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Kibble-Zurek mechanism is a theory of defect formation in a non-
equilibrium continuous phase transition. So far the theory has been success-
fully tested by numerical simulations and condensed matter experiments in
a number of systems with small thermal fluctuations. This paper reports
first numerical test of the mechanism in a system with large thermal fluc-
tuations and strongly non-mean-field behavior: the two dimensional Ising
model. The theory predicts correctly the initial density of defects that
survive a quench from the disordered phase. However, before the system
leaves the Ginzburg regime of large fluctuations most of these defects are
annihilated and the final density is determined by the dynamics of the
annihilation process only.

PACS numbers: 11.27.+d, 05.70.Fh, 98.80.Cq

1. Introduction

In a system with a continuous phase transition an adiabatic change of a
parameter of the system, like e.g. temperature, pressure or a coupling con-
stant in a Hamiltonian, can drive the system from a disordered phase to an
ordered one. A classic example is the paramagnet-ferromagnet transition
in the two dimensional (2D) Ising model. Thermodynamics of continuous
phase transitions has been intensively explored over many years. Two mayor
achievements: the solution of the Ising model by Onsager and the renormal-
ization group of Wilson were rewarded with a Nobel Prize in physics. The
RG formalism revealed deep connections between statistical mechanics and
quantum field theory.

A candidate theory of non-equilibrium phase transitions is the Kibble—
Zurek mechanism (KZM) [1,2]. Kibble pointed out [1] that in a non-
equilibrium transition there is no time to fully develop the long range order
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characteristic for the ordered phase. As a result, the final state of the sys-
tem is a mosaic of finite size ordered domains with different orientations of
the order parameter in every domain. In a topologically non-trivial case
this disorder takes the form of a finite density of topological defects. This
qualitative idea was quantified more by Zurek [2]. Zurek mechanism is a
combination of two basic facts: (1) a divergent correlation length

£~ &olel™, (1)

where € is a dimensionless distance from the critical point, v is a critical
exponent, and &y is a microscopic length scale, and (2) the critical slowing
down or divergent relaxation time

T &~ 19 ||V . (2)

Here 7y is a microscopic time scale. Because of the divergent relaxation time
any finite rate transition is a non-adiabatic phase transition: sufficiently
close to the critical point (where ¢ = 0) the system is too slow to react to
the changing external parameter ¢(t). Close to e = 0 we can linearize

et) = — . (3)

1
The relaxation time (2) equals the transition rate le/%] at ez = (19/1q) v+t
when the correlation length (1) is

&~ & (—Q) . (4)

70

This Zurek length is the average size of the ordered domains after the phase
transition and it determines the initial density of topological defects frozen
into the ordered phase after a non-adiabatic continuous phase transition.

The original motivation for Kibble and Zurek were symmetry breaking
phase transitions in cosmology. The random topological defects arising in
such transitions might provide initial seeds for structure formation in the
early Universe [3]. However, the universality of phase transitions makes
these ideas also relevant for a wide variety of condensed matter systems
where they can be verified by experiment.

The KZM prediction (4) is supported by a number of numerical simula-
tions [4]. However, as a result of finite numerical resources these numerical
data are limited to fast quenches (small 7q) with a large €7 in the regime of
small fluctuations where one can use the mean field (MF) value of the critical
exponent vy = % KZM is also supported by experiments in systems with
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small fluctuations like superfluid helium 3 [5], low T, superconductors [6],
and fast quenches in high T, superconductors [7]. In contrast, experiments
in systems with large fluctuations like helium 4 [8] or slow quenches in high
T. superconductors [9] are inconclusive. Rivers suggested [10] that vortices
created in the helium 4 experiment [8] disappear in a faster than expected an-
nihilation. Due to technical difficulties the analytic calculations in Ref. [10]
eventually resort to a linearization equivalent to the mean-field theory. It is
suggested there that beyond this linearized theory close to the critical point
the annihilation rate is divergent. However, simulations in Ref. [11] show
that this effect may be not as dramatic as anticipated in Ref. [10]. These
authors suggest that because of the critical slowing down the annihilation
rate close to € = 0 may in fact vanish. Due to limited numerical resources
the numerical evidence in Ref. [11] is rather indirect. To summarize, the
problem of KZM in the Ginzburg regime of large fluctuations has been rec-
ognized [10] but is far from being settled.

At the moment we do not have any condensed matter or numerical ex-
periment supporting KZM for large fluctuations and at the same time this
is the regime where KZM in principle can be questioned on general grounds.
The argument leading to Eq. (4) implicitly assumes that close to the critical
point the divergent correlation length £ in Eq. (1) is the only relevant length
scale. However, as is well known [12] but not quite generally appreciated,
if £ were the only length scale, then, on dimensional grounds, all critical
exponents would take their mean field values. As they do not (for example,
in the 2D Ising model v = 1 instead of the mean field vyir = %), then both &
and the microscopic &y must be relevant. With two relevant length scales the
dimensional argument alone is not sufficient to determine the initial density
of defects.

In this paper I report first numerical test of KZM for large fluctuations.
As the critical regime is numerically demanding (large £ means large lattice
and large 7 means long time) I chose the simplest possible model — the
celebrated 2D Ising model. This simple model has v = 1 clearly different
from the mean field vy = 1/2, and it has no regime where the MF theory
might be at least remotely accurate. It is a perfect testing ground for KZM.

2. Ising model with Glauber dynamics
Hamiltonian of the ferromagnetic Ising model in 2D is
H=- S;S; . (5)
(6,3)

Spins S; € {—1,+1} sit on a 2D N x N lattice with periodic boundary
conditions, (i,j) means a pair of nearest neighbor sites. The microscopic
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lengthscale & = 1 is the lattice spacing. In all the following numerical
simulations a 1024 x 1024 lattice was used.

To study non-equilibrium phase transitions the Ising model has to be
supplemented with dynamics. The standard choice is Glauber dynamics
also known as Monte-Carlo with a heat bath [13]. In the Glauber algorithm
every time step consists of the following sub-steps:

e choose a random spin 5; from the lattice,

e calculate its local field h; = =3, ;5;,
e calculate a probability P = exp(Sh;),

e choose a random number r € [0, 1],

e if r > P then set S; = +1, else set S; = —1.

Here (3 is an inverse temperature of the heat bath. This algorithm relaxes
the state of the Ising model towards thermal equilibrium at a given /3 [13].
On average it takes N? steps to update the state of N2 spins on the lattice.
These N? steps define the microscopic time scale 79 which I set equal to 1.

The Ising model with Glauber dynamics belongs to the same universality
class as the ¢* model with noise n

no 6= GV~ A~ )6+ (©

so often employed in the numerical simulations of KZM [4]. Here the con-
tinuum real field ¢ is a coarse grained lattice spin .S;. The Ising model is an
efficient “molecular dynamics” version of the ¢ field theory (6).

3. Relaxation time

In order to estimate the exponent y in Eq. (2) the relaxation time 7
was measured for several values of 8 < (.. For each (8 the Ising model was
initially prepared in a fully polarized state with all S; = 1, and then its
average magnetization M = »"..S;/N 2 relaxed towards the equilibrium at
M = 0, see the insert in Fig. 1. Each magnetization decay was fitted with
an exponent M = exp(—t/7). The best fits of 7 are shown in the double
logarithmic Fig. 1 as a function of 3. — 3. The slope of the linear fit in Fig. 1
gives an estimate of y = 2.09 & 0.02.
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Fig.1. y = logyy 7 as a function of = = log;,(8: — ). The 7s are the best fits to
the exponential decays of magnetization shown in the insert. The solid line is the
best linear fit with a slope of y = 2.09 + 0.02.

4. Quenches

Phase transitions were simulated with a linear ramp of the inverse tem-
perature

B(t) = 1.5 . (7)

7Q

The initial state at t = 0 was a state with random mutually uncorrelated

spins — the state of equilibrium at § = 0. Fig. 3 shows density of domain

walls separating positive S; from negative S; as a function of § for a number

of different transition times 7q. The critical point is 3. = 0.4407. For large

7q the density plots approach the equilibrium density neq(3). Note that the

equilibrium density neq(3) of domain walls remains nonzero even for 5 > f.

This is the critical Ginzburg regime of large fluctuations. A non-equilibrium

transition with a finite 7q results in an additional non-equilibrium density
dn(B) = n(f) —neq(8) > 0. KZM predicts that

dngzn(B) = &5 =1 A OO, ®)

Before this prediction is compared with the numerical data in Fig. 3, let me
digress on annihilation of domain walls.

5. Defect annihilation

First example is annihilation of defects from an initially totally random
spin configuration. The initial dn(t = 0) decays in time. Fig. 2 shows the
equilibrating n(t) for several values of 3 > .. Each decay is fitted with a
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Fig. 2. Deunsity of defects n(t) starting from an initial state with random spins and
decaying towards neq(8) for § = 0.45,0.47,0.6,1.0. The “0.45 — 0.55” marks the
plot of n(t) starting from the state of equilibrium at 8 = 0.45 > [, in the Ginzburg
regime and decaying quickly towards a new equilibrium at 8 = 0.55.

solid line that follows the power law dn(t) = (7,/t)'/? with an exponent of
1/2 known from the theory of phase ordering kinetics [14]. The best fits are
To = 1.3240.20,0.86+0.05,0.93+0.05, 0.644+0.05 for 8 = 0.45,0.47,0.60, 1.0
respectively. They are more or less constant in the considered range of tem-
peratures: as the critical point is approached the time scale for annihilation
7, neither diverges (as suggested in Ref. [10]) nor vanishes (as suggested in
Ref. [11]), but remains finite and close to the microscopic 19 = 1,

Ta ~ T0- (9)
The quench time 7q determines the time available for defect annihilation.

At late times after the transition, when most of the initial KZM domain
walls are already annihilated, we expect the scaling

dn(B) ~ (ﬂ)% . (10)

Q
It also follows from a phenomenological equation: mo%dn(t) = —idn3(t).
Its solution is
dn(0
in(t) = ——"O (11)

1+ %an(O)

Note that at late times dn(t) is forgetting its initial value dn(0) = dnkzm.
This solution is an illustration of the exact result (10) from Ref. [14].
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Second example is annihilation of domain walls from an initial state of
equilibrium at 8 > (.. The initial state was prepared by starting from fully
polarized spins, all S; = 1, and then heating them up at 8 = 0.45 for a time
of 10° sufficient to reach thermal equilibrium with neq(0.45) = 0.20. Then at
t = 0 3 was suddenly increased (the heat bath was cooled) to 8 = 0.55. Fig. 2
shows n(t) decaying towards the new equilibrium at neq(0.55) = 0.075. This
decay is much faster than for random initial spins because the equilibrium
domain walls in the Ginzburg regime at 3 > 3. are just boundaries of bubbles
of the minority spin-down phase in the spin-up polarized ferromagnet. The
bubbles together with their walls decay soon after the temperature is turned
down.
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Fig. 3. Total density n(8) of domain walls separating positive and negative S; as a
function of § for several values of the quench time 7q = 2,4,8,...,65536 (from top
to bottom). For the initial state of random spins the density is normalized to n = 1.
For large 7q the plots tend to the equilibrium density of defects neq(3) which is
finite even for 8 > (. = 0.4407 in the Ginzburg regime of large fluctuations.

6. KZM versus annihilation

Figure 4 is a double logarithmic plot of the non-equilibrium density dn (/)
in Fig. 3 as a function of 7q for a number of 3s. The slope at the critical
B, = 0.4407 is —0.315 4+ 0.007. This slope is consistent with the KZM
slope (8) of —0.324 and different from a mean-field KZM slope of —0.25 for
vmrp = 1/2 and yyp = 1. The initial non-equilibrium density of domain
walls is determined by KZM.

In contrast, similar slopes for 6 = 1.0 and 1.5 are —0.45 £ 0.01 and
—0.48 £ 0.01 respectively, and they are consistent with the phase ordering
kinetics exponent of —1/2 in Eq. (10). Apparently at later times the system
forgets the initial density dnkzym and dn(8) is determined solely by the
dynamics of defect annihilation.
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Indeed, the circles in Fig. 4 show dn(3 = 1.5) for a simulation where ()
is ramped up like in Eq. (7), but starting from the initial 5y = 0.6 > fS..
The spins were random at the initial Gy. The circles sit on the solid line
which is a fit to dn(8 = 1.5) obtained from a full quench like in Eq. (7). The
annihilation dominated dn(f) at later times is not sensitive to the details of
the KZM of defect formation, compare Egs. (10),(11).

However, the defects that survive annihilation at later times are KZM
defects quenched in from the disordered phase. As we have already seen,
compare Fig. 2, that annihilation of the Ginzburg domain walls is much
faster than annihilation of defects from the initially random spin state. The
latter state contains large domain walls while in the former domain walls
are boundaries of bubbles of a minority spin phase. The points in Fig. (4)
connected by a dashed line show dn(f = 1.5) after a quench starting from
the equilibrium state at Gy = 0.47 in the Ginzburg regime. These densities
are orders of magnitude lower than densities from the full quenches starting
at 8 = 0: Ginzburg defects do not survive annihilation.
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Fig.4. y = log,ydn(B) as a function of z = log;,7q for § = 0.4407, 1.0, 1.5
from top to bottom. Solid lines are the best linear fits with slopes of —0.315 +
0.007,—0.45+0.01, —0.48 £0.01 respectively. Circles show dn(8 = 1.5) in a quench
starting from Gy = 0.6 and random initial spins. The points connected by a dashed
line show densities dn(8 = 1.5) in a quench starting from 8y = 0.47 in the Ginzburg
regime and spins initially in thermal equilibrium.

7. Conclusion

I presented first numerical test of the Kibble-Zurek mechanism (KZM)
in the Ginzburg regime of large thermal fluctuations. In this regime both the
Zurek length &, and the microscopic length &y are relevant length scales that
determine the density of defects. However, the density of non-equilibrium
defects frozen into the ordered phase by a quench from the disordered phase
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is determined by £z only. This initial density of defects is gradually an-
nihilated and when the system leaves the Ginzburg regime the density of
defects is no longer sensitive to the details of the KZM, but it is deter-
mined by the dynamics of the annihilation process only. In particular, the
dependence of the density on the transition rate is determined by an expo-
nent that comes from the theory of phase ordering kinetics and not from
the KZM. The only way to see the KZM scaling (8) directly is to measure
the amount of disorder close to the critical point where the non-equilibrium
KZM density is largely obscured by the prevailing equilibrium thermal fluc-
tuations. However, the defects that survive the annihilation are the KZM
defects quenched in from the high temperature phase, the defects quenched
in from the Ginzburg regime decay much faster. The surviving defects are
a clear, though indirect, signature of the KZM.
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