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NOISE REDUCTION IN CHAOTIC TIME SERIESBY A LOCAL PROJECTION WITH NONLINEARCONSTRAINTSKrzysztof Urbanowiz†, Janusz A. Hoªyst‡,Faulty of Physis and Center of Exellene Complex Systems ResearhWarsaw University of TehnologyKoszykowa 75, 00-662 Warsaw, PolandThomas Stemler and Hartmut BennerInstitute of Solid-State PhysisDarmstadt University of TehnologyHohshulstr. 6, D-64289 Darmstadt, Germany(Reeived May 28, 2004)On the basis of a loal-projetive (LP) approah we develop a methodof noise redution in time series that makes use of nonlinear onstraintsappearing due to the deterministi harater of the underlying dynamialsystem. The Delaunay triangulation approah is used to �nd the optimalnearest neighboring points in time series. The e�ieny of our methodis omparable to standard LP methods but our method is more robustto the input parameter estimation. The approah has been suessfullyapplied for separating a signal from noise in the haoti Henon and Lorenzmodels as well as for noisy experimental data obtained from an eletroniChua iruit. The method works properly for a mixture of additive anddynamial noise and an be used for the noise-level detetion.PACS numbers: 05.45.Tp, 05.40.Ca1. IntrodutionIt is ommon that observed data are ontaminated by noise (for a reviewof methods of nonlinear time series analysis see [1�3℄). The presene ofnoise an substantially a�et suh system parameters as dimension, entropyor Lyapunov exponents [4℄. In fat noise an ompletely obsure or even

† e-mail: urbanow�mpipks-dresden.mpg.de
‡ e-mail: jholyst�if.pw.edu.pl (2175)



2176 K. Urbanowiz et al.destroy the fratal struture of a haoti attrator [5℄ and even 2% of noisean make a dimension alulation misleading [6℄. It follows that both fromthe theoretial as well as from the pratial point of view it is desirable toredue the noise level. Thanks to noise redution [5, 7�18℄ it is possible e.g.to restore the hidden struture of an attrator whih is smeared out by noise,as well as to improve the quality of preditions.Every method of noise redution assumes that it is possible to distinguishbetween noise and a lean signal on the basis of some objetive riteria.Conventional methods suh as linear �lters use a power spetrum for thispurpose. Low pass �lters assume that a lean signal has some typial lowfrequeny, respetively it is true for high pass �lters. It follows that thesemethods are onvenient for a regular soure whih generates a periodi ora quasi-periodi signal. In the ase of haoti signals linear �lters annotbe used for noise redution without a substantial disturbane of the leansignal. The reason is the broad-band spetrum of haoti signals. It followsthat for haoti systems we make use of another generi feature of dissipativemotion loated on attrators that are smooth submanifolds of an admissiblephase spae. As results orresponding state vetors reonstruted from timedelay variables are limited to geometri objets that an be loally linearized.This fat is a ommon bakground of all loal projetive (LP) methods ofnoise redution.Besides the LP approah there are also noise redution methods thatapproximate an unknown equation of motion and use it to �nd orretionsto state vetors. Suh methods make use of neural networks [11℄ or a genetiprogramming [12℄ and one has to assume some basis funtions e.g. radialbasis funtions [19℄ to reonstrut the equation of motion. Another groupof methods are modi�ed linear �lters e.g. the Wiener �lter [13℄, the Kalman�lter [14℄, or methods based on wavelet analysis [15℄. Appliations of thesemethods are limited to systems with large sampling frequenies, and theyare on�ned to the neighborhood of every point in phase spae.The method desribed in this paper an be onsidered as an extension ofLP methods by taking into aount onstraints that our due to the loallinearization of the equation of motion of the system. We all our methodthe loal projetion with nonlinear onstraints (LPNC).The paper is organized as follows. In the following setion we shallpresent the general bakground of LP methods. The LPNC method is in-trodued in Se. 3 and ompared with LP methods in Se. 4. In Se. 5we present methods how to �nd the nearest neighborhood, and examplesof noise redution and estimation are introdued in Ses. 6 and 7. In theAppendix A one an �nd the multidimensional generalization of the solutionpresented in Se. 3.



Noise Redution in Chaoti Time Series 21772. Loal projetive methods of noise redutionLet us onsider a salar time series {x̃n}, n = 1, 2, ..., N orresponding toan experimentally aessible omponent of the system trajetory. We assumethat in the presene of measurement noise instead of the lean time series x̃nwe observe a noisy series xn: xn = x̃n+ηn where ηn is the noise variable. Theaim of noise redution methods is to estimate the set {x̃n} from the observednoisy data set {xn}, i.e. to �nd orretions δxn suh that xn + δxn ≈ x̃n.The orretions δxn an be estimated on the assumption that x̃n belongs toa lean deterministi trajetory. Let us reate vetors of the system state
x̃n using the Takens Theorem [2℄ x̃n = {x̃n, x̃n−τ , ..., x̃n−(d−1)τ }, where d isthe embedding dimension, and τ is the embedding delay that further willbe just 1. Now the simple approah is to use a linear approximation for thenearest neighborhood X̃

NN
n of a vetor x̃n and then to estimate an unknownequation of motion in the embedded spae by a linear �t: x̃n+1 = Ax̃n + b.The matrix A is the orresponding Jaobi matrix and b is a onstant vetor.In LP methods the loal linearity of the system dynamis plays theruial role. The unknown equation of motion of a deterministi systems

x̃n+1 = F (x̃n, x̃n−1, . . . , x̃n−d+1) is equivalent to the presene of a onstraint
H (x̃n+1, x̃n, . . . , x̃n−d+1) = 0. If the embedding dimension d is larger thanthe dimension of the attrator then Q onstraints appear:

H(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) = 0 and q = 1, . . . , Q ≤ d , (1)where Q depends on the rounded up dimension da of the attrator, Q =

d + 1 − da. Sine we apply a linear approximation for vetors x̃ i ∈ X̃
NN
nthe onstraints (1) an be written as

H(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) =

d−Q
∑

j=1

a
q,(n)
j x̃i−j+1−q + bq,(n) − x̃i+1−q = 0 , (2)where a

q,(n)
j and bq,(n) are elements of A and b respetively. The main prob-lem of LP methods is to �nd a tangent subspae determined by the linearonstraints H

(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) = 0 and to perform an appropriateprojetion on this subspae. Di�erent LP approahes make use of di�erentprojeting methods, however tangent subspaes are found in the same man-ner by all methods, i.e. the subspae should ful�ll the ondition (2) and theondition 〈|xi − x̃i|

2
〉

= min.



2178 K. Urbanowiz et al.2.1. Cawley�Hsu�Sauer method (CHS)The method makes use of a perpendiular projetion on a subspae or-responding to the onstraints (2) [16,17℄. Sine there are several onstraints(2) and the same data will our in several Takens vetors xn there are manypossible orretions δxn,q to the same observed data xn. In the CHS methodone makes a ompromise between di�erent orretions by taking the average
x̃n = xn + α

Q
∑

q=1

δxn,q , (3)where
δxn,q = −H(n)

q (xn+1, xn, . . . , xn−d+1)
▽nH

(n)
q

∥

∥

∥
▽nH

(n)
q

∥

∥

∥

2 (4)is the orretion of xn obtained due to the onstraint
H(n)

q (x̃n+1, x̃n, . . . , x̃n−d+1) = 0 .

α is some onstant 0 < α < 1 and ▽nH
(n)
q = ▽H

(n)
q (xn+1, xn, . . . , xn−d+1)is the gradient of the onstraint funtion.2.2. Shreiber�Grassberger method (SG)Instead of the perpendiular projetion on the subspae de�ned by (2)one an perform a projetion by orreting only one variable [5℄. If we hoose

xn+1−r as the orreted variable where r ≈ d/2 then the orretions are
x̃n = xn − α

H
(n)
s (xn+1+r, xn+r, . . . , xn−d+1+r)

∂H
(n)
s (xn+1+r, xn+r, . . . , xn−d+1+r) /∂xn

, (5)where s ≈ Q
2 . The approah an be justi�ed as follows. If the largest(unstable) Lyapunov exponent is λu > 0 and the smallest (stable) Lyapunovexponent is λs < 0 we an write ∂xn+r

∂xn
∼ eλur and ∂xn−d+1+r

∂xn
∼ e|λs|(r−d+1).If λu ≈ |λs| then the highest preision for determining the denominator ofthe rhs of (5) is usually obtained for r = d/2:

d/2
∑

l=0

∣

∣

∣
eλul + e|λs|l

∣

∣

∣
|∆xn| = min

r=0,...,d

{

r
∑

l=0

∣

∣

∣
eλul

∣

∣

∣
|∆xn| +

d−r
∑

l=0

∣

∣

∣
e|λs|l

∣

∣

∣
|∆xn|

}

,(6)where ∆xn is the error onneted with the variable xn.



Noise Redution in Chaoti Time Series 21792.3. The optimal method of loal projetion (GHKSS)In the GHKSS method [18,20℄ developed by Grassberger et al. one looksfor a minimization funtional that ful�lls the linear onstraints (2) by orre-sponding orretions reeived in a one-step proedure. The onstraints (2)an be written in the equivalent form (

aq,(n) · ỹn

)

+bq,(n) = 0, where a newvetor ỹn = {x̃n+1, x̃n, . . . , x̃n−d+1} is introdued, the dimension of whihis larger by one than the dimension of the vetor xn. Vetors aq,(n) shouldbe linearly independent and appropriately normalized, so that multiple or-retions of the variables are eliminated, i.e. aq,(n) · Paq′,(n) = δqq′ where Pis the matrix desribing the metri of the system. Let Y NN
n be a set or-responding to the nearest neighborhood of the vetor yn. Minimizing thefuntional ∑

k

δx k ·P
−1δx k for {k : yk ∈ Y NN

n

} under the above onditionswe get a system of oupled equations. The next step is to onsider all vetorsof Y NN
n and to alulate the average ξ

(n)
i = 1

˛

˛

˛
Y

NN

n

˛

˛

˛

∑

k

xk+i, i = 0, 1, . . . , das well as orresponding (d + 1) × (d + 1) ovariane matrix
C

(n)
ij =

1
∣

∣Y NN
n

∣

∣

∑

k

xk+ixk+j − ξ
(n)
i ξ

(n)
j . (7)Here ∣∣Y NN

n

∣

∣ means the number of elements in the set. De�ning Ri = 1√
Piand Γ

(n)
ij = RiC

(n)
ij Rj one an �nd Q orthonormal eigenvetors of the matrix

Γ
(n) orresponding to its smallest eigenvalues eq,(n) for q = 1, . . . , Q.Let the matrix Π

(n)
ij =

Q
∑

q=1
e
q,(n)
i e

q,(n)
j de�ne a subspae spanned by theeigenvetors eq,(n). Now the orretions to the observed signal an be writtenas follows

δxn+i =
1

Ri

d
∑

j=0

Π
(n)
ij Rj

(

ξ
(n)
j − xn+j

)

. (8)We see that the GHKSS method does not employ multiple orretionsresulting from onstraints (2), but only performs a smaller number of or-retions following the multiple ourrene of the same variable xn in variousvetors y i : xn ∈ y i.The solution (8) is a generalization of the CHS and SG methods. Themain di�erene between the CHS method and the GHKSS method is in thesubspae of projetion. While a perpendiular projetion of points is usedin the �rst ase, projetion is on a tangent subspae de�ned by the matrix P



2180 K. Urbanowiz et al.in the seond ase. The matrix P should be diagonal and suh that the �rstand the last omponent of the vetor yn have only small weights e.g. Pi = 1for i = 1, 2, . . . , d − 1 and Pi = 1000 for i = 0, d.The e�ieny of noise redution methods an be measured by the gainparameter, de�ned as
G = 10 log

(

σ2
noise

σ2
red

)

, (9)where σ2
noise =

〈

(xn − x̃n)2
〉 is the variane of added noise and σ2

red is thevariane of noise left after noise redution. The last value is alulated asthe square of the distane between the vetor of noise-redued data and thevetor of lean data divided by the dimension of these vetors. The de�nitionof the gain presumes the knowledge of the lean data X̃n = {x̃n}.The noise level parameter N an be de�ned as the ratio of standard noisedeviation σnoise to standard data deviation σdata

N =
σnoise

σdata
. (10)3. The priniple of LPNC methodThe LP methods desribed in the previous setion make use of linear on-straints that appear due to linear approximation of the system dynamis.Suh a linear approximation has only a loal harater and orrespondingoe�ients depend, in fat, on the position in phase spae. If we assume thatthe nearest neighborhood of every point x̃n is haraterized by the same oef-�ients then nonlinear onstraints appear that an be used for reonstrutionof the unknown deterministi trajetory. The basi advantage of the loalprojetion with nonlinear onstraints (LPNC) method introdued here asompared to LP methods is its smaller sensitivity to the input parametersestimation. A weak point of the LPNC method is its slower onvergenerate with respet to the standard LP approah. The LPNC algorithm anbe aelerated but at the ost of dereasing the gain parameter. Like otherLP methods the LPNC method belongs to the iterative approahes. A sin-gle iteration provides only a partial noise redution and a orreted data setserves as an input for the next iteration.For the one-dimensional ase the Jaobi matrix A and the additive ve-tor b desribing the loally linearized dynamis at point x̃n redue to salaroe�ients A = a1 (x̃n), b = b (x̃n), and the linearized equation of mo-tion at x̃n reads x̃n+1 = a1 (x̃n) x̃n + b (x̃n). Let us onsider the nearestneighborhood X̃

NN
n of x̃n. We assume that the set X̃

NN
n onsists of threepoints {x̃n, x̃k, x̃j ∈ X̃

NN
n

} whih are so lose to eah other that their lo-ally linearized dynamis an be approximately desribed by the same pair



Noise Redution in Chaoti Time Series 2181of oe�ients A = a1 (x̃n), b = b (x̃n). When we write down three linearequations of motion for x̃n, x̃k, x̃j

x̃n+1 = a1 (x̃n) x̃n + b (x̃n) ,

x̃k+1 = a1 (x̃n) x̃k + b (x̃n) ,

x̃j+1 = a1 (x̃n) x̃j + b (x̃n) (11)the oe�ients a1(x̃n) and b(x̃n) an be eliminated. After elimination we geta onstraint that has to be ful�lled by the system variables for onsistenyreasons.
G
(

X̃
NN
n

)

≡ x̃n (x̃k+1 − x̃j+1)

+x̃k (x̃j+1 − x̃n+1) + x̃j (x̃n+1 − x̃k+1) = 0 . (12)In the ase of a higher dimension d > 1 we have three equations of motionsbut the number of unknown onstants is larger than two, i.e.
x̃n+1 =

d
∑

i=1

ai (x̃n) x̃n−i+1 + b (x̃n) ,

x̃k+1 =

d
∑

i=1

ai (x̃n) x̃k−i+1 + b (x̃n) ,

x̃j+1 =

d
∑

i=1

ai (x̃n) x̃j−i+1 + b (x̃n) , (13)where ai(x̃n) are elements of the �rst row of Jaobi matrix and b(x̃n) is aonstant. The orresponding onstraint Gd for higher dimensional ase is asfollows
Gd
(

X̃
NN
n

)

≡

(

d
∑

i=1

aixn−i+1

)

(x̃k+1 − x̃j+1)

+

(

d
∑

i=1

aixk−i+1

)

(x̃j+1 − x̃n+1)

+

(

d
∑

i=1

aixj−i+1

)

(x̃n+1 − x̃k+1) = 0 . (14)The extended onstraints and the orresponding alulations that are validfor all rows of Jaobi matrix A are presented in Appendix A. The ondi-tion (12) and (14) should be ful�lled for every point x̃n and its nearest neigh-borhood X̃
NN
n . Similarly as in LP methods these onstraints are ensured in



2182 K. Urbanowiz et al.the LPNC approah by appliation of the method of Lagrange multipliersto an appropriate ost funtion. Sine we expet that orretions to noisydata should be as small as possible, the ost funtion an be assumed to bethe sum of squared orretions S =
∑N

s=1 (δxs)
2.It follows that we are looking for the minimum of the funtional

S̃ =

N
∑

n=1

(δxn)2 +

N
∑

n=1

λnGd
(

X̃
NN
n

)

= min . (15)After �nding zero points of 2N partial derivatives one gets 2N equations with
2N unknown variables δxn and λn. However, in suh a ase the derivatives ofthe funtional (15) are nonlinear funtions of these variables. For simpliityof omputing we are interested to pose our problem in suh a way thatlinear equations appear whih an be solved by standard matrix algebra. Tounderstand the role of nonlinearity let us write the onstraint G

(

X̃
NN
n

) insuh a way that expliit dependene on the unknown variables is seen (theorresponding equations for Gd(X̃
NN
n ) have a similar form)

G
(

X̃
NN
n

)

∼= G
(

XNN
n ,X n+1

)

+ G (δX n,X n+1)

+G
(

XNN
n , δX n+1

)

+ G (δX n, δX n+1) . (16)Here we introdued the following notation
G
(

XNN
n ,X n+1

)

≡ xn (xk+1 − xj+1) + xk (xj+1 − xn+1)

+xj (xn+1 − xk+1) ,

G (δX n,X n+1) ≡ δxn (xk+1 − xj+1) + δxk (xj+1 − xn+1)

+δxj (xn+1 − xk+1) ,

G
(

XNN
n , δX n+1

)

≡ xn (δxk+1 − δxj+1) + xk (δxj+1 − δxn+1)

+xj (δxn+1 − δxk+1) ,

G (δX n, δX n+1) ≡ δxn (δxk+1 − δxj+1) + δxk (δxj+1 − δxn+1)

+δxj (δxn+1 − δxk+1) , (17)where XNN
n = {xn, xk, xj}, X n+1 = {xn+1, xk+1, xj+1}, δX n =

{δxn, δxk, δxj}, δX n+1 = {δxn+1, δxk+1, δxj+1} and xk, xj are the nearneighbors of xn. Indies are de�ned as {n, j, k : xn, xk, xj ∈ XNN
n

}. Notethat elements of the set X n+1 are not neessarily near neighbors to eahother.The approximation we use in (16) follows from the fat that in generalthe nearest neighborhood X̃
NN
n does not inlude the same indies as the



Noise Redution in Chaoti Time Series 2183nearest neighborhood XNN
n , i.e.

{

k : x̃k ∈ X̃
NN
n

}

6=
{

j : xj ∈ XNN
n

}

. (18)In the ase of not orrelated noise and under the assumption that the intro-dued orretions ompletely redue the noise e�et δxs = −ηs (∀s=1,...,N )one an neglet the nonlinear terms in Eqs. (17) i.e.
G (δX n, δX n+1) ∼= 0 (∀n=1,...,N). (19)In equation (19) we use the fat that 〈ηi〉 = 0 and 〈ηiηj〉 ∼ δij .Taking into aount the approximation (19) one an write the followinglinear equation for the problem (15)

M · δX = B , (20)where M is a matrix ontaining onstant elements, B is a onstant ve-tor, and δXT = {δx1, δx2, . . . , δxN , λ1, λ2, . . . , λN} is a vetor of dependentvariables (T � transposition). In pratie it is very di�ult or even im-possible to �nd the solution of equation (20) for large N . First, it is timeonsuming to solve a linear equation with a matrix 2N × 2N matrix for
N > 1000. Seond, when M beomes singular the estimation error of theinverse matrix M−1 is very large. Third, we annot always �nd the true nearneighbors (the set X̃

NN
n ) from the noisy data {xi}. Taking into aount theabove reasons it is useful to replae the global minimization problem (15) by

N loal minimization problems related to the nearest neighborhood XNN
n .The orresponding loal funtionals to be minimized are

S̃NN
n =

∑

s

(δxs)
2 + λnGd

(

XNN
n

)

= min (∀n=1,...,N ) ,where
{

s : xs ∈ XNN
n or xs ∈ X n+1 or . . . xs ∈ X n−d+1

}

. (21)We an onsider the minimization problem (21) as a ertain approximationof (15). Funtionals (21) are linked to eah other due to the fat that thesame variable δxn appears in 6 ·d di�erent minimization problems (21). Theglobal problem (15) is equivalent to Eq. (20) with 2N unknown variables thatshould be found single-time. The problem (21) is equivalent to a system ofoupled equations that should be solved several times and as a result onegets an approximate global solution. Writing Eq. (21) in the linear form i.e.alulating zero sites of orresponding derivatives and using Eq. (19) onegets N linear equations as follows
M n · δX λ

n = Bn (∀n=1,...,N ) , (22)



2184 K. Urbanowiz et al.where (δX λ
n

)T
= {δxn, δxk, δxj , δxn+1, δxk+1, δxj+1, λn}. The matriesM norresponding to (21) avoid the disadvantages of (20), i.e. they are notsingular, their dimension is smaller and they do not substantially dependon the initial approximation of near neighbors. The matrix M n for one-dimensional ase is given by

M n =
















2 0 0 0 0 0 xk+1 − xj+1

0 2 0 0 0 0 xj+1 − xn+1

0 0 2 0 0 0 xn+1 − xk+1

0 0 0 2 0 0 xj − xk

0 0 0 0 2 0 xn − xj

0 0 0 0 0 2 xk − xn

xk+1 − xj+1 xj+1 − xn+1 xn+1 − xk+1 xj − xk xn − xj xk − xn 0















(23)Vetor Bn has the form BT
n =

{

0, 0, 0, 0, 0, 0,−G
(

XNN
n ,X n+1

)}.4. Comparing LPNC method to loal projetion methodsLet us illustrate the LPNC method by taking into aount the ost fun-tional (21) (it will be written as SLPNC)
SLPNC =

∑

i

δx2
i + λ[x̃n (x̃k+1 − x̃j+1)

+x̃k (x̃j+1 − x̃n+1) + x̃j (x̃n+1 − x̃k+1)] = min . (24)The orresponding ost funtion SGHKSS that is used in the standard loalprojetion method e.g. in the GHKSS method [18℄ is
SGHKSS =

∑

i

δx2
i + λ1 (x̃na + b − x̃n+1)

+λ2 (x̃ja + b − x̃j+1) + λ3 (x̃ka + b − x̃k+1) = min . (25)If we were in the position to �nd exat solutions for the minimization prob-lems (24) and (25) then both results would be the same sine (24) an beobtained from (25) after elimination of the parameters a and b.In both ases the variables {x̃n, x̃k, x̃j ∈ X̃
NN
n

} belong to the nearestneighborhood of the variable x̃n. The index i =
{

k, k + p : x̃k ∈ X̃
NN
n

}runs through all indies of the variables appearing in (24) and (25) while



Noise Redution in Chaoti Time Series 2185the variable x̃k+p =
{

x̃l : x̃l−p ∈ X̃
NN
n

} orresponds to the p-iterate of x̃k.Parameters a and b an be alulated from a linearized form of the equationsof motion at the point x̃n.In pratie the minimization problems SLPNC and SGHKSS are not equiv-alent beause in both ases di�erent approximations are used. These di�er-enes are: (i) Eq. (24) is nonlinear against orretions δxi. In this ase theapproximation onsists in a linearization. (ii) For Eq. (25) the exat valuesof the parameters a and b are unknown. The approximation means that aand b are estimated from noisy data.
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Fig. 1. The plot of the gain parameter G versus number of iterations of theGHKSS method (squares) and LPNC method (triangles). Lorenz systemN = 78%,
N = 1000.
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Fig. 2. The plot of the gain parameter G versus number of neighbors of theGHKSS method (squares) and LPNC method (triangles). Lorenz systemN = 78%,
N = 1000.Figs. 1 and 2 present a omparison between results reeived by theGHKSS and LPNC methods. Fig. 1 shows that the gain parameter G de-pends on the number of neighbors, whih is an input parameter of bothmethods. One an see that for LPNC method the gain parameter is more



2186 K. Urbanowiz et al.robust to hanges of the number of neighbors than for the GHKSS method.In Fig. 2 the dependene of the gain parameter on the number of iterationsteps of the methods is shown. One an see that LPNC method �nishedredution at the maximal e�ieny what is not the ase of GHKSS method,so the former method is easier to use sine it does not need estimation ofthe iteration number.If we onsider uniformly distributed stohasti variables (see Fig. 3) theLPNC method redues the noise very well, and as a result all data are rep-resented as a neighborhood of a point attrator (see Fig. 4) while a ompletenoise redution would orrespond to a phase portrait onsisting of a singlepoint. In fat, for the ase onsidered we observed for the LPNC method anoise redution of about 96% of data variane.
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Noise Redution in Chaoti Time Series 21875. The nearest neighborhood assessmentThe LP methods are loal. It follows that features of the nearest neigh-borhood XNN
n of every point xn in the phase spae play an important role.Usually the nearest neighborhood is estimated by the smallest distane ap-proah that makes use of the standard Eulidian geometry. We have found,however, that our LPNC method works muh better when the Delaunay tri-angulation approah [21℄ is applied for the nearest neighborhood estimation.5.1. The smallest distane approah (SD)In the smallest distane approah the Eulidian metri is used, i.e. �rstthe distane between every pair of points in the Takens embedded spae isalulated as di,j =

√

(xi − xj)
2 + . . . +

(

xi−(d−1)τ − xj−(d−1)τ

)2 and thenthe nearest neighborhood XNN
n of a point xn is de�ned as a set of ν pointsful�lling the relation

{

x j ∈ XNN
n ,∀kxk /∈ XNN

n : dn,j ≤ dn,k

}

. (26)Let us stress that this de�nition depends on the hosen value of the ν pa-rameter. i.e. on the assumed number of near neighbors, ν = 2, 3, . . . .5.2. The Delaunay triangulation approah (DT)To �nd the nearest neighborhood relations for the LPNC method wehave used the Delaunay triangulation [21℄. In general the triangulation ofany set of points X = {x i} ∈ R
d is a olletion of d-dimensional simplieswith disjoint interiors and verties hosen from X . There are many triangu-lation of the same set of points X . One of the best known is the Delaunaytriangulation (see Fig. 5). Let T (xn) be a part of the spae R

d that ontainsall points that are loser to xn than any other point x j from the set X

T (xn) =
{

z ∈ R
d,x j ∈ X : ∀j 6=n ‖z − xn‖ ≤ ‖z − x j‖

}

. (27)If m i,j = (x i + x j) /2 belongs to both sets T (x i) and T (x j) then by de�ni-tion the point x j is the nearest neighbor of x i reeived due to the Delaunaytriangulation. By the above de�nition every point xn belongs to its nearestneighborhood xn ∈ XNN
n .In pratie the Delaunay approah an be performed as follows. A pair ofpoints xn and x j are near neighbors provided that there are no other points

x k (k 6= j, n) belonging to the hypersphere entered at the point mn,j andof the radius rn,j = ‖xn − x j‖ /2.
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 Fig. 5. Delaunay triangulation for a set of nine points in a two-dimensional spae.The near neighbors are onneted by bold lines. Sets T (x i), i = 1, 2, . . . , 9 arelimited by thin lines.
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Fig. 6. Illustration of nearest neighborhood searh by DT approah (a) x j and xnare not near neighbors. (b) x j and xn are near neighbors.In Fig. 6 two ases are presented when in the two-dimensional spae a)the point x j is not the nearest neighbor of xn and b) the point x j is thenearest neighbor of xn.The DT method has the advantage that triangles appearing due to on-netions of near neighbors are almost equiangular (see Fig. 5). This propertyis the main reason for using the DT method in searh of the near neighbors.The disadvantage of this method is a slowing down of numerial alulations.6. Examples of noise redutionsThe LPNC method has been applied to three systems: the Henon map,the Lorenz model [22℄ and the Chua iruit [23�25℄. Figures 7�9 present thehaoti Henon map in the absene and in the presene of measurement noiseas well as a result of the noise redution. Table I presents the values of thegain parameter for the Henon map and for the Lorenz system.To verify our method in a real experiment we have performed the analysisof data generated by a nonlinear eletroni iruit. The Chua iruit in thehaoti regime [23, 24℄ has been used and we have added a measurement
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2190 K. Urbanowiz et al. TABLE IResults of noise redution by the LPNC method for the Henon map and Lorenzmodel. System N G perent ofeliminated noiseHenon N = 1000 10% 9.58 89%Henon N = 3000 10% 10.04 91%Henon N = 1000 66% 5.08 69%Lorenz N = 1000 78% 5.85 74%Lorenz N = 3000 76% 6.02 75%Lorenz N = 1000 34% 7.21 81%noise to the outoming signal. The noise (white and Gaussian) ame froman eletroni noise generator. Figures 10�12 show a lean signal omingfrom this iruit, the signal generated by Chua iruit with measurementnoise (N = 96.5%) and the same signal after the noise redution with theLPNC method (G = 6.38). Table II presents values of the G parameter andthe perentage of eliminated noise for several values of the noise level in theChua iruit.
1.9 2.0 2.1 2.2 2.3 2.4

1.9

2.0

2.1

2.2

2.3

2.4

 
 

V
n+

1 
[V

]

V
n
 [V]Fig. 10. The strobosopi map orresponding to a lean trajetory in the Chuairuit.

1.2 1.5 1.8 2.1 2.4 2.7 3.0
1.2

1.5

1.8

2.1

2.4

2.7

3.0

 

 

V
n+

1 
[V

]

V
n
 [V]Fig. 11. The strobosopi map reeived from the Chua iruit in the presene of ameasurement noise N = 96.5%. Note the di�erene in sale.



Noise Redution in Chaoti Time Series 2191
1.9 2.0 2.1 2.2 2.3 2.4

1.9

2.0

2.1

2.2

2.3

2.4

 

 

V
n+

1 
[V

]

V
n
 [V]Fig. 12. The strobosopi map reeived after the noise redution by the LPNCmethod applied to data presented in Fig. 11. TABLE IIResults of noise redution by the LPNC method for the Chua iruit with a mea-surement noise (N = 3000).

N G perent ofeliminated noise
24.9% 5.4 71%
28.3% 4.9 68%
46.1% 7.0 80%
73.7% 4.81 67%
90.6% 7.4 82%
96.5% 6.4 77%All the above appliations of the LPNC method onsider the ase of mea-surement noise that has been added to the signal in numerial or eletroniexperiments. However, our LPNC method an also be applied to dynamialnoise i.e. to the noise whih in experiments is inluded in the equations ofmotion [26℄. In suh a ase one annot ompare the noisy data with thelean trajetory sine the latter one does not exist anymore, and there areonly ǫ-shadowed trajetories [8℄ that an be approximated by means of theLPNC method. Figure 13 shows a measured signal generated by a Chuairuit where a mixture of measurement noise and dynamial noise ours.Figure 14 shows the result of noise redution applied to suh a signal.
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 [V]Fig. 14. Strobosopi map reeived after noise redution by the LPNC methodapplied to data presented at Fig. 13.7. Noise level estimation by LPNC methodThe LPNC method introdued in the previous setion an be used toquantify the noise level of data. The noise level, i.e. the standard deviationin noisy time series, may be approximated as the Eulidian distane betweenthe vetors {xi} and {x̄i} representing the time series before and after noiseredution [16℄

σ̃noise ≈

√

√

√

√

1

N

N
∑

i=1

(xi − x̄i)
2 . (28)The main disadvantage of the LPNC method used for the noise level esti-mation is its small rate of onvergene with respet to other known meth-ods [4, 27�29℄ and the fat that the method an be used only for low-dimensional systems. On the other hand the LPNC method an be appliedfor estimation of any noise level inluding a large one. In Table III we havepresented the estimated noise level σ̃noise for the Chua iruit.



Noise Redution in Chaoti Time Series 2193TABLE IIINoise level estimated by the LPNC method for the Chua iruit with measurementnoise (N = 3000).
N σnoise [mV℄ σ̃noise [mV℄
0% 0 5.5

3.1% 30.4 28.9
6.2% 60.8 53.7
12.3% 121.7 110
24.9% 243.4 235
28.3% 304 305
46.1% 486 454
73.7% 973 938
90.6% 1520 1375
96.5% 2120 18448. ConlusionsIn onlusion we have developed a method of noise redution that makesuse of nonlinear onstraints whih our in a natural way due to the lin-earization of a deterministi system trajetory in the nearest neighborhoodof every point in the phase spae. This neighborhood has been determinedby Delaunay triangulation. The method has been applied to data fromthe Henon map, Lorenz model and eletroni Chua iruit ontaminated bymeasurement (additive) noise. The e�ieny of our method is omparableto that of standard LP methods but it is more robust to input parameteradjustment.We gratefully aknowledge helpful disussion with Holger Kantz andRainer Hegger. KU is thankful to Organizers of the Summer Shool German�Polish Dialogue 2002 in Darmstadt. He has been partially supported by thePolish State Committee for Sienti� Rsearh (KBN) under grant 2 P03B032 24 and JAH has been supported by the speial program Dynamis ofComplex Systems of Warsaw University of Tehnology.Appendix AMultidimensional version of LPNC methodIn Se. 3 the LPNC method has been presented for one-dimensionalsystems. Here we show the generalization of this approah for d-dimensionaldynamis. For one-dimensional problems the Jaobi matrix of the systemdoes not appear expliitly in our method. For higher dimensional models the



2194 K. Urbanowiz et al.orresponding Jaobian A has to be alulated but we manage to minimalizeerrors ourring by its estimation. The linearized equation of motion forvetors from the nearest neighborhood X̃
NN
n of a vetor x̃n an be writtenin the form

x̃n+1 = A · x̃n + b. (A.1)In suh a ase one needs three vetors x̃n, x̃ k, x̃ j ∈ X̃
NN
n to write onstraintsorresponding to Eq. (12). In omparison with the one-dimensional ase thenumber of near neighbors i.e. the number of points in the set X̃

NN
n mustbe larger to allow a unique estimation of the Jaobian A. We assume thatthe Jaobi matrix an be approximately reeived by minimalization of thefollowing ost funtional

∑

s

(am1xs + am2xs−τ + . . . + amdxs−(d−1)τ − xs+1−mτ )
2 = min

(∀m=1,...,d) and {

s : x s ∈ XNN
n

}

, (A.2)where aij = [A]ij . By analogy with Eq. (12) we introdue the following:
Gd

m

(

X̃
NN
n

)

≡ am1G
(

X̃
NN
n , X̃ n+1−mτ

)

+am2G
(

X̃ n−τ , X̃ n+1−mτ

)

+ . . .

. . . + amdG
(

X̃ n−(d−1)τ , X̃ n+1−mτ

)

= 0

(∀m=1,...,d) , (A.3)where we used the notation orresponding to equation (16) i.e.
G
(

XNN
n ,X n+l

)

= xn (xk+l − xj+l) + xk (xj+l − xn+l)

+xj (xn+l − xk+l) ,

G (X n−s,X n+l) = xn−s (xk+l − xj+l) + xk−s (xj+l − xn+l)

+xj−s (xn+l − xk+l) , (A.4)
X n+s = {xn+s,x k+s,x j+s} (∀s=0,±1,±2,...) ,where {n, j, k : xn,x k,x j ∈ XNN

n

}. Sine the lean trajetory is not knownthus in Eq. (A.3) the observed variables XNN
n , X n+1−mτ et. are used.In suh a way equation (19) an be written in a more general way as

d
∑

l=1

amlG
(

δX n−(l−1)τ , δX n+1−mτ

)

∼= 0

(∀n=1,...,N ,∀m=1,...,d) , (A.5)
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G (δX n−s, δX n+l) = δxn−s (δxk+l − δxj+l) + δxk−s (δxj+l − δxn+l)

+δxj−s (δxn+l − δxk+l) , (A.6)
δX n+s = {δx n+s, δx k+s, δx j+s} (∀s=0,±1,±2,...) ,where {n, j, k : xn,xk,x j ∈ XNN

n

}, δxn =
{

δxn, δxn−τ , . . . , δxn−(d−1)τ

}and {n : xn ∈ XNN
n

}.Now the ost problem (21) an be transformed to the form
S̃NN

n =
∑

s

(δxs)
2 + λm

n Gd
m

(

XNN
n

)

= min

(∀n=1,...,N ,∀m=1,...,d)and
{

s : x s ∈ XNN
n or x s ∈ X n+1

}

. (A.7)Finding zeros of partial derivatives of the funtional (A.7) one an linearizethis problem and write it in the form similar to the Eq. (22)
M n · δX λ

n = Bn (∀n=1,...,N ) . (A.8)Vetors δX λ
n and Bn ourring in Eq. (A.8) are equal to
(

δX λ
n

)T
=
{

δxn−(d−1)τ , δxn−(d−2)τ , . . .

. . . , δxn, δxn+1, λ
1
n, λ2

n, . . . , λd
n

}

, (A.9)
BT

n =
{

0, 0, . . . , 0,−Gd
1

(

XNN
n

)

,−Gd
2

(

XNN
n

)

, . . . ,−Gd
d

(

XNN
n

)

}

,(A.10)where the number of zeros d0 appearing in BT
n depends on the values of τand d and for the ase τ = 1, d0 = d + 1. Elements of the matrix M n anbe written as

[M n]mm = 2 (∀m=1,...,d0
) ,

[M n]lm = [M n]ml + =
d
∑

s=1

ams (xk+1 − xj+1)

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ xn} ,
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[M n]lm = [M n]ml + =

d
∑

s=1

ams (xj+1 − xn+1)

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ x k} ,

[M n]lm = [M n]ml + =
d
∑

s=1

ams (xn+1 − xk+1)

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ x j} ,

[M n]lm = [M n]ml + =

d
∑

s=1

ams (xj−mτ − xk−mτ )

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ xn+1} ,

[M n]lm = [M n]ml + =

d
∑

s=1

ams (xn−mτ − xj−mτ )

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ x k+1} ,

[M n]lm = [M n]ml + =

d
∑

s=1

ams (xk−mτ − xn−mτ )
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