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NOISE REDUCTION IN CHAOTIC TIME SERIESBY A LOCAL PROJECTION WITH NONLINEARCONSTRAINTSKrzysztof Urbanowi
z†, Janusz A. Hoªyst‡,Fa
ulty of Physi
s and Center of Ex
ellen
e Complex Systems Resear
hWarsaw University of Te
hnologyKoszykowa 75, 00-662 Warsaw, PolandThomas Stemler and Hartmut BennerInstitute of Solid-State Physi
sDarmstadt University of Te
hnologyHo
hs
hulstr. 6, D-64289 Darmstadt, Germany(Re
eived May 28, 2004)On the basis of a lo
al-proje
tive (LP) approa
h we develop a methodof noise redu
tion in time series that makes use of nonlinear 
onstraintsappearing due to the deterministi
 
hara
ter of the underlying dynami
alsystem. The Delaunay triangulation approa
h is used to �nd the optimalnearest neighboring points in time series. The e�
ien
y of our methodis 
omparable to standard LP methods but our method is more robustto the input parameter estimation. The approa
h has been su

essfullyapplied for separating a signal from noise in the 
haoti
 Henon and Lorenzmodels as well as for noisy experimental data obtained from an ele
troni
Chua 
ir
uit. The method works properly for a mixture of additive anddynami
al noise and 
an be used for the noise-level dete
tion.PACS numbers: 05.45.Tp, 05.40.Ca1. Introdu
tionIt is 
ommon that observed data are 
ontaminated by noise (for a reviewof methods of nonlinear time series analysis see [1�3℄). The presen
e ofnoise 
an substantially a�e
t su
h system parameters as dimension, entropyor Lyapunov exponents [4℄. In fa
t noise 
an 
ompletely obs
ure or even
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‡ e-mail: jholyst�if.pw.edu.pl (2175)



2176 K. Urbanowi
z et al.destroy the fra
tal stru
ture of a 
haoti
 attra
tor [5℄ and even 2% of noise
an make a dimension 
al
ulation misleading [6℄. It follows that both fromthe theoreti
al as well as from the pra
ti
al point of view it is desirable toredu
e the noise level. Thanks to noise redu
tion [5, 7�18℄ it is possible e.g.to restore the hidden stru
ture of an attra
tor whi
h is smeared out by noise,as well as to improve the quality of predi
tions.Every method of noise redu
tion assumes that it is possible to distinguishbetween noise and a 
lean signal on the basis of some obje
tive 
riteria.Conventional methods su
h as linear �lters use a power spe
trum for thispurpose. Low pass �lters assume that a 
lean signal has some typi
al lowfrequen
y, respe
tively it is true for high pass �lters. It follows that thesemethods are 
onvenient for a regular sour
e whi
h generates a periodi
 ora quasi-periodi
 signal. In the 
ase of 
haoti
 signals linear �lters 
annotbe used for noise redu
tion without a substantial disturban
e of the 
leansignal. The reason is the broad-band spe
trum of 
haoti
 signals. It followsthat for 
haoti
 systems we make use of another generi
 feature of dissipativemotion lo
ated on attra
tors that are smooth submanifolds of an admissiblephase spa
e. As results 
orresponding state ve
tors re
onstru
ted from timedelay variables are limited to geometri
 obje
ts that 
an be lo
ally linearized.This fa
t is a 
ommon ba
kground of all lo
al proje
tive (LP) methods ofnoise redu
tion.Besides the LP approa
h there are also noise redu
tion methods thatapproximate an unknown equation of motion and use it to �nd 
orre
tionsto state ve
tors. Su
h methods make use of neural networks [11℄ or a geneti
programming [12℄ and one has to assume some basis fun
tions e.g. radialbasis fun
tions [19℄ to re
onstru
t the equation of motion. Another groupof methods are modi�ed linear �lters e.g. the Wiener �lter [13℄, the Kalman�lter [14℄, or methods based on wavelet analysis [15℄. Appli
ations of thesemethods are limited to systems with large sampling frequen
ies, and theyare 
on�ned to the neighborhood of every point in phase spa
e.The method des
ribed in this paper 
an be 
onsidered as an extension ofLP methods by taking into a

ount 
onstraints that o

ur due to the lo
allinearization of the equation of motion of the system. We 
all our methodthe lo
al proje
tion with nonlinear 
onstraints (LPNC).The paper is organized as follows. In the following se
tion we shallpresent the general ba
kground of LP methods. The LPNC method is in-trodu
ed in Se
. 3 and 
ompared with LP methods in Se
. 4. In Se
. 5we present methods how to �nd the nearest neighborhood, and examplesof noise redu
tion and estimation are introdu
ed in Se
s. 6 and 7. In theAppendix A one 
an �nd the multidimensional generalization of the solutionpresented in Se
. 3.
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tion in Chaoti
 Time Series 21772. Lo
al proje
tive methods of noise redu
tionLet us 
onsider a s
alar time series {x̃n}, n = 1, 2, ..., N 
orresponding toan experimentally a

essible 
omponent of the system traje
tory. We assumethat in the presen
e of measurement noise instead of the 
lean time series x̃nwe observe a noisy series xn: xn = x̃n+ηn where ηn is the noise variable. Theaim of noise redu
tion methods is to estimate the set {x̃n} from the observednoisy data set {xn}, i.e. to �nd 
orre
tions δxn su
h that xn + δxn ≈ x̃n.The 
orre
tions δxn 
an be estimated on the assumption that x̃n belongs toa 
lean deterministi
 traje
tory. Let us 
reate ve
tors of the system state
x̃n using the Takens Theorem [2℄ x̃n = {x̃n, x̃n−τ , ..., x̃n−(d−1)τ }, where d isthe embedding dimension, and τ is the embedding delay that further willbe just 1. Now the simple approa
h is to use a linear approximation for thenearest neighborhood X̃

NN
n of a ve
tor x̃n and then to estimate an unknownequation of motion in the embedded spa
e by a linear �t: x̃n+1 = Ax̃n + b.The matrix A is the 
orresponding Ja
obi matrix and b is a 
onstant ve
tor.In LP methods the lo
al linearity of the system dynami
s plays the
ru
ial role. The unknown equation of motion of a deterministi
 systems

x̃n+1 = F (x̃n, x̃n−1, . . . , x̃n−d+1) is equivalent to the presen
e of a 
onstraint
H (x̃n+1, x̃n, . . . , x̃n−d+1) = 0. If the embedding dimension d is larger thanthe dimension of the attra
tor then Q 
onstraints appear:

H(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) = 0 and q = 1, . . . , Q ≤ d , (1)where Q depends on the rounded up dimension da of the attra
tor, Q =

d + 1 − da. Sin
e we apply a linear approximation for ve
tors x̃ i ∈ X̃
NN
nthe 
onstraints (1) 
an be written as

H(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) =

d−Q
∑

j=1

a
q,(n)
j x̃i−j+1−q + bq,(n) − x̃i+1−q = 0 , (2)where a

q,(n)
j and bq,(n) are elements of A and b respe
tively. The main prob-lem of LP methods is to �nd a tangent subspa
e determined by the linear
onstraints H

(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) = 0 and to perform an appropriateproje
tion on this subspa
e. Di�erent LP approa
hes make use of di�erentproje
ting methods, however tangent subspa
es are found in the same man-ner by all methods, i.e. the subspa
e should ful�ll the 
ondition (2) and the
ondition 〈|xi − x̃i|

2
〉

= min.
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z et al.2.1. Cawley�Hsu�Sauer method (CHS)The method makes use of a perpendi
ular proje
tion on a subspa
e 
or-responding to the 
onstraints (2) [16,17℄. Sin
e there are several 
onstraints(2) and the same data will o

ur in several Takens ve
tors xn there are manypossible 
orre
tions δxn,q to the same observed data xn. In the CHS methodone makes a 
ompromise between di�erent 
orre
tions by taking the average
x̃n = xn + α

Q
∑

q=1

δxn,q , (3)where
δxn,q = −H(n)

q (xn+1, xn, . . . , xn−d+1)
▽nH

(n)
q

∥

∥

∥
▽nH

(n)
q

∥

∥

∥

2 (4)is the 
orre
tion of xn obtained due to the 
onstraint
H(n)

q (x̃n+1, x̃n, . . . , x̃n−d+1) = 0 .

α is some 
onstant 0 < α < 1 and ▽nH
(n)
q = ▽H

(n)
q (xn+1, xn, . . . , xn−d+1)is the gradient of the 
onstraint fun
tion.2.2. S
hreiber�Grassberger method (SG)Instead of the perpendi
ular proje
tion on the subspa
e de�ned by (2)one 
an perform a proje
tion by 
orre
ting only one variable [5℄. If we 
hoose

xn+1−r as the 
orre
ted variable where r ≈ d/2 then the 
orre
tions are
x̃n = xn − α

H
(n)
s (xn+1+r, xn+r, . . . , xn−d+1+r)

∂H
(n)
s (xn+1+r, xn+r, . . . , xn−d+1+r) /∂xn

, (5)where s ≈ Q
2 . The approa
h 
an be justi�ed as follows. If the largest(unstable) Lyapunov exponent is λu > 0 and the smallest (stable) Lyapunovexponent is λs < 0 we 
an write ∂xn+r

∂xn
∼ eλur and ∂xn−d+1+r

∂xn
∼ e|λs|(r−d+1).If λu ≈ |λs| then the highest pre
ision for determining the denominator ofthe rhs of (5) is usually obtained for r = d/2:

d/2
∑

l=0

∣

∣

∣
eλul + e|λs|l

∣

∣

∣
|∆xn| = min

r=0,...,d

{

r
∑

l=0

∣

∣

∣
eλul

∣

∣

∣
|∆xn| +

d−r
∑

l=0

∣

∣

∣
e|λs|l

∣

∣

∣
|∆xn|

}

,(6)where ∆xn is the error 
onne
ted with the variable xn.
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 Time Series 21792.3. The optimal method of lo
al proje
tion (GHKSS)In the GHKSS method [18,20℄ developed by Grassberger et al. one looksfor a minimization fun
tional that ful�lls the linear 
onstraints (2) by 
orre-sponding 
orre
tions re
eived in a one-step pro
edure. The 
onstraints (2)
an be written in the equivalent form (

aq,(n) · ỹn

)

+bq,(n) = 0, where a newve
tor ỹn = {x̃n+1, x̃n, . . . , x̃n−d+1} is introdu
ed, the dimension of whi
his larger by one than the dimension of the ve
tor xn. Ve
tors aq,(n) shouldbe linearly independent and appropriately normalized, so that multiple 
or-re
tions of the variables are eliminated, i.e. aq,(n) · Paq′,(n) = δqq′ where Pis the matrix des
ribing the metri
 of the system. Let Y NN
n be a set 
or-responding to the nearest neighborhood of the ve
tor yn. Minimizing thefun
tional ∑

k

δx k ·P
−1δx k for {k : yk ∈ Y NN

n

} under the above 
onditionswe get a system of 
oupled equations. The next step is to 
onsider all ve
torsof Y NN
n and to 
al
ulate the average ξ

(n)
i = 1

˛

˛

˛
Y

NN

n

˛

˛

˛

∑

k

xk+i, i = 0, 1, . . . , das well as 
orresponding (d + 1) × (d + 1) 
ovarian
e matrix
C

(n)
ij =

1
∣

∣Y NN
n

∣

∣

∑

k

xk+ixk+j − ξ
(n)
i ξ

(n)
j . (7)Here ∣∣Y NN

n

∣

∣ means the number of elements in the set. De�ning Ri = 1√
Piand Γ

(n)
ij = RiC

(n)
ij Rj one 
an �nd Q orthonormal eigenve
tors of the matrix

Γ
(n) 
orresponding to its smallest eigenvalues eq,(n) for q = 1, . . . , Q.Let the matrix Π

(n)
ij =

Q
∑

q=1
e
q,(n)
i e

q,(n)
j de�ne a subspa
e spanned by theeigenve
tors eq,(n). Now the 
orre
tions to the observed signal 
an be writtenas follows

δxn+i =
1

Ri

d
∑

j=0

Π
(n)
ij Rj

(

ξ
(n)
j − xn+j

)

. (8)We see that the GHKSS method does not employ multiple 
orre
tionsresulting from 
onstraints (2), but only performs a smaller number of 
or-re
tions following the multiple o

urren
e of the same variable xn in variousve
tors y i : xn ∈ y i.The solution (8) is a generalization of the CHS and SG methods. Themain di�eren
e between the CHS method and the GHKSS method is in thesubspa
e of proje
tion. While a perpendi
ular proje
tion of points is usedin the �rst 
ase, proje
tion is on a tangent subspa
e de�ned by the matrix P
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z et al.in the se
ond 
ase. The matrix P should be diagonal and su
h that the �rstand the last 
omponent of the ve
tor yn have only small weights e.g. Pi = 1for i = 1, 2, . . . , d − 1 and Pi = 1000 for i = 0, d.The e�
ien
y of noise redu
tion methods 
an be measured by the gainparameter, de�ned as
G = 10 log

(

σ2
noise

σ2
red

)

, (9)where σ2
noise =

〈

(xn − x̃n)2
〉 is the varian
e of added noise and σ2

red is thevarian
e of noise left after noise redu
tion. The last value is 
al
ulated asthe square of the distan
e between the ve
tor of noise-redu
ed data and theve
tor of 
lean data divided by the dimension of these ve
tors. The de�nitionof the gain presumes the knowledge of the 
lean data X̃n = {x̃n}.The noise level parameter N 
an be de�ned as the ratio of standard noisedeviation σnoise to standard data deviation σdata

N =
σnoise

σdata
. (10)3. The prin
iple of LPNC methodThe LP methods des
ribed in the previous se
tion make use of linear 
on-straints that appear due to linear approximation of the system dynami
s.Su
h a linear approximation has only a lo
al 
hara
ter and 
orresponding
oe�
ients depend, in fa
t, on the position in phase spa
e. If we assume thatthe nearest neighborhood of every point x̃n is 
hara
terized by the same 
oef-�
ients then nonlinear 
onstraints appear that 
an be used for re
onstru
tionof the unknown deterministi
 traje
tory. The basi
 advantage of the lo
alproje
tion with nonlinear 
onstraints (LPNC) method introdu
ed here as
ompared to LP methods is its smaller sensitivity to the input parametersestimation. A weak point of the LPNC method is its slower 
onvergen
erate with respe
t to the standard LP approa
h. The LPNC algorithm 
anbe a

elerated but at the 
ost of de
reasing the gain parameter. Like otherLP methods the LPNC method belongs to the iterative approa
hes. A sin-gle iteration provides only a partial noise redu
tion and a 
orre
ted data setserves as an input for the next iteration.For the one-dimensional 
ase the Ja
obi matrix A and the additive ve
-tor b des
ribing the lo
ally linearized dynami
s at point x̃n redu
e to s
alar
oe�
ients A = a1 (x̃n), b = b (x̃n), and the linearized equation of mo-tion at x̃n reads x̃n+1 = a1 (x̃n) x̃n + b (x̃n). Let us 
onsider the nearestneighborhood X̃

NN
n of x̃n. We assume that the set X̃

NN
n 
onsists of threepoints {x̃n, x̃k, x̃j ∈ X̃

NN
n

} whi
h are so 
lose to ea
h other that their lo-
ally linearized dynami
s 
an be approximately des
ribed by the same pair
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oe�
ients A = a1 (x̃n), b = b (x̃n). When we write down three linearequations of motion for x̃n, x̃k, x̃j

x̃n+1 = a1 (x̃n) x̃n + b (x̃n) ,

x̃k+1 = a1 (x̃n) x̃k + b (x̃n) ,

x̃j+1 = a1 (x̃n) x̃j + b (x̃n) (11)the 
oe�
ients a1(x̃n) and b(x̃n) 
an be eliminated. After elimination we geta 
onstraint that has to be ful�lled by the system variables for 
onsisten
yreasons.
G
(

X̃
NN
n

)

≡ x̃n (x̃k+1 − x̃j+1)

+x̃k (x̃j+1 − x̃n+1) + x̃j (x̃n+1 − x̃k+1) = 0 . (12)In the 
ase of a higher dimension d > 1 we have three equations of motionsbut the number of unknown 
onstants is larger than two, i.e.
x̃n+1 =

d
∑

i=1

ai (x̃n) x̃n−i+1 + b (x̃n) ,

x̃k+1 =

d
∑

i=1

ai (x̃n) x̃k−i+1 + b (x̃n) ,

x̃j+1 =

d
∑

i=1

ai (x̃n) x̃j−i+1 + b (x̃n) , (13)where ai(x̃n) are elements of the �rst row of Ja
obi matrix and b(x̃n) is a
onstant. The 
orresponding 
onstraint Gd for higher dimensional 
ase is asfollows
Gd
(

X̃
NN
n

)

≡

(

d
∑

i=1

aixn−i+1

)

(x̃k+1 − x̃j+1)

+

(

d
∑

i=1

aixk−i+1

)

(x̃j+1 − x̃n+1)

+

(

d
∑

i=1

aixj−i+1

)

(x̃n+1 − x̃k+1) = 0 . (14)The extended 
onstraints and the 
orresponding 
al
ulations that are validfor all rows of Ja
obi matrix A are presented in Appendix A. The 
ondi-tion (12) and (14) should be ful�lled for every point x̃n and its nearest neigh-borhood X̃
NN
n . Similarly as in LP methods these 
onstraints are ensured in
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z et al.the LPNC approa
h by appli
ation of the method of Lagrange multipliersto an appropriate 
ost fun
tion. Sin
e we expe
t that 
orre
tions to noisydata should be as small as possible, the 
ost fun
tion 
an be assumed to bethe sum of squared 
orre
tions S =
∑N

s=1 (δxs)
2.It follows that we are looking for the minimum of the fun
tional

S̃ =

N
∑

n=1

(δxn)2 +

N
∑

n=1

λnGd
(

X̃
NN
n

)

= min . (15)After �nding zero points of 2N partial derivatives one gets 2N equations with
2N unknown variables δxn and λn. However, in su
h a 
ase the derivatives ofthe fun
tional (15) are nonlinear fun
tions of these variables. For simpli
ityof 
omputing we are interested to pose our problem in su
h a way thatlinear equations appear whi
h 
an be solved by standard matrix algebra. Tounderstand the role of nonlinearity let us write the 
onstraint G

(

X̃
NN
n

) insu
h a way that expli
it dependen
e on the unknown variables is seen (the
orresponding equations for Gd(X̃
NN
n ) have a similar form)

G
(

X̃
NN
n

)

∼= G
(

XNN
n ,X n+1

)

+ G (δX n,X n+1)

+G
(

XNN
n , δX n+1

)

+ G (δX n, δX n+1) . (16)Here we introdu
ed the following notation
G
(

XNN
n ,X n+1

)

≡ xn (xk+1 − xj+1) + xk (xj+1 − xn+1)

+xj (xn+1 − xk+1) ,

G (δX n,X n+1) ≡ δxn (xk+1 − xj+1) + δxk (xj+1 − xn+1)

+δxj (xn+1 − xk+1) ,

G
(

XNN
n , δX n+1

)

≡ xn (δxk+1 − δxj+1) + xk (δxj+1 − δxn+1)

+xj (δxn+1 − δxk+1) ,

G (δX n, δX n+1) ≡ δxn (δxk+1 − δxj+1) + δxk (δxj+1 − δxn+1)

+δxj (δxn+1 − δxk+1) , (17)where XNN
n = {xn, xk, xj}, X n+1 = {xn+1, xk+1, xj+1}, δX n =

{δxn, δxk, δxj}, δX n+1 = {δxn+1, δxk+1, δxj+1} and xk, xj are the nearneighbors of xn. Indi
es are de�ned as {n, j, k : xn, xk, xj ∈ XNN
n

}. Notethat elements of the set X n+1 are not ne
essarily near neighbors to ea
hother.The approximation we use in (16) follows from the fa
t that in generalthe nearest neighborhood X̃
NN
n does not in
lude the same indi
es as the
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 Time Series 2183nearest neighborhood XNN
n , i.e.

{

k : x̃k ∈ X̃
NN
n

}

6=
{

j : xj ∈ XNN
n

}

. (18)In the 
ase of not 
orrelated noise and under the assumption that the intro-du
ed 
orre
tions 
ompletely redu
e the noise e�e
t δxs = −ηs (∀s=1,...,N )one 
an negle
t the nonlinear terms in Eqs. (17) i.e.
G (δX n, δX n+1) ∼= 0 (∀n=1,...,N). (19)In equation (19) we use the fa
t that 〈ηi〉 = 0 and 〈ηiηj〉 ∼ δij .Taking into a

ount the approximation (19) one 
an write the followinglinear equation for the problem (15)

M · δX = B , (20)where M is a matrix 
ontaining 
onstant elements, B is a 
onstant ve
-tor, and δXT = {δx1, δx2, . . . , δxN , λ1, λ2, . . . , λN} is a ve
tor of dependentvariables (T � transposition). In pra
ti
e it is very di�
ult or even im-possible to �nd the solution of equation (20) for large N . First, it is time
onsuming to solve a linear equation with a matrix 2N × 2N matrix for
N > 1000. Se
ond, when M be
omes singular the estimation error of theinverse matrix M−1 is very large. Third, we 
annot always �nd the true nearneighbors (the set X̃

NN
n ) from the noisy data {xi}. Taking into a

ount theabove reasons it is useful to repla
e the global minimization problem (15) by

N lo
al minimization problems related to the nearest neighborhood XNN
n .The 
orresponding lo
al fun
tionals to be minimized are

S̃NN
n =

∑

s

(δxs)
2 + λnGd

(

XNN
n

)

= min (∀n=1,...,N ) ,where
{

s : xs ∈ XNN
n or xs ∈ X n+1 or . . . xs ∈ X n−d+1

}

. (21)We 
an 
onsider the minimization problem (21) as a 
ertain approximationof (15). Fun
tionals (21) are linked to ea
h other due to the fa
t that thesame variable δxn appears in 6 ·d di�erent minimization problems (21). Theglobal problem (15) is equivalent to Eq. (20) with 2N unknown variables thatshould be found single-time. The problem (21) is equivalent to a system of
oupled equations that should be solved several times and as a result onegets an approximate global solution. Writing Eq. (21) in the linear form i.e.
al
ulating zero sites of 
orresponding derivatives and using Eq. (19) onegets N linear equations as follows
M n · δX λ

n = Bn (∀n=1,...,N ) , (22)
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z et al.where (δX λ
n

)T
= {δxn, δxk, δxj , δxn+1, δxk+1, δxj+1, λn}. The matri
esM n
orresponding to (21) avoid the disadvantages of (20), i.e. they are notsingular, their dimension is smaller and they do not substantially dependon the initial approximation of near neighbors. The matrix M n for one-dimensional 
ase is given by

M n =
















2 0 0 0 0 0 xk+1 − xj+1

0 2 0 0 0 0 xj+1 − xn+1

0 0 2 0 0 0 xn+1 − xk+1

0 0 0 2 0 0 xj − xk

0 0 0 0 2 0 xn − xj

0 0 0 0 0 2 xk − xn

xk+1 − xj+1 xj+1 − xn+1 xn+1 − xk+1 xj − xk xn − xj xk − xn 0















(23)Ve
tor Bn has the form BT
n =

{

0, 0, 0, 0, 0, 0,−G
(

XNN
n ,X n+1

)}.4. Comparing LPNC method to lo
al proje
tion methodsLet us illustrate the LPNC method by taking into a

ount the 
ost fun
-tional (21) (it will be written as SLPNC)
SLPNC =

∑

i

δx2
i + λ[x̃n (x̃k+1 − x̃j+1)

+x̃k (x̃j+1 − x̃n+1) + x̃j (x̃n+1 − x̃k+1)] = min . (24)The 
orresponding 
ost fun
tion SGHKSS that is used in the standard lo
alproje
tion method e.g. in the GHKSS method [18℄ is
SGHKSS =

∑

i

δx2
i + λ1 (x̃na + b − x̃n+1)

+λ2 (x̃ja + b − x̃j+1) + λ3 (x̃ka + b − x̃k+1) = min . (25)If we were in the position to �nd exa
t solutions for the minimization prob-lems (24) and (25) then both results would be the same sin
e (24) 
an beobtained from (25) after elimination of the parameters a and b.In both 
ases the variables {x̃n, x̃k, x̃j ∈ X̃
NN
n

} belong to the nearestneighborhood of the variable x̃n. The index i =
{

k, k + p : x̃k ∈ X̃
NN
n

}runs through all indi
es of the variables appearing in (24) and (25) while
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{

x̃l : x̃l−p ∈ X̃
NN
n

} 
orresponds to the p-iterate of x̃k.Parameters a and b 
an be 
al
ulated from a linearized form of the equationsof motion at the point x̃n.In pra
ti
e the minimization problems SLPNC and SGHKSS are not equiv-alent be
ause in both 
ases di�erent approximations are used. These di�er-en
es are: (i) Eq. (24) is nonlinear against 
orre
tions δxi. In this 
ase theapproximation 
onsists in a linearization. (ii) For Eq. (25) the exa
t valuesof the parameters a and b are unknown. The approximation means that aand b are estimated from noisy data.
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Fig. 1. The plot of the gain parameter G versus number of iterations of theGHKSS method (squares) and LPNC method (triangles). Lorenz systemN = 78%,
N = 1000.
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Fig. 2. The plot of the gain parameter G versus number of neighbors of theGHKSS method (squares) and LPNC method (triangles). Lorenz systemN = 78%,
N = 1000.Figs. 1 and 2 present a 
omparison between results re
eived by theGHKSS and LPNC methods. Fig. 1 shows that the gain parameter G de-pends on the number of neighbors, whi
h is an input parameter of bothmethods. One 
an see that for LPNC method the gain parameter is more
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z et al.robust to 
hanges of the number of neighbors than for the GHKSS method.In Fig. 2 the dependen
e of the gain parameter on the number of iterationsteps of the methods is shown. One 
an see that LPNC method �nishedredu
tion at the maximal e�
ien
y what is not the 
ase of GHKSS method,so the former method is easier to use sin
e it does not need estimation ofthe iteration number.If we 
onsider uniformly distributed sto
hasti
 variables (see Fig. 3) theLPNC method redu
es the noise very well, and as a result all data are rep-resented as a neighborhood of a point attra
tor (see Fig. 4) while a 
ompletenoise redu
tion would 
orrespond to a phase portrait 
onsisting of a singlepoint. In fa
t, for the 
ase 
onsidered we observed for the LPNC method anoise redu
tion of about 96% of data varian
e.
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 

 

X
n+

1

X
nFig. 3. The random data from uniform distribution.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 

 

X
n+

1

X
nFig. 4. The random data shown in the Fig. 3 after noise redu
tion with the LPNCmethod.
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al. It follows that features of the nearest neigh-borhood XNN
n of every point xn in the phase spa
e play an important role.Usually the nearest neighborhood is estimated by the smallest distan
e ap-proa
h that makes use of the standard Eu
lidian geometry. We have found,however, that our LPNC method works mu
h better when the Delaunay tri-angulation approa
h [21℄ is applied for the nearest neighborhood estimation.5.1. The smallest distan
e approa
h (SD)In the smallest distan
e approa
h the Eu
lidian metri
 is used, i.e. �rstthe distan
e between every pair of points in the Takens embedded spa
e is
al
ulated as di,j =

√

(xi − xj)
2 + . . . +

(

xi−(d−1)τ − xj−(d−1)τ

)2 and thenthe nearest neighborhood XNN
n of a point xn is de�ned as a set of ν pointsful�lling the relation

{

x j ∈ XNN
n ,∀kxk /∈ XNN

n : dn,j ≤ dn,k

}

. (26)Let us stress that this de�nition depends on the 
hosen value of the ν pa-rameter. i.e. on the assumed number of near neighbors, ν = 2, 3, . . . .5.2. The Delaunay triangulation approa
h (DT)To �nd the nearest neighborhood relations for the LPNC method wehave used the Delaunay triangulation [21℄. In general the triangulation ofany set of points X = {x i} ∈ R
d is a 
olle
tion of d-dimensional simpli
eswith disjoint interiors and verti
es 
hosen from X . There are many triangu-lation of the same set of points X . One of the best known is the Delaunaytriangulation (see Fig. 5). Let T (xn) be a part of the spa
e R

d that 
ontainsall points that are 
loser to xn than any other point x j from the set X

T (xn) =
{

z ∈ R
d,x j ∈ X : ∀j 6=n ‖z − xn‖ ≤ ‖z − x j‖

}

. (27)If m i,j = (x i + x j) /2 belongs to both sets T (x i) and T (x j) then by de�ni-tion the point x j is the nearest neighbor of x i re
eived due to the Delaunaytriangulation. By the above de�nition every point xn belongs to its nearestneighborhood xn ∈ XNN
n .In pra
ti
e the Delaunay approa
h 
an be performed as follows. A pair ofpoints xn and x j are near neighbors provided that there are no other points

x k (k 6= j, n) belonging to the hypersphere 
entered at the point mn,j andof the radius rn,j = ‖xn − x j‖ /2.



2188 K. Urbanowi
z et al.

 Fig. 5. Delaunay triangulation for a set of nine points in a two-dimensional spa
e.The near neighbors are 
onne
ted by bold lines. Sets T (x i), i = 1, 2, . . . , 9 arelimited by thin lines.
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b) 

Fig. 6. Illustration of nearest neighborhood sear
h by DT approa
h (a) x j and xnare not near neighbors. (b) x j and xn are near neighbors.In Fig. 6 two 
ases are presented when in the two-dimensional spa
e a)the point x j is not the nearest neighbor of xn and b) the point x j is thenearest neighbor of xn.The DT method has the advantage that triangles appearing due to 
on-ne
tions of near neighbors are almost equiangular (see Fig. 5). This propertyis the main reason for using the DT method in sear
h of the near neighbors.The disadvantage of this method is a slowing down of numeri
al 
al
ulations.6. Examples of noise redu
tionsThe LPNC method has been applied to three systems: the Henon map,the Lorenz model [22℄ and the Chua 
ir
uit [23�25℄. Figures 7�9 present the
haoti
 Henon map in the absen
e and in the presen
e of measurement noiseas well as a result of the noise redu
tion. Table I presents the values of thegain parameter for the Henon map and for the Lorenz system.To verify our method in a real experiment we have performed the analysisof data generated by a nonlinear ele
troni
 
ir
uit. The Chua 
ir
uit in the
haoti
 regime [23, 24℄ has been used and we have added a measurement
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z et al. TABLE IResults of noise redu
tion by the LPNC method for the Henon map and Lorenzmodel. System N G per
ent ofeliminated noiseHenon N = 1000 10% 9.58 89%Henon N = 3000 10% 10.04 91%Henon N = 1000 66% 5.08 69%Lorenz N = 1000 78% 5.85 74%Lorenz N = 3000 76% 6.02 75%Lorenz N = 1000 34% 7.21 81%noise to the out
oming signal. The noise (white and Gaussian) 
ame froman ele
troni
 noise generator. Figures 10�12 show a 
lean signal 
omingfrom this 
ir
uit, the signal generated by Chua 
ir
uit with measurementnoise (N = 96.5%) and the same signal after the noise redu
tion with theLPNC method (G = 6.38). Table II presents values of the G parameter andthe per
entage of eliminated noise for several values of the noise level in theChua 
ir
uit.
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V
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 [V]Fig. 12. The strobos
opi
 map re
eived after the noise redu
tion by the LPNCmethod applied to data presented in Fig. 11. TABLE IIResults of noise redu
tion by the LPNC method for the Chua 
ir
uit with a mea-surement noise (N = 3000).

N G per
ent ofeliminated noise
24.9% 5.4 71%
28.3% 4.9 68%
46.1% 7.0 80%
73.7% 4.81 67%
90.6% 7.4 82%
96.5% 6.4 77%All the above appli
ations of the LPNC method 
onsider the 
ase of mea-surement noise that has been added to the signal in numeri
al or ele
troni
experiments. However, our LPNC method 
an also be applied to dynami
alnoise i.e. to the noise whi
h in experiments is in
luded in the equations ofmotion [26℄. In su
h a 
ase one 
annot 
ompare the noisy data with the
lean traje
tory sin
e the latter one does not exist anymore, and there areonly ǫ-shadowed traje
tories [8℄ that 
an be approximated by means of theLPNC method. Figure 13 shows a measured signal generated by a Chua
ir
uit where a mixture of measurement noise and dynami
al noise o

urs.Figure 14 shows the result of noise redu
tion applied to su
h a signal.
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 [V]Fig. 14. Strobos
opi
 map re
eived after noise redu
tion by the LPNC methodapplied to data presented at Fig. 13.7. Noise level estimation by LPNC methodThe LPNC method introdu
ed in the previous se
tion 
an be used toquantify the noise level of data. The noise level, i.e. the standard deviationin noisy time series, may be approximated as the Eu
lidian distan
e betweenthe ve
tors {xi} and {x̄i} representing the time series before and after noiseredu
tion [16℄

σ̃noise ≈

√

√

√

√

1

N

N
∑

i=1

(xi − x̄i)
2 . (28)The main disadvantage of the LPNC method used for the noise level esti-mation is its small rate of 
onvergen
e with respe
t to other known meth-ods [4, 27�29℄ and the fa
t that the method 
an be used only for low-dimensional systems. On the other hand the LPNC method 
an be appliedfor estimation of any noise level in
luding a large one. In Table III we havepresented the estimated noise level σ̃noise for the Chua 
ir
uit.
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 Time Series 2193TABLE IIINoise level estimated by the LPNC method for the Chua 
ir
uit with measurementnoise (N = 3000).
N σnoise [mV℄ σ̃noise [mV℄
0% 0 5.5

3.1% 30.4 28.9
6.2% 60.8 53.7
12.3% 121.7 110
24.9% 243.4 235
28.3% 304 305
46.1% 486 454
73.7% 973 938
90.6% 1520 1375
96.5% 2120 18448. Con
lusionsIn 
on
lusion we have developed a method of noise redu
tion that makesuse of nonlinear 
onstraints whi
h o

ur in a natural way due to the lin-earization of a deterministi
 system traje
tory in the nearest neighborhoodof every point in the phase spa
e. This neighborhood has been determinedby Delaunay triangulation. The method has been applied to data fromthe Henon map, Lorenz model and ele
troni
 Chua 
ir
uit 
ontaminated bymeasurement (additive) noise. The e�
ien
y of our method is 
omparableto that of standard LP methods but it is more robust to input parameteradjustment.We gratefully a
knowledge helpful dis
ussion with Holger Kantz andRainer Hegger. KU is thankful to Organizers of the Summer S
hool German�Polish Dialogue 2002 in Darmstadt. He has been partially supported by thePolish State Committee for S
ienti�
 Rsear
h (KBN) under grant 2 P03B032 24 and JAH has been supported by the spe
ial program Dynami
s ofComplex Systems of Warsaw University of Te
hnology.Appendix AMultidimensional version of LPNC methodIn Se
. 3 the LPNC method has been presented for one-dimensionalsystems. Here we show the generalization of this approa
h for d-dimensionaldynami
s. For one-dimensional problems the Ja
obi matrix of the systemdoes not appear expli
itly in our method. For higher dimensional models the



2194 K. Urbanowi
z et al.
orresponding Ja
obian A has to be 
al
ulated but we manage to minimalizeerrors o

urring by its estimation. The linearized equation of motion forve
tors from the nearest neighborhood X̃
NN
n of a ve
tor x̃n 
an be writtenin the form

x̃n+1 = A · x̃n + b. (A.1)In su
h a 
ase one needs three ve
tors x̃n, x̃ k, x̃ j ∈ X̃
NN
n to write 
onstraints
orresponding to Eq. (12). In 
omparison with the one-dimensional 
ase thenumber of near neighbors i.e. the number of points in the set X̃

NN
n mustbe larger to allow a unique estimation of the Ja
obian A. We assume thatthe Ja
obi matrix 
an be approximately re
eived by minimalization of thefollowing 
ost fun
tional

∑

s

(am1xs + am2xs−τ + . . . + amdxs−(d−1)τ − xs+1−mτ )
2 = min

(∀m=1,...,d) and {

s : x s ∈ XNN
n

}

, (A.2)where aij = [A]ij . By analogy with Eq. (12) we introdu
e the following:
Gd

m

(

X̃
NN
n

)

≡ am1G
(

X̃
NN
n , X̃ n+1−mτ

)

+am2G
(

X̃ n−τ , X̃ n+1−mτ

)

+ . . .

. . . + amdG
(

X̃ n−(d−1)τ , X̃ n+1−mτ

)

= 0

(∀m=1,...,d) , (A.3)where we used the notation 
orresponding to equation (16) i.e.
G
(

XNN
n ,X n+l

)

= xn (xk+l − xj+l) + xk (xj+l − xn+l)

+xj (xn+l − xk+l) ,

G (X n−s,X n+l) = xn−s (xk+l − xj+l) + xk−s (xj+l − xn+l)

+xj−s (xn+l − xk+l) , (A.4)
X n+s = {xn+s,x k+s,x j+s} (∀s=0,±1,±2,...) ,where {n, j, k : xn,x k,x j ∈ XNN

n

}. Sin
e the 
lean traje
tory is not knownthus in Eq. (A.3) the observed variables XNN
n , X n+1−mτ et
. are used.In su
h a way equation (19) 
an be written in a more general way as

d
∑

l=1

amlG
(

δX n−(l−1)τ , δX n+1−mτ

)

∼= 0

(∀n=1,...,N ,∀m=1,...,d) , (A.5)
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G (δX n−s, δX n+l) = δxn−s (δxk+l − δxj+l) + δxk−s (δxj+l − δxn+l)

+δxj−s (δxn+l − δxk+l) , (A.6)
δX n+s = {δx n+s, δx k+s, δx j+s} (∀s=0,±1,±2,...) ,where {n, j, k : xn,xk,x j ∈ XNN

n

}, δxn =
{

δxn, δxn−τ , . . . , δxn−(d−1)τ

}and {n : xn ∈ XNN
n

}.Now the 
ost problem (21) 
an be transformed to the form
S̃NN

n =
∑

s

(δxs)
2 + λm

n Gd
m

(

XNN
n

)

= min

(∀n=1,...,N ,∀m=1,...,d)and
{

s : x s ∈ XNN
n or x s ∈ X n+1

}

. (A.7)Finding zeros of partial derivatives of the fun
tional (A.7) one 
an linearizethis problem and write it in the form similar to the Eq. (22)
M n · δX λ

n = Bn (∀n=1,...,N ) . (A.8)Ve
tors δX λ
n and Bn o

urring in Eq. (A.8) are equal to
(

δX λ
n

)T
=
{

δxn−(d−1)τ , δxn−(d−2)τ , . . .

. . . , δxn, δxn+1, λ
1
n, λ2

n, . . . , λd
n

}

, (A.9)
BT

n =
{

0, 0, . . . , 0,−Gd
1

(

XNN
n

)

,−Gd
2

(

XNN
n

)

, . . . ,−Gd
d

(

XNN
n

)

}

,(A.10)where the number of zeros d0 appearing in BT
n depends on the values of τand d and for the 
ase τ = 1, d0 = d + 1. Elements of the matrix M n 
anbe written as

[M n]mm = 2 (∀m=1,...,d0
) ,

[M n]lm = [M n]ml + =
d
∑

s=1

ams (xk+1 − xj+1)

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ xn} ,
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[M n]lm = [M n]ml + =

d
∑

s=1

ams (xj+1 − xn+1)

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ x k} ,

[M n]lm = [M n]ml + =
d
∑

s=1

ams (xn+1 − xk+1)

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ x j} ,

[M n]lm = [M n]ml + =

d
∑

s=1

ams (xj−mτ − xk−mτ )

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ xn+1} ,

[M n]lm = [M n]ml + =

d
∑

s=1

ams (xn−mτ − xj−mτ )

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ x k+1} ,

[M n]lm = [M n]ml + =

d
∑

s=1

ams (xk−mτ − xn−mτ )

(∀m=d0+1,...,d0+d+1) and {l : xl ∈ x j+1} , (A.11)where the remaining M n elements vanish and xl ∈ xn means that thevariable xl is a 
omponent of the xn ve
tor.The operator + = in (A.11) has the same meaning as in the programminglanguage C++, i.e. if elements of the matrix [M n]ml o

ur in a few pla
es(e.g.: xn ∈ xn and xn ∈ xn+1 ∀d>1,∨τ=1) then the elements at the rhs ofsu
h equations have to be summed up.REFERENCES[1℄ H. Kantz, T. S
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