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KIBBLE��UREK MECHANISM IN THE GINZBURGREGIME: NUMERICAL EXPERIMENTIN THE ISING MODELJa
ek DziarmagaM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived April 16, 2004)Kibble��urek me
hanism is a theory of defe
t formation in a non-equilibrium 
ontinuous phase transition. So far the theory has been su

ess-fully tested by numeri
al simulations and 
ondensed matter experiments ina number of systems with small thermal �u
tuations. This paper reports�rst numeri
al test of the me
hanism in a system with large thermal �u
-tuations and strongly non-mean-�eld behavior: the two dimensional Isingmodel. The theory predi
ts 
orre
tly the initial density of defe
ts thatsurvive a quen
h from the disordered phase. However, before the systemleaves the Ginzburg regime of large �u
tuations most of these defe
ts areannihilated and the �nal density is determined by the dynami
s of theannihilation pro
ess only.PACS numbers: 11.27.+d, 05.70.Fh, 98.80.Cq1. Introdu
tionIn a system with a 
ontinuous phase transition an adiabati
 
hange of aparameter of the system, like e.g. temperature, pressure or a 
oupling 
on-stant in a Hamiltonian, 
an drive the system from a disordered phase to anordered one. A 
lassi
 example is the paramagnet-ferromagnet transitionin the two dimensional (2D) Ising model. Thermodynami
s of 
ontinuousphase transitions has been intensively explored over many years. Two mayora
hievements: the solution of the Ising model by Onsager and the renormal-ization group of Wilson were rewarded with a Nobel Prize in physi
s. TheRG formalism revealed deep 
onne
tions between statisti
al me
hani
s andquantum �eld theory.A 
andidate theory of non-equilibrium phase transitions is the Kibble��urek me
hanism (KZM) [1, 2℄. Kibble pointed out [1℄ that in a non-equilibrium transition there is no time to fully develop the long range order(2205)



2206 J. Dziarmaga
hara
teristi
 for the ordered phase. As a result, the �nal state of the sys-tem is a mosai
 of �nite size ordered domains with di�erent orientations ofthe order parameter in every domain. In a topologi
ally non-trivial 
asethis disorder takes the form of a �nite density of topologi
al defe
ts. Thisqualitative idea was quanti�ed more by �urek [2℄. �urek me
hanism is a
ombination of two basi
 fa
ts: (1) a divergent 
orrelation length
ξ ≈ ξ0 |ε|−ν , (1)where ε is a dimensionless distan
e from the 
riti
al point, ν is a 
riti
alexponent, and ξ0 is a mi
ros
opi
 length s
ale, and (2) the 
riti
al slowingdown or divergent relaxation time
τ ≈ τ0 |ε|−y . (2)Here τ0 is a mi
ros
opi
 time s
ale. Be
ause of the divergent relaxation timeany �nite rate transition is a non-adiabati
 phase transition: su�
iently
lose to the 
riti
al point (where ε = 0) the system is too slow to rea
t tothe 
hanging external parameter ε(t). Close to ε = 0 we 
an linearize
ε(t) =

t

τQ

. (3)The relaxation time (2) equals the transition rate |ε/dε
dt | at εZ ≈ (τ0/τQ)

1

y+1when the 
orrelation length (1) is
ξZ ≈ ξ0

(

τQ

τ0

)
ν

y+1

. (4)This �urek length is the average size of the ordered domains after the phasetransition and it determines the initial density of topologi
al defe
ts frozeninto the ordered phase after a non-adiabati
 
ontinuous phase transition.The original motivation for Kibble and �urek were symmetry breakingphase transitions in 
osmology. The random topologi
al defe
ts arising insu
h transitions might provide initial seeds for stru
ture formation in theearly Universe [3℄. However, the universality of phase transitions makesthese ideas also relevant for a wide variety of 
ondensed matter systemswhere they 
an be veri�ed by experiment.The KZM predi
tion (4) is supported by a number of numeri
al simula-tions [4℄. However, as a result of �nite numeri
al resour
es these numeri
aldata are limited to fast quen
hes (small τQ) with a large εZ in the regime ofsmall �u
tuations where one 
an use the mean �eld (MF) value of the 
riti
alexponent νMF = 1
2
. KZM is also supported by experiments in systems with
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hanism in the Ginzburg Regime . . . 2207small �u
tuations like super�uid helium 3 [5℄, low Tc super
ondu
tors [6℄,and fast quen
hes in high Tc super
ondu
tors [7℄. In 
ontrast, experimentsin systems with large �u
tuations like helium 4 [8℄ or slow quen
hes in high
Tc super
ondu
tors [9℄ are in
on
lusive. Rivers suggested [10℄ that vorti
es
reated in the helium 4 experiment [8℄ disappear in a faster than expe
ted an-nihilation. Due to te
hni
al di�
ulties the analyti
 
al
ulations in Ref. [10℄eventually resort to a linearization equivalent to the mean-�eld theory. It issuggested there that beyond this linearized theory 
lose to the 
riti
al pointthe annihilation rate is divergent. However, simulations in Ref. [11℄ showthat this e�e
t may be not as dramati
 as anti
ipated in Ref. [10℄. Theseauthors suggest that be
ause of the 
riti
al slowing down the annihilationrate 
lose to ε = 0 may in fa
t vanish. Due to limited numeri
al resour
esthe numeri
al eviden
e in Ref. [11℄ is rather indire
t. To summarize, theproblem of KZM in the Ginzburg regime of large �u
tuations has been re
-ognized [10℄ but is far from being settled.At the moment we do not have any 
ondensed matter or numeri
al ex-periment supporting KZM for large �u
tuations and at the same time thisis the regime where KZM in prin
iple 
an be questioned on general grounds.The argument leading to Eq. (4) impli
itly assumes that 
lose to the 
riti
alpoint the divergent 
orrelation length ξ in Eq. (1) is the only relevant lengths
ale. However, as is well known [12℄ but not quite generally appre
iated,if ξ were the only length s
ale, then, on dimensional grounds, all 
riti
alexponents would take their mean �eld values. As they do not (for example,in the 2D Ising model ν = 1 instead of the mean �eld νMF = 1

2
), then both ξand the mi
ros
opi
 ξ0 must be relevant. With two relevant length s
ales thedimensional argument alone is not su�
ient to determine the initial densityof defe
ts.In this paper I report �rst numeri
al test of KZM for large �u
tuations.As the 
riti
al regime is numeri
ally demanding (large ξ means large latti
eand large τ means long time) I 
hose the simplest possible model � the
elebrated 2D Ising model. This simple model has ν = 1 
learly di�erentfrom the mean �eld νMF = 1/2, and it has no regime where the MF theorymight be at least remotely a

urate. It is a perfe
t testing ground for KZM.2. Ising model with Glauber dynami
sHamiltonian of the ferromagneti
 Ising model in 2D is

H = −
∑

〈i,j〉

SiSj . (5)Spins Si ∈ {−1,+1} sit on a 2D N × N latti
e with periodi
 boundary
onditions, 〈i, j〉 means a pair of nearest neighbor sites. The mi
ros
opi
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ale ξ0 = 1 is the latti
e spa
ing. In all the following numeri
alsimulations a 1024 × 1024 latti
e was used.To study non-equilibrium phase transitions the Ising model has to besupplemented with dynami
s. The standard 
hoi
e is Glauber dynami
salso known as Monte-Carlo with a heat bath [13℄. In the Glauber algorithmevery time step 
onsists of the following sub-steps:
• 
hoose a random spin Si from the latti
e,
• 
al
ulate its lo
al �eld hi = −

∑

j n.n. i Sj,
• 
al
ulate a probability P = exp(βhi),
• 
hoose a random number r ∈ [0, 1],
• if r > P then set Si = +1, else set Si = −1.Here β is an inverse temperature of the heat bath. This algorithm relaxesthe state of the Ising model towards thermal equilibrium at a given β [13℄.On average it takes N2 steps to update the state of N2 spins on the latti
e.These N2 steps de�ne the mi
ros
opi
 time s
ale τ0 whi
h I set equal to 1.The Ising model with Glauber dynami
s belongs to the same universality
lass as the φ4 model with noise η

τ0

∂

∂t
φ = ξ2

0∇
2φ − λ(φ2 − 1)φ + η (6)so often employed in the numeri
al simulations of KZM [4℄. Here the 
on-tinuum real �eld φ is a 
oarse grained latti
e spin Si. The Ising model is ane�
ient �mole
ular dynami
s� version of the φ4 �eld theory (6).3. Relaxation timeIn order to estimate the exponent y in Eq. (2) the relaxation time τwas measured for several values of β < βc. For ea
h β the Ising model wasinitially prepared in a fully polarized state with all Si = 1, and then itsaverage magnetization M =

∑

i Si/N
2 relaxed towards the equilibrium at

M = 0, see the insert in Fig. 1. Ea
h magnetization de
ay was �tted withan exponent M = exp(−t/τ). The best �ts of τ are shown in the doublelogarithmi
 Fig. 1 as a fun
tion of βc−β. The slope of the linear �t in Fig. 1gives an estimate of y = 2.09 ± 0.02.
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Fig. 1. y = log10 τ as a fun
tion of x = log10(βc − β). The τs are the best �ts tothe exponential de
ays of magnetization shown in the insert. The solid line is thebest linear �t with a slope of y = 2.09 ± 0.02.4. Quen
hesPhase transitions were simulated with a linear ramp of the inverse tem-perature
β(t) = 1.5

t

τQ

. (7)The initial state at t = 0 was a state with random mutually un
orrelatedspins � the state of equilibrium at β = 0. Fig. 3 shows density of domainwalls separating positive Si from negative Si as a fun
tion of β for a numberof di�erent transition times τQ. The 
riti
al point is βc = 0.4407. For large
τQ the density plots approa
h the equilibrium density neq(β). Note that theequilibrium density neq(β) of domain walls remains nonzero even for β > βc.This is the 
riti
al Ginzburg regime of large �u
tuations. A non-equilibriumtransition with a �nite τQ results in an additional non-equilibrium density
dn(β) = n(β) − neq(β) > 0. KZM predi
ts that

dnKZM(β) ≈ ξ−1
Z = τ

− ν

y+1

Q ≈ τ−0.324±0.003
Q . (8)Before this predi
tion is 
ompared with the numeri
al data in Fig. 3, let medigress on annihilation of domain walls.5. Defe
t annihilationFirst example is annihilation of defe
ts from an initially totally randomspin 
on�guration. The initial dn(t = 0) de
ays in time. Fig. 2 shows theequilibrating n(t) for several values of β > βc. Ea
h de
ay is �tted with a
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0.45->0.55Fig. 2. Density of defe
ts n(t) starting from an initial state with random spins andde
aying towards neq(β) for β = 0.45, 0.47, 0.6, 1.0. The �0.45 → 0.55� marks theplot of n(t) starting from the state of equilibrium at β = 0.45 > βc in the Ginzburgregime and de
aying qui
kly towards a new equilibrium at β = 0.55.solid line that follows the power law dn(t) = (τa/t)
1/2 with an exponent of

1/2 known from the theory of phase ordering kineti
s [14℄. The best �ts are
τa = 1.32±0.20, 0.86±0.05, 0.93±0.05, 0.64±0.05 for β = 0.45, 0.47, 0.60, 1.0respe
tively. They are more or less 
onstant in the 
onsidered range of tem-peratures: as the 
riti
al point is approa
hed the time s
ale for annihilation
τa neither diverges (as suggested in Ref. [10℄) nor vanishes (as suggested inRef. [11℄), but remains �nite and 
lose to the mi
ros
opi
 τ0 = 1,

τa ≈ τ0 . (9)The quen
h time τQ determines the time available for defe
t annihilation.At late times after the transition, when most of the initial KZM domainwalls are already annihilated, we expe
t the s
aling
dn(β) ≈

(

τ0

τQ

)
1

2

. (10)It also follows from a phenomenologi
al equation: τ0
d
dtdn(t) = −1

2
dn3(t).Its solution is

dn(t) =
dn(0)

√

1 + t
τ0

dn2(0)
. (11)Note that at late times dn(t) is forgetting its initial value dn(0) = dnKZM.This solution is an illustration of the exa
t result (10) from Ref. [14℄.
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ond example is annihilation of domain walls from an initial state ofequilibrium at β > βc. The initial state was prepared by starting from fullypolarized spins, all Si = 1, and then heating them up at β = 0.45 for a timeof 105 su�
ient to rea
h thermal equilibrium with neq(0.45) = 0.20. Then at
t = 0 β was suddenly in
reased (the heat bath was 
ooled) to β = 0.55. Fig. 2shows n(t) de
aying towards the new equilibrium at neq(0.55) = 0.075. Thisde
ay is mu
h faster than for random initial spins be
ause the equilibriumdomain walls in the Ginzburg regime at β > βc are just boundaries of bubblesof the minority spin-down phase in the spin-up polarized ferromagnet. Thebubbles together with their walls de
ay soon after the temperature is turneddown.
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Inverse TemperatureFig. 3. Total density n(β) of domain walls separating positive and negative Si as afun
tion of β for several values of the quen
h time τQ = 2, 4, 8, . . . , 65536 (from topto bottom). For the initial state of random spins the density is normalized to n = 1.For large τQ the plots tend to the equilibrium density of defe
ts neq(β) whi
h is�nite even for β > βc = 0.4407 in the Ginzburg regime of large �u
tuations.6. KZM versus annihilationFigure 4 is a double logarithmi
 plot of the non-equilibrium density dn(β)in Fig. 3 as a fun
tion of τQ for a number of βs. The slope at the 
riti
al
βc = 0.4407 is −0.315 ± 0.007. This slope is 
onsistent with the KZMslope (8) of −0.324 and di�erent from a mean-�eld KZM slope of −0.25 for
νMF = 1/2 and yMF = 1. The initial non-equilibrium density of domainwalls is determined by KZM.In 
ontrast, similar slopes for β = 1.0 and 1.5 are −0.45 ± 0.01 and
−0.48 ± 0.01 respe
tively, and they are 
onsistent with the phase orderingkineti
s exponent of −1/2 in Eq. (10). Apparently at later times the systemforgets the initial density dnKZM and dn(β) is determined solely by thedynami
s of defe
t annihilation.
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ir
les in Fig. 4 show dn(β = 1.5) for a simulation where β(t)is ramped up like in Eq. (7), but starting from the initial β0 = 0.6 > βc.The spins were random at the initial β0. The 
ir
les sit on the solid linewhi
h is a �t to dn(β = 1.5) obtained from a full quen
h like in Eq. (7). Theannihilation dominated dn(β) at later times is not sensitive to the details ofthe KZM of defe
t formation, 
ompare Eqs. (10),(11).However, the defe
ts that survive annihilation at later times are KZMdefe
ts quen
hed in from the disordered phase. As we have already seen,
ompare Fig. 2, that annihilation of the Ginzburg domain walls is mu
hfaster than annihilation of defe
ts from the initially random spin state. Thelatter state 
ontains large domain walls while in the former domain wallsare boundaries of bubbles of a minority spin phase. The points in Fig. (4)
onne
ted by a dashed line show dn(β = 1.5) after a quen
h starting fromthe equilibrium state at β0 = 0.47 in the Ginzburg regime. These densitiesare orders of magnitude lower than densities from the full quen
hes startingat β = 0: Ginzburg defe
ts do not survive annihilation.
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Fig. 4. y = log10 dn(β) as a fun
tion of x = log10 τQ for β = 0.4407, 1.0, 1.5from top to bottom. Solid lines are the best linear �ts with slopes of −0.315 ±

0.007,−0.45±0.01,−0.48±0.01 respe
tively. Cir
les show dn(β = 1.5) in a quen
hstarting from β0 = 0.6 and random initial spins. The points 
onne
ted by a dashedline show densities dn(β = 1.5) in a quen
h starting from β0 = 0.47 in the Ginzburgregime and spins initially in thermal equilibrium.7. Con
lusionI presented �rst numeri
al test of the Kibble��urek me
hanism (KZM)in the Ginzburg regime of large thermal �u
tuations. In this regime both the�urek length ξZ and the mi
ros
opi
 length ξ0 are relevant length s
ales thatdetermine the density of defe
ts. However, the density of non-equilibriumdefe
ts frozen into the ordered phase by a quen
h from the disordered phase
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hanism in the Ginzburg Regime . . . 2213is determined by ξZ only. This initial density of defe
ts is gradually an-nihilated and when the system leaves the Ginzburg regime the density ofdefe
ts is no longer sensitive to the details of the KZM, but it is deter-mined by the dynami
s of the annihilation pro
ess only. In parti
ular, thedependen
e of the density on the transition rate is determined by an expo-nent that 
omes from the theory of phase ordering kineti
s and not fromthe KZM. The only way to see the KZM s
aling (8) dire
tly is to measurethe amount of disorder 
lose to the 
riti
al point where the non-equilibriumKZM density is largely obs
ured by the prevailing equilibrium thermal �u
-tuations. However, the defe
ts that survive the annihilation are the KZMdefe
ts quen
hed in from the high temperature phase, the defe
ts quen
hedin from the Ginzburg regime de
ay mu
h faster. The surviving defe
ts area 
lear, though indire
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