
h all the momenta up to µ = pF have allthe parti
le and antiparti
le states 
ompletely o

upied in the groundstate.A proper parameterization for the annihilation and 
reation operators,respe
tively, had been already suggested [8℄ as follows:

yρ(k ) = cos[θy
ρ(k )]aρ(k ) + sin[θy

ρ(k)]eiξy

ρ (k )a†ρ(−k ) , (2)
zρ(k ) = cos[θz

ρ(k )]bρ(k ) + sin[θz
ρ(k )]eiξz

ρ
(k )b†ρ(−k ) , (3)

y†ρ(k ) = cos[θy
ρ(k )]a†ρ(k ) + sin[θy

ρ(k)]e−iξy

ρ (k )aρ(−k ) , (4)
z†ρ(k ) = cos[θz

ρ(k )]b†ρ(k ) + sin[θz
ρ(k )]e−iξz

ρ(k )bρ(−k ) . (5)Therefrom the following de�nitions are given:
θy
ρ(k ) =

1

2
arccos





|k − µ|
√

(k − µ)2 + F (k)4Q2
ρ



 , (6)
ξy
ρ(k ) = φ(k ) + π , (7)
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θz
ρ(k ) =

1

2
arccos





|k + µ|
√

(k + µ)2 + F (k)4Q2
ρ



 , (8)
ξz
ρ(k ) = −φ(k ) . (9)We may 
ompare these 
omplex expressions with the usual forms for theBogoliubov transformations, from whi
h we 
an expli
itly write down theparameters as follows:

uρ(k ) ≡ cos[θρ(k )] , (10)
vρ(k ) ≡ sin[θρ(k )]eiξρ(k) . (11)Obviously, we get the ne
essary relationship between these quantities

u∗
ρ(k )uρ(k) + v∗ρ(k)vρ(k ) = 1 (12)whi
h shows the 
anoni
al nature of these transformations.After we have 
arried out these 
anoni
al transformations, the form of theHamiltonian for nonintera
ting quasiquarks takes on the quadrati
 
anoni
alstru
ture:

H =
∑

k ,ρ

[

(

(k − µ)2 + F (k)4Q2
ρ

)1/2
y†ρ(k)yρ(k )

+
(

(k + µ)2 + F (k)4Q2
ρ

)1/2
z†ρ(k )zρ(k )

]

. (13)We now write out the results using the above given de�nitions for uρ(k ) and
vρ(k). These quantities are easily derived using elementary trigonometri
alidentities and the previously given de�nitions of the angles. After a smallamount of algebra we �nd that two new quantities 
an be simply de�ned,

Υ
y
ρ (k ) ≡ uy∗

ρ (k )uy
ρ(k )

vy∗
ρ (k )vy

ρ(k )
=

√

(k − µ)2 + F (k)4Q2
ρ + |k − µ|

√

(k − µ)2 + F (k)4Q2
ρ − |k − µ|

, (14)
Υ

z
ρ (k ) ≡

uz∗
ρ (k )uz

ρ(k )

vz∗
ρ (k )vz

ρ(k )
=

√

(k + µ)2 + F (k)4Q2
ρ + |k + µ|

√

(k + µ)2 + F (k)4Q2
ρ − |k + µ|

. (15)The quantum entropy of entanglement for an ideal Bose gas at T = 0 van-ishes, whi
h means that the o

upied state with zero momentum does not
ontribute. For �nite intera
tions between 
onstituents there appears anentropy, whi
h requires a momentum ex
hange between the parti
les [11℄.
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ontext in the BCS model without a �nite momentum arisingin the intera
tion there would be no Cooper pairs with oppositely dire
tedmomenta. Thus for k 6= 0 we 
an write down the quantum entropy of entan-glement for this 
olor super
ondu
ting model following the method we havepreviously used for the BCS model [5℄ for �nding SBCS. The main di�eren
efrom the simple BCS model is that in the 
olor super
ondu
ting model wehave nine states with two di�erent 
ontributions from the gaps. Now wewrite down SCSM with the degenera
y fa
tor g = 2 for the spins.
SCSM = g

9
∑

ρ=1

{

lnΥ
y
ρ (k)

Υ
y
ρ (k ) + 1

+ ln

(

1 +
1

Υ
y
ρ (k )

)

+
lnΥ

z
ρ (k )

Υ z
ρ (k ) + 1

+ ln

(

1 +
1

Υ z
ρ (k )

)}

. (16)In order to a
tually evaluate the above 
ontributions to SCSM, we must �rstset up the equations for the gaps ∆1 and ∆8, whi
h have been previouslystudied by Alford, Rajagopal and Wil
zek [8℄. Before we write down the
omplete gap equations, we brie�y dis
uss the two 
olor��avor super
on-du
ting model known as the 2SC Model. In stru
ture it is very similar tothe simple nonrelativisti
 BCS model with the addition of the antiparti
le
ontribution. A not too great generalization of this type of model leads toa two �avor and three 
olor model [8℄, whi
h is the prior step to the abovemodel. The 2SC phase is su
h that the diquarks 
ondense while the 
hiralsymmetry is restored. It has a simple equation for the gap ∆ similar to theabove BCS Model. We write the gap equation in the form [9℄
1 =

2G

V

∑

p

{

1
√

(p − µ)2 + ∆2
+

1
√

(p + µ)2 + ∆2

}

. (17)We 
an 
onvert the sum over all the momenta p into an integral I[∆] so that
I[∆] =

G

π2

Λ
∫

0

k2dk

(

1
√

(k − µ)2 + ∆2
+

1
√

(k + µ)2 + ∆2

)

. (18)This form of the gap equation
1 = I[∆] (19)
an be evaluated and substituted in the above equation for the entropy.However, it does not properly re�e
t the fully extended 
olor��avor symme-try of our above model Hamiltonian. Nevertheless, we 
an use this simpler
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ondu
tivity in Quark Matter 2171equation with the 
onstituent quark mass M repla
ing the gap parameterat vanishing 
hemi
al potential in order to determine the 
oupling G. The
oupled integral equations for the gaps represent the singlet and o
tet de
om-position of this extended symmetry [8℄. In our evaluation of the equationsfor the gaps ∆1 and ∆8 we use the step-fun
tion 
ut-o� with Λ = 800 MeV.Thus we write the two gap equations [9℄ in the following form:
∆1 = −2∆8I[∆8] , (20)
∆8 = −∆1 (1 + I[∆1])

4
. (21)We use these gap equations for ∆1 and ∆8 in order to obtain Υ

y
ρ (k ) and

Υ
z
ρ (k ) with F (k) = 1 for k < Λ and zero above. These quantities aresubstituted into the above equation for the quantum entropy SCSM. Theresults for 9 ln 4−SCSM are shown in Fig. 1 for di�erent values of the quark
hemi
al potential µ. We 
an see the e�e
ts of the gaps ∆1 and ∆8 on thequantum entropy. Below a 
riti
al value of the 
hemi
al potential around

290 MeV the gaps vanish so that the spread of SCSM also vanishes. We seethis in a very narrow line that extends downwards to zero at values of µunder 290 MeV.
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e between the maximum entropyin the ground state 9 ln 4 and the entropy from the ex
itation of 
olor super
on-du
tors is shown for di�erent values of the 
hemi
al potential µ indi
ated by thezero-point on the graph.



2172 D.E. Miller, A. Tawfik3. Results and dis
ussionNow we dis
uss the results from the 
omputation of the quantum entropy
SCSM derived in the equation 16. Figure 1 shows the di�eren
e between theentropy from the quark pairing in 
olor super
ondu
tors Eq. 16 and themaximum value of the groundstate entropy for nine states given by 9 ln 4 .The dependen
e of 9 ln 4−SCSM upon the momenta k is plotted for di�erentvalues of the 
hemi
al potential µ. This di�eren
e has a zero-point when thevalue of the momentum k = µ. In this �gure we noti
e that for the zero-point values above a 
riti
al value µc = 290 MeV there is always a �nitespread in the 
urve around the zero-point. From this fa
t we 
an extra
tat the halfheight value the fullwidth Γ . By means of a dire
t 
omparisonwith the Gaussian distribution we take the dispersion to be the standarddeviation σ. In this 
ase we have simply the fullwidth Γ = 2

√
2 ln 2 σ athalf maximum. Then we 
an 
ompute the dispersion σ from the distributionsgiven in the next �gure 2 as a fun
tion of the 
orresponding µ value. We
an make a �t of these points as a fun
tion of µ as is shown in the se
ond�gure with

σ(µ) = A + B(µ − µc)
β . (22)In this �t the best values are found to be A = − 3.095 and B = 3.294.The best value of the exponent is β = 0.506, whi
h is notably very nearto the 
lassi
al value of one-half. If we were to set the proper units for the
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orresponding quark 
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al potential. Finite values for the quark
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al potential �rst appear above the 
riti
al value µ > 290 MeV.
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ondu
tivity in Quark Matter 2173s
aling variable from the forefa
tor B, whi
h we shall 
all r. Then we mayrewrite σ as
σ(r) = A + B′(r)β , (23)whereby r = (µ − µc)/µc and B′ = Bµc

β. Thus the dispersion σ(r) withthe proper s
aling relations serves as an order parameter for the 
riti
alregion of the 
hemi
al potential near to µc. These results then show approx-imately the usual mean �eld behavior at the 
riti
al point with β = 1/2.4. Con
lusionFinally we 
an 
on
lude that the quantum entropy is a good indi
ator ofthe phase transition arising from the presen
e of the two gaps ∆1 and ∆8.As we have seen in �gure 2, the dispersion σ be
omes �nite at a 
hemi
alpotential of about 290 MeV, whi
h is very near the previously 
al
ulatedvalue of around 300 MeV for the gaps appearing in the CFL phase [8, 9℄.Further dis
ussion of these models and their properties relating to the phe-nomena of 
olor super
ondu
tivity has appeared quite re
ently [13℄. In thismodel with three massless �avors taken together with the three 
olors fromthe usual SU(3)c we are able to analyze the dependen
e of the gaps ∆1 and
∆8 on the quark 
hemi
al potential µ using the physi
al quantity SCSM.In our present work we have shown that by using the quantum entropy
SCSM we have a quantity in addition to the gaps whi
h 
an be 
omputedto show the transition to 
olor super
ondu
tivity. Although the gaps ingeneral relate to the quantum stru
ture of the quark pairs, the entropy SCSMis a thermodynami
al quantity. Nevertheless, its deviation 
omes from thepairing stru
ture in this three 
olor and �avor model, whi
h gives rise tothe two gaps ∆1 and ∆8. Furthermore, we have derived the dispersion σ torelate dire
tly to the fullwidth of the peak in SCSM. This fullwidth is dire
tlyrelated to the quark pair stru
ture in momentum spa
e, whi
h we have shownin the �rst �gure as a dip around the Fermi momentum, whi
h is just µ inthis massless quark model. The gap is well known to be 
hara
teristi
 ofthe 
orrelations between the fermions with oppositely dire
ted momenta andspins as in the BCS model. In this 
ase these 
orrelations are between thequarks within the pairs with di�erent 
olors and �avors. That these �avorsand 
olors form given states together is quite 
hara
teristi
 of the phenomenaknown as 
olor��avor lo
king [8, 9℄.This pairing stru
ture is a
tually quite similar to the quark�quark 
orre-lations oftentimes referred to as the diquark stru
ture. This phenomenon hasbeen noted in 
onne
tion with various results in experimental high-energyphysi
s. The diquark di�ers from the usual quark pairs used in super
on-du
tivity in that the full 3⊗ 3 is taken into 
onsideration. Nevertheless, the



2174 D.E. Miller, A. Tawfikideas relating to the quantum entropy 
ould possibly lead to further futureinvestigations relating to the expe
ted 
orrelations between the diquarks aswell as, perhaps, �nd future appli
ations in the theoreti
al studies of the re-
ently experimentally dis
overed pentaquark states [14℄. These states havebeen interpreted [15℄ as a bound state of four quarks and an antiquark, whi
h
onsist of two 
orrelated diquarks.In preparing this work we have bene�ted from many stimulating dis
us-sions with Krzysztof Redli
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