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A NEW PROOF OF EXISTENCE OF A BOUND STATEIN THE QUANTUM COULOMB FIELDAndrzej Staruszkiewi
zMarian Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: astar�th.if.uj.edu.pl(Re
eived June 9, 2004)Let S(x) be a massless s
alar quantum �eld whi
h lives on the three-dimensional hyperboloid xx = (x0)2−(x1)2−(x2)2−(x3)2 = −1. The 
las-si
al a
tion is assumed to be (~ = 1 = c)(8πe2)−1

∫

dxgik∂iS∂kS, where
e2 is the 
oupling 
onstant, dx is the invariant measure on the de Sit-ter hyperboloid xx = −1 and gik, i, k = 1, 2, 3, is the internal metri
 onthis hyperboloid. Let u be a �xed four-velo
ity i.e. a �xed unit time-likeve
tor. The �eld S(u) = (1/4π)

∫

dxδ(ux)S(x)is smooth enough to beexponentiated, being an average of the operator valued distribution S(x)over the entire Cau
hy surfa
e ux = 0. We prove that if 0 < e2 < π,then the state |u〉 = exp(−iS(u)) | 0〉, where | 0〉 is the Lorentz invariantva
uum state, 
ontains a normalizable eigenstate of the Casimir operator
C1 = −(1/2)MµνM

µν ; Mµν are generators of the proper ortho
hronousLorentz group. The eigenvalue is (e2/π)(2−(e2/π)). This theorem was �rstproven by the Author in 1992 in his 
ontribution to the Czy» Fests
hrift,see Erratum A
ta Phys. Pol. B 23, 959 (1992). In this paper a 
ompletelydi�erent proof is given: we derive the partial, di�erential equation satis�edby the matrix element 〈u | exp(−σC1) | u〉, σ > 0, and show that the fun
-tion exp(z) · (1− z) · exp[−σz(2− z)], z = e2/π, is an exa
t solution of thisdi�erential equation, re
overing thus both the eigenvalue and the probabil-ity of o

urren
e of the bound state. A beautiful integral is 
al
ulated asa byprodu
t.PACS numbers: 12.20.Ds, 11.10.Jj1. Introdu
tionWe use me
hani
al units su
h that ~ = 1 = c. We use ele
tri
 units su
hthat the �ne stru
ture 
onstant is equal to 1/e2, where e is the ele
tron's
harge. We use spa
e-time metri
 su
h that g(x, x) = xx = (x0)2 − (x1)2 −
(x2)2 − (x3)2 is the square of the length of the ve
tor x.In Ref. [1℄ we were led to 
onsider the following theoreti
al stru
ture.Let xµ, µ = 0, 1, 2, 3, denote spa
e-time Cartesian 
oordinates in an inertial(2249)
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zreferen
e frame. The equation xx = −1 de�nes a subspa
e whi
h is lo
allya three-dimensional spa
e-time and is maximally symmetri
, admitting sixKilling ve
tors. Thus it is a three-dimensional analogue of de Sitter spa
e-time and will be 
alled simply three-dimensional de Sitter spa
e-time. As
alar massless quantum �eld is assumed to live on the de Sitter spa
e-time
xx = −1. Its 
lassi
al a
tion is assumed to be

1

8πe2

∫

xx=−1

dxgik∂iS∂kS , (1)where e2 is the 
oupling 
onstant, dx is the invariant measure on the de Sit-ter hyperboloid xx = −1 and gik, i, k = 1, 2, 3, is the internal metri
 on thishyperboloid. The above a
tion has the following symmetries: the Lorentzsymmetry, whi
h, via the �rst Noether theorem, gives rise to six 
onstantsof motion Mµν = −Mνµ and the �gauge� symmetry S(x) → S(x)+ 
onst,whi
h, again via the �rst Noether theorem, gives rise to the additional 
on-stant of motion 
alled the total 
harge,
Q =

−1

4πe

∫

C.S.

dΣi∂iS . (2)Here C.S. means a Cau
hy surfa
e in the de Sitter hyperboloid xx = −1 and
dΣi is the integration element on this surfa
e.A quantum �eld theory is obtained if we assume that

[Mµν , S(x)] =
1

i

(

xµ
∂

∂xν
− xν

∂

∂xµ

)

S(x) (3)and that there exists a state |0〉 su
h that
Mµν |0〉 = 0 , 〈0|Mµν = 0 , 〈0|0〉 = 1 . (4)Eqs (3) and (4) 
an hold only if

[Q,S(x)] = ie (5)and
Q|0〉 = 0 , 〈0|Q = 0 , 〈0|0〉 = 1 . (6)There are many misleading or erroneous statements in the literature on theva
uum state in de Sitter spa
e-time; for this reason the reader is invited to
he
k the 
onsisten
y of Eqs (3)�(5), and (6) with the help of Ref. [1℄.The quantum �eld S(x) is an operator valued distribution and 
annotbe a subje
t of nonlinear operations. It is, however, a very fortunate 
ir-
umstan
e that Cau
hy surfa
es in the de Sitter spa
e-time xx = −1 are



A New Proof of Existen
e of a Bound State in . . . 2251
ompa
t. For this reason averaging over a Cau
hy surfa
e has the qualityof smearing out with an arbitrarily smooth fun
tion of 
ompa
t support inQED.Let us 
hoose a �xed unit time-like ve
tor u. The quantum �eld
S(u) =

1

4π

∫

xx=−1

dxδ(ux)S(x) (7)is the average of the �eld S(x) over the 
ompa
t se
tion of the spa
e-likeplane ux = 0 and the de Sitter hyperboloid xx = −1 and is smooth enoughto be exponentiated. S(u) is a quantum �eld whi
h lives in the Loba
hevskyspa
e of four-velo
ities uu = +1. It is easy to see that
[Mµν , S(u)] =

1

i

(

uµ
∂

∂uν
− uν

∂

∂uµ

)

S(u) (8)and
[Q, S(u)] = ie . (9)Using the smooth quantum �eld S(u) we 
an 
onsistently form a 
hargedstate

|u〉 = exp(−iS(u))|0〉 (10)whi
h is an eigenstate of the total 
harge Q:
Q|u〉 = e|u〉 , 〈u|u〉 = 1 . (11)We shall investigate in this paper some properties of 
harged states ofthe form exp(−iS(u))|0〉. In parti
ular, we shall give a 
ompletely new proofof the theorem that the spe
tral 
ontents of the state exp(−iS(u))|0〉 in theregions 0 < e2 < π and e2 > π are di�erent. By spe
tral 
ontent we meanthe way in whi
h a given state 
an be represented as a superposition ofeigenstates of the �rst Casimir operator

C1 = −1
2MµνM

µν . (12)2. Cal
ulation of the matrix element 〈u| exp(−σC1)|u〉 , σ > 0To save spa
e we shall write ∇µν(u) instead of
uµ

∂

∂uν
− uν

∂

∂uµ
.In expressions like ∇µν(u)S(u) one 
an even drop the �rst argument u be-
ause the argument u of S(u) indi
ates the variable with respe
t to whi
hthe di�erentiation is 
arried out. Let us note �rst that

[S(u) , S(v)] = 0 (13)
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zfor ea
h pair of points u, v in the Loba
hevsky spa
e uu = +1. This is sobe
ause the de�nition (7) of S(u) pi
ks up only the even part of the �eld
S(x) i.e. the part (1/2)[S(x)+S(−x)] and even parts do 
ommute with ea
hother on the strength of 
anoni
al 
ommutation relations (3). As an obvious
onsequen
e we have that

[S(u) , ∇µνS(u)] = 0 . (14)Consider now [S(u) , C1]. We have
[S(u) , C1] =

1

2
[MµνM

µν , S(u)]

=
1

2

{

1

i
∇µνS(u) ·Mµν +Mµν · 1

i
∇µνS(u)

}

. (15)Therefore
[S(u) , [S(u) , C1]] = ∇µνS(u)∇µνS(u) (16)and

[S(u) , [S(u) , [S(u) , C1]]] = 0 . (17)Consider now the matrix element 〈v| exp(−σC1)|u〉, where v is a �xed four-velo
ity di�erent from u and σ > 0. Using Eqs (14)�(16) and (17) in anobvious way we have
− ∂

∂σ
〈v| e−σC1 |u〉 = 〈v| e−σC1 e−iS(u)−1

2
∇µνS(u)∇µνS(u)|0〉 . (18)On the other hand, let us apply the Lapla
e�Beltrami operator ∆(u) =

−(1/2)∇µν(u)∇µν(u) to the matrix element 〈v| exp(−σC1)|u〉. Taking intoa

ount that ∆(u)S(u) = 0 as a 
onsequen
e of the equation of motion
∆(x)S(x) = 0 we have

∆(u)〈v| e−σC1 |u〉 = 〈v| e−σC1 e−iS(u)−1

2
∇µνS(u)∇µνS(u)|0〉 . (19)Comparing (18) and (19) we see that

{

∂

∂σ
−∆(u)

}

〈v| e−σC1 |u〉 = 0 . (20)This means that the matrix element 〈v| exp(−σC1)|u〉 is a solution of theheat transport equation in the Loba
hevsky spa
e of four-velo
ities uu = +1.The initial value for this solution is obviously the matrix element 〈v|u〉 whi
hwas 
al
ulated in Ref. [1℄ as exp(−(e2/π)(λ coth λ − 1)), where λ is thehyperboli
 angle between u and v:
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gµνu

µvν = coshλ . (21)To solve the Cau
hy problem for the heat transport equation (20) we applythe standard pro
edure: we represent the initial value as a superpositionof plane waves, solve the heat transport equation for ea
h plane wave, andrepresent the �nal value as a superposition of time evolved plane waves.However, sin
e we are in the Loba
hevsky spa
e of four-velo
ities uu = +1,we have to apply plane waves in Loba
hevsky spa
e whi
h Gelfand, Graev,and Vilenkin des
ribed in their great book [2℄. This means that we have toapply Eqs (20) and (21) whi
h Gelfand, Graev, and Vilenkin give on page477 of their book. These equations give the Fourier transform and its inversein Loba
hevsky spa
e. The result of this obvious pro
edure is summarized inthe following lemma: suppose that f(u; 0) is the initial value for the fun
tion
f(u;σ) whi
h solves the heat transport equation in the Loba
hevsky spa
e
uu = +1,

{

∂

∂σ
−∆(u)

}

f(u;σ) = 0 .Then
f(u;σ) =

1

2π2

∫

du′f(u′; 0)
1

sinh λ

∞
∫

0

dνν e−σ(1+ν2) sin(νλ) , (22)where du is the invariant measure in the Loba
hevsky spa
e uu = +1 and λis the hyperboli
 angle between the observation point u and the integrationpoint u′. The se
ond integral in (22) 
an be 
al
ulated. In this way weobtain
f(u;σ) =

e−σ

(4πσ)3/2

∫

du′f(u′; 0)
λ

sinh λ
e−

λ2

4σ , (23)where λ is the hyperboli
 angle between the observation point u and theintegration point u′.Now, we took the matrix element 〈v| exp(−σC1)|u〉 in order to be able todi�erentiate with respe
t to u while leaving v untou
hed. In fa
t, however,we are interested in the matrix element 〈u| exp(−σC1)|u〉. Geometri
allythis means that we have to take in Eq. (23) the observation point u at theorigin of the spheri
ally symmetri
 distribution f(u′; 0). Introdu
ing thespheri
al 
oordinates
u′ 0 = coshψ ,

u′ 1 = sinhψ sinϑ cosϕ ,

u′ 2 = sinhψ sinϑ sinϕ ,

u′ 3 = sinhψ cos ϑ , (24)
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zand taking the solution at the origin of spheri
al symmetry we have �nally
(z = e2/π)

〈u| e−σC1 |u〉 =
1

2
√
π

e−σ

σ3/2

∞
∫

0

dψ sinhψ e−z(ψ cothψ−1) · ψ e−ψ2

4σ . (25)3. The di�erential equation satis�ed by the matrix element
〈u| exp(−σC1)|u〉It is remarkable that the matrix element 〈u| exp(−σC1)|u〉 satis�es a
ertain partial di�erential equation. This equation, as well as the equationarrived at later on, satis�ed by the resolvent 〈u|(C1 − λ)−1|u〉, is obviouslya tra
e of some deeper stru
ture whi
h, for the time being, we fail to under-stand.In fa
t let us put

f(ν, z) =

∞
∫

0

dψ sinhψ e−zψ cothψ · ψ e−νψ2

, ν > 0 . (26)Then
∂f

∂z
= −

∞
∫

0

dψ e−zψ cothψ coshψ · ψ2 e−νψ
2

=

∞
∫

0

dψ sinhψ
d

dψ

{

e−zψ cothψ · ψ2 e−νψ
2
}

= z
∂f

∂z
+ z

∂2f

∂z2
+ z

∂f

∂ν
+ 2f + 2ν

∂f

∂ν
(27)whi
h means that the fun
tion f(ν, z) is a solution of the partial di�erentialequation

(z − 1)
∂f

∂z
+ z

∂2f

∂z2
+ z

∂f

∂ν
+ 2ν

∂f

∂ν
+ 2f = 0 . (28)Having this equation we 
an multiply the fun
tion f(ν, z) = f(1/4σ, z)by trivial fa
tors σ−3/2 exp(z − σ) and obtain the following lemma: let

〈u| exp(−σC1)|u〉 = c(σ, z); then the fun
tion c(σ, z) satis�es the partialdi�erential equation
z
∂2c

∂z2
− (z + 1)

∂c

∂z
− 2σ(1 + 2σz)

∂c

∂σ
− 2σ(1 + 3z + 2σz)c = 0 . (29)
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e of a Bound State in . . . 22554. The eigenvalue and the probability of o

urren
e of the boundstate of the Casimir operator C1 in the state
|u〉 = exp(−iS(u))|0〉The Casimir operator C1 is known to have no lower bound; its eigenvaluesin the so 
alled main series of irredu
ible unitary representations of theproper ortho
hronous Lorentz group are [2℄ 1 + ν2 − n2, where ν is a realnumber and n is an integer. However, n is proportional to the eigenvalue ofthe se
ond Casimir operator

C2 = M01M23 +M02M31 +M03M12 (30)whi
h obviously annihilates all spheri
ally symmetri
 states. |u〉 =
exp(−iS(u))|0〉 is spheri
ally symmetri
 in the rest frame of u. Therefore inthe subspa
e of spheri
ally symmetri
 states the Casimir operator C1 doeshave a lower bound. This means that the asymptoti
 behaviour of solutionsof Eq. (29) for σ → ∞ is determined by the state with the lowest eigenvalue.Assume that the spe
tral de
omposition of C1 does 
ontain a boundstate with the lowest eigenvalue. Then Eq. (29) has to have for σ → ∞ anasymptoti
 solution of the form

c0(σ, z) = A(z) e−σB(z) . (31)Putting this into Eq. (29) we obtain on the left hand side a polynomial ofse
ond degree in σ with 
oe�
ients depending on z. Thus for σ → ∞ allthree 
oe�
ients have to vanish. This gives us three ordinary di�erentialequations for two fun
tions A(z) and B(z). Remarkably enough, all threeequations 
an be simultaneously solved with the result
A(z) = (1 − z) ez , B(z) = z(2 − z) . (32)In this way we have the following lemma: the fun
tion c0(σ, z) = (1− z) ez ·

exp[−σz(2− z)] is an exa
t solution of the partial di�erential equation (29).This obviously suggests that in the state |u〉 there is a bound state of theCasimir operator C1 with the eigenvalue z(2 − z) and the probability ofo

urren
e (1−z) ez . This probability 
annot be negative whi
h means thatthe state 
an exist only for 0 < z < 1. It is thus seen that the 
oupling
onstant z = e2/π = 1 is 
riti
al and separates two kinemati
ally di�erentregimes of the theory. For 0 < z < 1 , 0 < z(2 − z) < 1 whi
h means thatthe bound state belongs to the so 
alled supplementary series of irredu
ibleunitary representations of the proper ortho
hronous Lorentz group [2℄, sin
efor the main series 1 < C1 <∞ [2℄.
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z5. Cal
ulation of the resolvent 〈u|(C1 − λ)−1|u〉Let us multiply Eq. (25) by exp(λσ), assume that λ is smaller thanthe smallest eigenvalue of the Casimir operator C1 present in the spe
tralde
omposition of the matrix element 〈u| exp(−σC1)|u〉 and integrate bothsides over σ, 0 < σ <∞. All integrals on the right hand side are absolutely
onvergent and their order 
an be inter
hanged. In this way we obtain
〈

u

∣

∣

∣

∣

1

C1 − λ

∣

∣

∣

∣

u

〉

=
1

2
√
π

∞
∫

0

dψ sinhψ e−z(ψ cothψ−1) · ψ
∞

∫

0

dσσ−3/2 e−σ(1−λ)−ψ2

4σ

=

∞
∫

0

dψ sinhψ e−z(ψ cothψ−1)−ψ
√

1−λ . (33)The last integral exists for 1 − z −
√

1 − λ < 0 i.e. for λ < z(2 − z) whi
hwas assumed from the very beginning.It is again remarkable that the last integral whi
h is not given in theRyzhik and Gradshteyn Tables (I 
he
ked it in the VIth Ameri
an Edition)
an be 
al
ulated exa
tly with the help of the partial di�erential equationwhi
h this integral is a solution of.In fa
t, 
onsider the integral
F (x, y) =

∞
∫

0

dζe−xζ−yζ coth ζ (34)whi
h exists for x + y > 0. Di�erentiating and integrating by parts, asin Se
tion 3, one 
an show that this integral ful�lls the partial di�erentialequation
F + x

∂F

∂x
+ y

∂F

∂y
+ y

(

∂2F

∂y2
− ∂2F

∂x2

)

= 0 . (35)This is a hyperboli
 equation for whi
h the straight line x + y = 0 is theboundary of the domain of in�uen
e of the positive x axis y = 0, x > 0.Hen
e we 
an try to solve the Cau
hy problem with the initial data on thepositive x axis y = 0, x > 0. We have that
F (x, 0) =

∞
∫

0

dζ e−xζ =
1

x
. (36)
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e of a Bound State in . . . 2257This singularity must propagate to the left sin
e F (x, y) is regular for
x+y > 0. The fun
tion 1/(x+y) is an exa
t solution of Eq. (35). Therefore
F (x, y) = 1/(x+y) plus a solution of Eq. (35) whi
h vanishes for y = 0. Wehave

∂F

∂y

∣

∣

∣

∣

∣

y=0

=

∞
∫

0

dζ e−xζ(−)ζ coth ζ . (37)Subtra
ting from this fun
tion the fun
tion
∂

∂y

1

(x+ y)

∣

∣

∣

∣

∣

y=0

= − 1

x2
(38)I 
an say that F (x, y) = 1/(x+y) plus a solution of Eq. (35) whi
h vanishesat y = 0 and whose y derivative at y = 0 is equal to

1

x2
−

∞
∫

0

dζζ e−xζ coth ζ = −2

∞
∑

n=0

1

(x+ 2n+ 2)2
. (39)From the superposition prin
iple it is seen that the problem is thus redu
edto the following one: �nd a solution of Eq. (35) whi
h vanishes for y = 0and whose y derivative at y = 0 is equal to −2/(x+2n+2)2. One 
an 
he
kthat this solution is equal to

−2y
(x+ 2n + 2 − y)n

(x+ 2n + 2 + y)n+2
. (40)Therefore for x+ y > 0

∞
∫

0

dζ e−xζ−yζ coth ζ =
1

x+ y
− 2y

∞
∑

n=0

(x+ 2n + 2 − y)n

(x+ 2n + 2 + y)n+2
(41)whi
h is a ni
e result not to be found in the Ryzhik and Gradshteyn Tables.The result (41) allows us to 
al
ulate the resolvent (33) sin
e sinhψ =

(1/2)(exp ψ− exp(−ψ)) and the integral (33) is seen to be of the form (34).Making the obvious substitutions we obtain for 0 < z < 1:
〈

u

∣

∣

∣

∣

1

C1 − λ

∣

∣

∣

∣

u

〉

=
(1 − z)ez

z(2 − z) − λ

+2z2ez
∞
∑

n=0

(
√

1 − λ+ 2n+ 1 − z)n−1

(
√

1 − λ+ 2n+ 1 + z)n+2
. (42)
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zThis formula shows at on
e the eigenvalue of the bound state, the probabilityof its o

urren
e and the 
ut 1 ≤ λ < ∞ whi
h re�e
ts the 
ontributionfrom the main series of irredu
ible unitary representations of the properortho
hronous Lorentz group.We see from the formula (42) that the bound state 
annot exist for
z > 1 sin
e the probability of o

urren
e 
annot be negative. This 
an alsobe seen from the 
al
ulation leading to the formula (42). For x+ y > 1 wehave instead of (41)

∞
∫

0

dζ sinh ζ e−xζ−yζ coth ζ

=
1/2

x+ y − 1
− 1/2

x− y + 1
+ 2y2

∞
∑

n=0

(x+ 2n+ 1 − y)n−1

(x+ 2n+ 1 + y)n+2
. (43)This formula 
an be derived in the same way as the previous one, given inEq. (41). Making the obvious substitutions we obtain for z > 1:

〈

u

∣

∣

∣

∣

1

C1 − λ

∣

∣

∣

∣

u

〉

= ez

{

1

2(
√

1 − λ+ z − 1)
−

√
1 − λ+ 3z + 1

2(
√

1 − λ+ z + 1)2

+2z2
∞
∑

n=1

(
√

1 − λ+ 2n+ 1 − z)n−1

(
√

1 − λ+ 2n+ 1 + z)n+2

}

. (44)This resolvent has only the 
ut 1 ≤ λ <∞ whi
h re�e
ts 
ontribution fromthe main series.6. A method to 
al
ulate the averages 〈u|(C1)
n|u〉 for integer nDi�erentiating both sides of Eq. (42) with respe
t to λ and putting

λ = 0 we 
an 
al
ulate all the averages of the form 〈u|(C1)
−n|u〉, n =

1, 2, 3, . . . . On the other hand there is no simple way to 
al
ulate the av-erages 〈u|(C1)
n|u〉, n = 1, 2, 3, . . . . Professor Wosiek and dr Rostworowski
al
ulated from �rst prin
iples the following averages (z = e2/π):

〈u|C1|u〉 = 2z

〈u|(C1)
2|u〉 =

20

3
z2

〈u|(C1)
3|u〉 =

8

9
z2(12 + 35z)

〈u|(C1)
4|u〉 =

16

45
z2(192 + 560z + 525z2)
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〈u|(C1)

5|u〉 =
32

9
z2(192 + 704z + 840z2 + 385z3)

〈u|(C1)
6|u〉 =

64

945
z2(147456 + 647808z + 977760z2 + 646800z3

+175175z4)

.............................. . (45)One 
an see from these expressions that these averages in
rease so qui
klythat the auto
orrelation fun
tion 〈u| exp(iσC1)|u〉 
annot have a 
onvergentTaylor series in σ. This is not a problem, of 
ourse. Auto
orrelation fun
-tions do not have to be analyti
 at the origin. Nevertheless, we have observedthe following �experimental� fa
t: the averages (45) 
an be re
overed fromthe di�erential equation (29) in the following way.We write formally
〈u|e−σC1 |u〉 = c(σ, z) =

∞
∑

n=0

(−1)n

n!
σncn(z) ; (46)we put this into Eq. (29) and obtain the re
urren
e relation

zc′′n−(z+1)c′n−2ncn = 4n(n−1)zcn−2−n[4z(n−1)+2(1+3z)]cn−1 . (47)Knowing that c0(z) = 1, c1(z) = 2z and assuming that cn(z) is a polynomialof degree n one re
overs the polynomials (45), whi
h have been 
orre
tly
al
ulated from �rst prin
iples. We fail to see the mathemati
al justi�
ationof this pro
edure and therefore state it simply as an �experimental� fa
twhi
h does allow us to 
al
ulate the averages 〈u|(C1)
n|u〉, n = 1, 2, 3, . . . .This 
al
ulation is mu
h easier than the 
al
ulation whi
h starts from �rstprin
iples.I am greatly indebted to Professor Pawel O. Mazur from the Departmentof Physi
s and Astronomy, University of South Carolina, for many usefuldis
ussions and for having 
reated for me ex
ellent working 
onditions atColumbia, SC, where the most important parts of this paper were written.I am also indebted to Professor Ja
ek Wosiek and dr Andrzej Rostworowskifrom the Department of Physi
s, Jagellonian University, for many usefuldis
ussions. REFERENCES[1℄ A Staruszkiewi
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