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KIBBLE��UREK MECHANISM IN THE GINZBURGREGIME: NUMERICAL EXPERIMENTIN THE ISING MODELJaek DziarmagaM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived April 16, 2004)Kibble��urek mehanism is a theory of defet formation in a non-equilibrium ontinuous phase transition. So far the theory has been suess-fully tested by numerial simulations and ondensed matter experiments ina number of systems with small thermal �utuations. This paper reports�rst numerial test of the mehanism in a system with large thermal �u-tuations and strongly non-mean-�eld behavior: the two dimensional Isingmodel. The theory predits orretly the initial density of defets thatsurvive a quenh from the disordered phase. However, before the systemleaves the Ginzburg regime of large �utuations most of these defets areannihilated and the �nal density is determined by the dynamis of theannihilation proess only.PACS numbers: 11.27.+d, 05.70.Fh, 98.80.Cq1. IntrodutionIn a system with a ontinuous phase transition an adiabati hange of aparameter of the system, like e.g. temperature, pressure or a oupling on-stant in a Hamiltonian, an drive the system from a disordered phase to anordered one. A lassi example is the paramagnet-ferromagnet transitionin the two dimensional (2D) Ising model. Thermodynamis of ontinuousphase transitions has been intensively explored over many years. Two mayorahievements: the solution of the Ising model by Onsager and the renormal-ization group of Wilson were rewarded with a Nobel Prize in physis. TheRG formalism revealed deep onnetions between statistial mehanis andquantum �eld theory.A andidate theory of non-equilibrium phase transitions is the Kibble��urek mehanism (KZM) [1, 2℄. Kibble pointed out [1℄ that in a non-equilibrium transition there is no time to fully develop the long range order(2205)



2206 J. Dziarmagaharateristi for the ordered phase. As a result, the �nal state of the sys-tem is a mosai of �nite size ordered domains with di�erent orientations ofthe order parameter in every domain. In a topologially non-trivial asethis disorder takes the form of a �nite density of topologial defets. Thisqualitative idea was quanti�ed more by �urek [2℄. �urek mehanism is aombination of two basi fats: (1) a divergent orrelation length
ξ ≈ ξ0 |ε|−ν , (1)where ε is a dimensionless distane from the ritial point, ν is a ritialexponent, and ξ0 is a mirosopi length sale, and (2) the ritial slowingdown or divergent relaxation time
τ ≈ τ0 |ε|−y . (2)Here τ0 is a mirosopi time sale. Beause of the divergent relaxation timeany �nite rate transition is a non-adiabati phase transition: su�ientlylose to the ritial point (where ε = 0) the system is too slow to reat tothe hanging external parameter ε(t). Close to ε = 0 we an linearize
ε(t) =

t

τQ

. (3)The relaxation time (2) equals the transition rate |ε/dε
dt | at εZ ≈ (τ0/τQ)

1

y+1when the orrelation length (1) is
ξZ ≈ ξ0

(

τQ

τ0

)
ν

y+1

. (4)This �urek length is the average size of the ordered domains after the phasetransition and it determines the initial density of topologial defets frozeninto the ordered phase after a non-adiabati ontinuous phase transition.The original motivation for Kibble and �urek were symmetry breakingphase transitions in osmology. The random topologial defets arising insuh transitions might provide initial seeds for struture formation in theearly Universe [3℄. However, the universality of phase transitions makesthese ideas also relevant for a wide variety of ondensed matter systemswhere they an be veri�ed by experiment.The KZM predition (4) is supported by a number of numerial simula-tions [4℄. However, as a result of �nite numerial resoures these numerialdata are limited to fast quenhes (small τQ) with a large εZ in the regime ofsmall �utuations where one an use the mean �eld (MF) value of the ritialexponent νMF = 1
2
. KZM is also supported by experiments in systems with



Kibble��urek Mehanism in the Ginzburg Regime . . . 2207small �utuations like super�uid helium 3 [5℄, low Tc superondutors [6℄,and fast quenhes in high Tc superondutors [7℄. In ontrast, experimentsin systems with large �utuations like helium 4 [8℄ or slow quenhes in high
Tc superondutors [9℄ are inonlusive. Rivers suggested [10℄ that vortiesreated in the helium 4 experiment [8℄ disappear in a faster than expeted an-nihilation. Due to tehnial di�ulties the analyti alulations in Ref. [10℄eventually resort to a linearization equivalent to the mean-�eld theory. It issuggested there that beyond this linearized theory lose to the ritial pointthe annihilation rate is divergent. However, simulations in Ref. [11℄ showthat this e�et may be not as dramati as antiipated in Ref. [10℄. Theseauthors suggest that beause of the ritial slowing down the annihilationrate lose to ε = 0 may in fat vanish. Due to limited numerial resouresthe numerial evidene in Ref. [11℄ is rather indiret. To summarize, theproblem of KZM in the Ginzburg regime of large �utuations has been re-ognized [10℄ but is far from being settled.At the moment we do not have any ondensed matter or numerial ex-periment supporting KZM for large �utuations and at the same time thisis the regime where KZM in priniple an be questioned on general grounds.The argument leading to Eq. (4) impliitly assumes that lose to the ritialpoint the divergent orrelation length ξ in Eq. (1) is the only relevant lengthsale. However, as is well known [12℄ but not quite generally appreiated,if ξ were the only length sale, then, on dimensional grounds, all ritialexponents would take their mean �eld values. As they do not (for example,in the 2D Ising model ν = 1 instead of the mean �eld νMF = 1

2
), then both ξand the mirosopi ξ0 must be relevant. With two relevant length sales thedimensional argument alone is not su�ient to determine the initial densityof defets.In this paper I report �rst numerial test of KZM for large �utuations.As the ritial regime is numerially demanding (large ξ means large lattieand large τ means long time) I hose the simplest possible model � theelebrated 2D Ising model. This simple model has ν = 1 learly di�erentfrom the mean �eld νMF = 1/2, and it has no regime where the MF theorymight be at least remotely aurate. It is a perfet testing ground for KZM.2. Ising model with Glauber dynamisHamiltonian of the ferromagneti Ising model in 2D is

H = −
∑

〈i,j〉

SiSj . (5)Spins Si ∈ {−1,+1} sit on a 2D N × N lattie with periodi boundaryonditions, 〈i, j〉 means a pair of nearest neighbor sites. The mirosopi



2208 J. Dziarmagalengthsale ξ0 = 1 is the lattie spaing. In all the following numerialsimulations a 1024 × 1024 lattie was used.To study non-equilibrium phase transitions the Ising model has to besupplemented with dynamis. The standard hoie is Glauber dynamisalso known as Monte-Carlo with a heat bath [13℄. In the Glauber algorithmevery time step onsists of the following sub-steps:
• hoose a random spin Si from the lattie,
• alulate its loal �eld hi = −

∑

j n.n. i Sj,
• alulate a probability P = exp(βhi),
• hoose a random number r ∈ [0, 1],
• if r > P then set Si = +1, else set Si = −1.Here β is an inverse temperature of the heat bath. This algorithm relaxesthe state of the Ising model towards thermal equilibrium at a given β [13℄.On average it takes N2 steps to update the state of N2 spins on the lattie.These N2 steps de�ne the mirosopi time sale τ0 whih I set equal to 1.The Ising model with Glauber dynamis belongs to the same universalitylass as the φ4 model with noise η

τ0

∂

∂t
φ = ξ2

0∇
2φ − λ(φ2 − 1)φ + η (6)so often employed in the numerial simulations of KZM [4℄. Here the on-tinuum real �eld φ is a oarse grained lattie spin Si. The Ising model is ane�ient �moleular dynamis� version of the φ4 �eld theory (6).3. Relaxation timeIn order to estimate the exponent y in Eq. (2) the relaxation time τwas measured for several values of β < βc. For eah β the Ising model wasinitially prepared in a fully polarized state with all Si = 1, and then itsaverage magnetization M =

∑

i Si/N
2 relaxed towards the equilibrium at

M = 0, see the insert in Fig. 1. Eah magnetization deay was �tted withan exponent M = exp(−t/τ). The best �ts of τ are shown in the doublelogarithmi Fig. 1 as a funtion of βc−β. The slope of the linear �t in Fig. 1gives an estimate of y = 2.09 ± 0.02.
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Fig. 1. y = log10 τ as a funtion of x = log10(βc − β). The τs are the best �ts tothe exponential deays of magnetization shown in the insert. The solid line is thebest linear �t with a slope of y = 2.09 ± 0.02.4. QuenhesPhase transitions were simulated with a linear ramp of the inverse tem-perature
β(t) = 1.5

t

τQ

. (7)The initial state at t = 0 was a state with random mutually unorrelatedspins � the state of equilibrium at β = 0. Fig. 3 shows density of domainwalls separating positive Si from negative Si as a funtion of β for a numberof di�erent transition times τQ. The ritial point is βc = 0.4407. For large
τQ the density plots approah the equilibrium density neq(β). Note that theequilibrium density neq(β) of domain walls remains nonzero even for β > βc.This is the ritial Ginzburg regime of large �utuations. A non-equilibriumtransition with a �nite τQ results in an additional non-equilibrium density
dn(β) = n(β) − neq(β) > 0. KZM predits that

dnKZM(β) ≈ ξ−1
Z = τ

− ν

y+1

Q ≈ τ−0.324±0.003
Q . (8)Before this predition is ompared with the numerial data in Fig. 3, let medigress on annihilation of domain walls.5. Defet annihilationFirst example is annihilation of defets from an initially totally randomspin on�guration. The initial dn(t = 0) deays in time. Fig. 2 shows theequilibrating n(t) for several values of β > βc. Eah deay is �tted with a
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0.45->0.55Fig. 2. Density of defets n(t) starting from an initial state with random spins anddeaying towards neq(β) for β = 0.45, 0.47, 0.6, 1.0. The �0.45 → 0.55� marks theplot of n(t) starting from the state of equilibrium at β = 0.45 > βc in the Ginzburgregime and deaying quikly towards a new equilibrium at β = 0.55.solid line that follows the power law dn(t) = (τa/t)
1/2 with an exponent of

1/2 known from the theory of phase ordering kinetis [14℄. The best �ts are
τa = 1.32±0.20, 0.86±0.05, 0.93±0.05, 0.64±0.05 for β = 0.45, 0.47, 0.60, 1.0respetively. They are more or less onstant in the onsidered range of tem-peratures: as the ritial point is approahed the time sale for annihilation
τa neither diverges (as suggested in Ref. [10℄) nor vanishes (as suggested inRef. [11℄), but remains �nite and lose to the mirosopi τ0 = 1,

τa ≈ τ0 . (9)The quenh time τQ determines the time available for defet annihilation.At late times after the transition, when most of the initial KZM domainwalls are already annihilated, we expet the saling
dn(β) ≈

(

τ0

τQ

)
1

2

. (10)It also follows from a phenomenologial equation: τ0
d
dtdn(t) = −1

2
dn3(t).Its solution is

dn(t) =
dn(0)

√

1 + t
τ0

dn2(0)
. (11)Note that at late times dn(t) is forgetting its initial value dn(0) = dnKZM.This solution is an illustration of the exat result (10) from Ref. [14℄.



Kibble��urek Mehanism in the Ginzburg Regime . . . 2211Seond example is annihilation of domain walls from an initial state ofequilibrium at β > βc. The initial state was prepared by starting from fullypolarized spins, all Si = 1, and then heating them up at β = 0.45 for a timeof 105 su�ient to reah thermal equilibrium with neq(0.45) = 0.20. Then at
t = 0 β was suddenly inreased (the heat bath was ooled) to β = 0.55. Fig. 2shows n(t) deaying towards the new equilibrium at neq(0.55) = 0.075. Thisdeay is muh faster than for random initial spins beause the equilibriumdomain walls in the Ginzburg regime at β > βc are just boundaries of bubblesof the minority spin-down phase in the spin-up polarized ferromagnet. Thebubbles together with their walls deay soon after the temperature is turneddown.
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Inverse TemperatureFig. 3. Total density n(β) of domain walls separating positive and negative Si as afuntion of β for several values of the quenh time τQ = 2, 4, 8, . . . , 65536 (from topto bottom). For the initial state of random spins the density is normalized to n = 1.For large τQ the plots tend to the equilibrium density of defets neq(β) whih is�nite even for β > βc = 0.4407 in the Ginzburg regime of large �utuations.6. KZM versus annihilationFigure 4 is a double logarithmi plot of the non-equilibrium density dn(β)in Fig. 3 as a funtion of τQ for a number of βs. The slope at the ritial
βc = 0.4407 is −0.315 ± 0.007. This slope is onsistent with the KZMslope (8) of −0.324 and di�erent from a mean-�eld KZM slope of −0.25 for
νMF = 1/2 and yMF = 1. The initial non-equilibrium density of domainwalls is determined by KZM.In ontrast, similar slopes for β = 1.0 and 1.5 are −0.45 ± 0.01 and
−0.48 ± 0.01 respetively, and they are onsistent with the phase orderingkinetis exponent of −1/2 in Eq. (10). Apparently at later times the systemforgets the initial density dnKZM and dn(β) is determined solely by thedynamis of defet annihilation.



2212 J. DziarmagaIndeed, the irles in Fig. 4 show dn(β = 1.5) for a simulation where β(t)is ramped up like in Eq. (7), but starting from the initial β0 = 0.6 > βc.The spins were random at the initial β0. The irles sit on the solid linewhih is a �t to dn(β = 1.5) obtained from a full quenh like in Eq. (7). Theannihilation dominated dn(β) at later times is not sensitive to the details ofthe KZM of defet formation, ompare Eqs. (10),(11).However, the defets that survive annihilation at later times are KZMdefets quenhed in from the disordered phase. As we have already seen,ompare Fig. 2, that annihilation of the Ginzburg domain walls is muhfaster than annihilation of defets from the initially random spin state. Thelatter state ontains large domain walls while in the former domain wallsare boundaries of bubbles of a minority spin phase. The points in Fig. (4)onneted by a dashed line show dn(β = 1.5) after a quenh starting fromthe equilibrium state at β0 = 0.47 in the Ginzburg regime. These densitiesare orders of magnitude lower than densities from the full quenhes startingat β = 0: Ginzburg defets do not survive annihilation.
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Fig. 4. y = log10 dn(β) as a funtion of x = log10 τQ for β = 0.4407, 1.0, 1.5from top to bottom. Solid lines are the best linear �ts with slopes of −0.315 ±

0.007,−0.45±0.01,−0.48±0.01 respetively. Cirles show dn(β = 1.5) in a quenhstarting from β0 = 0.6 and random initial spins. The points onneted by a dashedline show densities dn(β = 1.5) in a quenh starting from β0 = 0.47 in the Ginzburgregime and spins initially in thermal equilibrium.7. ConlusionI presented �rst numerial test of the Kibble��urek mehanism (KZM)in the Ginzburg regime of large thermal �utuations. In this regime both the�urek length ξZ and the mirosopi length ξ0 are relevant length sales thatdetermine the density of defets. However, the density of non-equilibriumdefets frozen into the ordered phase by a quenh from the disordered phase
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