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Let S(z) be a massless scalar quantum field which lives on the three-
dimensional hyperboloid zz = (2°)? — (2!)? — (22)? — (23)? = —1. The clas-
sical action is assumed to be (h = 1 = ¢)(8me?)~! [ dag®*9;S0:S, where
e? is the coupling constant, dz is the invariant measure on the de Sit-
ter hyperboloid xx = —1 and g;x,7,k = 1,2,3, is the internal metric on
this hyperboloid. Let u be a fixed four-velocity i.e. a fixed unit time-like
vector. The field S(u) = (1/4n) [ dad(uz)S(x)is smooth enough to be
exponentiated, being an average of the operator valued distribution S(z)
over the entire Cauchy surface uz = 0. We prove that if 0 < e? < T,
then the state |u) = exp(—iS(u)) | 0), where | 0) is the Lorentz invariant
vacuum state, contains a normalizable eigenstate of the Casimir operator
Ci = —(1/2)M, M*; M, are generators of the proper orthochronous
Lorentz group. The eigenvalue is (e?/7)(2— (€?/m)). This theorem was first
proven by the Author in 1992 in his contribution to the Czyz Festschrift,
see Erratum Acta Phys. Pol. B 23,959 (1992). In this paper a completely
different proof is given: we derive the partial, differential equation satisfied
by the matrix element (u | exp(—oC1) | u),o > 0, and show that the func-
tion exp(z) - (1 — 2) - exp[—02(2 — 2)], 2 = €2 /7, is an exact solution of this
differential equation, recovering thus both the eigenvalue and the probabil-
ity of occurrence of the bound state. A beautiful integral is calculated as
a byproduct.

PACS numbers: 12.20.Ds, 11.10.Jj
1. Introduction

We use mechanical units such that A =1 = ¢. We use electric units such
that the fine structure constant is equal to 1/e?, where e is the electron’s
charge. We use space-time metric such that g(z,7) = zo = (z%)% — (2!)? —
(22)? — (22)? is the square of the length of the vector z.

In Ref. [1] we were led to consider the following theoretical structure.
Let z#, u = 0,1, 2,3, denote space-time Cartesian coordinates in an inertial
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reference frame. The equation zz = —1 defines a subspace which is locally
a three-dimensional space-time and is maximally symmetric, admitting six
Killing vectors. Thus it is a three-dimensional analogue of de Sitter space-
time and will be called simply three-dimensional de Sitter space-time. A
scalar massless quantum field is assumed to live on the de Sitter space-time
xx = —1. Its classical action is assumed to be

1
8me?

/ dxg™* 9,505, (1)

rxr=—1

where €2 is the coupling constant, dz is the invariant measure on the de Sit-
ter hyperboloid zax = —1 and g;x, ¢,k = 1,2, 3, is the internal metric on this
hyperboloid. The above action has the following symmetries: the Lorentz
symmetry, which, via the first Noether theorem, gives rise to six constants
of motion M, = —M,, and the “gauge” symmetry S(x) — S(z)+ const,
which, again via the first Noether theorem, gives rise to the additional con-
stant of motion called the total charge,

C.S

Here C.S. means a Cauchy surface in the de Sitter hyperboloid zz = —1 and
dX" is the integration element on this surface.
A quantum field theory is obtained if we assume that

My $0)] = 1 (050 — 50 ) S(0) )

i
and that there exists a state |0) such that
My l0) =0, (O0[M, =0, (0]0) = 1. )
Egs (3) and (4) can hold only if
@, S(x)] = ie (5)

and
Ql0) =0, (0|Q =0, (0[0)=1. (6)
There are many misleading or erroneous statements in the literature on the
vacuum state in de Sitter space-time; for this reason the reader is invited to
check the consistency of Egs (3)—(5), and (6) with the help of Ref. [1].
The quantum field S(z) is an operator valued distribution and cannot
be a subject of nonlinear operations. It is, however, a very fortunate cir-
cumstance that Cauchy surfaces in the de Sitter space-time xzz = —1 are
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compact. For this reason averaging over a Cauchy surface has the quality
of smearing out with an arbitrarily smooth function of compact support in
QED.

Let us choose a fixed unit time-like vector u. The quantum field

S(u) = / A6 (uz)S () (7)

C Ar
rxr=—1

is the average of the field S(x) over the compact section of the space-like
plane uz = 0 and the de Sitter hyperboloid xz = —1 and is smooth enough
to be exponentiated. S(u) is a quantum field which lives in the Lobachevsky
space of four-velocities uu = +1. It is easy to see that

My 800 = 7 (157 — 10505 ) SC0) 0

7

and

[Q, S(u)] =ie. (9)
Using the smooth quantum field S(u) we can consistently form a charged
state

|u) = exp(—iS(u))|0) (10)
which is an eigenstate of the total charge Q:
Qlu) = elu), (uu) =1. (11)

We shall investigate in this paper some properties of charged states of
the form exp(—iS(u))|0). In particular, we shall give a completely new proof
of the theorem that the spectral contents of the state exp(—iS(u))|0) in the
regions 0 < €2 < 7 and e? > 7 are different. By spectral content we mean
the way in which a given state can be represented as a superposition of
eigenstates of the first Casimir operator

Cy = —3 M, M"™ . (12)

2. Calculation of the matrix element (u|exp(—oCi)|u), o >0

To save space we shall write V,, (u) instead of
0 0
o T aun
In expressions like V,, (u)S(u) one can even drop the first argument u be-

cause the argument u of S(u) indicates the variable with respect to which
the differentiation is carried out. Let us note first that

[S(u), S(v)] =0 (13)
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for each pair of points u,v in the Lobachevsky space uu = +1. This is so
because the definition (7) of S(u) picks up only the even part of the field
S(x) i.e. the part (1/2)[S(x)+S(—=)] and even parts do commute with each
other on the strength of canonical commutation relations (3). As an obvious
consequence we have that

[S(u), Vi S(u)] =0. (14)
Consider now [S(u), C1]. We have

[S(U), Cl] = %[MMVMMV7 S(’U,)]

_ %{%VWS(U) M M %V“,,S(u)} L (15)
Therefore
[S(w), [S(u), C1]] =V, S(w)V*S(u) (16)
and
[S(w), [S(u), [S(u), C1]]] = 0. (17)

Consider now the matrix element (v|exp(—cCi)|u), where v is a fixed four-
velocity different from v and ¢ > 0. Using Egs (14)-(16) and (17) in an
obvious way we have

0 . |

— (vl e 7 u) = (v] e eﬂS(u)TVWS(U)VWS(U)@ : (18)
o

On the other hand, let us apply the Laplace-Beltrami operator A(u) =

—(1/2)V* (u)V ,(u) to the matrix element (v|exp(—oCi)|u). Taking into

account that A(u)S(u) = 0 as a consequence of the equation of motion

A(x)S(x) = 0 we have

Afu) (o] 7O 1) = (v] e e_is(“);VWS(u)VWS(u)\0) S (19)

Comparing (18) and (19) we see that

{5 ~ 4w} vl —o. (20)

This means that the matrix element (v|exp(—ocCi)|u) is a solution of the
heat transport equation in the Lobachevsky space of four-velocities uu = +1.
The initial value for this solution is obviously the matrix element (v|u) which
was calculated in Ref. [1] as exp(—(e?/7)(Acoth A — 1)), where X is the
hyperbolic angle between u and v:
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Guutv” = cosh A. (21)

To solve the Cauchy problem for the heat transport equation (20) we apply
the standard procedure: we represent the initial value as a superposition
of plane waves, solve the heat transport equation for each plane wave, and
represent the final value as a superposition of time evolved plane waves.
However, since we are in the Lobachevsky space of four-velocities uu = +1,
we have to apply plane waves in Lobachevsky space which Gelfand, Graev,
and Vilenkin described in their great book [2|. This means that we have to
apply Egs (20) and (21) which Gelfand, Graev, and Vilenkin give on page
477 of their book. These equations give the Fourier transform and its inverse
in Lobachevsky space. The result of this obvious procedure is summarized in
the following lemma: suppose that f(u;0) is the initial value for the function
f(u;0) which solves the heat transport equation in the Lobachevsky space
uu = +1,

{5 - a0} stuio) =
Then

1 1
fluyo) = 53 /du’f(u/; 0) Y /dw/ e (1) sin(vA), (22)
0
where du is the invariant measure in the Lobachevsky space uu = +1 and A
is the hyperbolic angle between the observation point v and the integration
point u/. The second integral in (22) can be calculated. In this way we
obtain

e’ Ny A -2
f(U;U)IW/de(UaO)Smh)\B ; (23)

where A is the hyperbolic angle between the observation point u and the
integration point u’.

Now, we took the matrix element (v|exp(—ocC1)|u) in order to be able to
differentiate with respect to u while leaving v untouched. In fact, however,
we are interested in the matrix element (u|exp(—oCi)lu). Geometrically
this means that we have to take in Eq. (23) the observation point u at the
origin of the spherically symmetric distribution f(u’;0). Introducing the
spherical coordinates

uw'? = cosh,

'l = sinhsindcos g,

u'? = sinhesindsing,

u'3 = sinhe)cos ¥, (24)
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and taking the solution at the origin of spherical symmetry we have finally
(2 =e?/m)

—o L e? 7 : —2z( co - _u2
(u| e=7C |u) = N /dd)smhz/)e (Weothy=1) 4 e~ i5 |, (25)
0

3. The differential equation satisfied by the matrix element
(u| exp(—oCh)|u)

It is remarkable that the matrix element (u|exp(—cCi)|u) satisfies a
certain partial differential equation. This equation, as well as the equation
arrived at later on, satisfied by the resolvent (u|(C; — A)~!|u), is obviously
a trace of some deeper structure which, for the time being, we fail to under-
stand.

In fact let us put

f(v,z) = / dp sinhgp e =P oY Ly e S 0 (26)
0
Then
Z—f = - / dyp eV Y cogh g - qp2 VY
z
0
T d )
— : il —z1p coth 2 _—v
/di/} smhwdw { -pfe }
0
_of  &f of of
= - F Ao g+ 2f + e (27)

which means that the function f(v, z) is a solution of the partial differential

equation
8f 52f af of _

Having this equation we can multiply the function f(v,z) = f(1/40,z2)
by trivial factors ¢—3/2exp(z — o) and obtain the following lemma: let
(u|exp(—oCy)|u) = ¢(o,2); then the function c(o,z) satisfies the partial
differential equation

d%c

zm—(z—i— )8——20(1+20z)8——20( 1+32+4+202)c=0. (29)
2

0z Jo
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4. The eigenvalue and the probability of occurrence of the bound
state of the Casimir operator C; in the state
|u) = exp(—2S(u))|0)

The Casimir operator C' is known to have no lower bound; its eigenvalues
in the so called main series of irreducible unitary representations of the
proper orthochronous Lorentz group are [2] 1 + v — n?, where v is a real
number and n is an integer. However, n is proportional to the eigenvalue of
the second Casimir operator

Cy = Mo1 Mag + Moy M3y + Moz Mo (30)

which obviously annihilates all spherically symmetric states. |u) =
exp(—iS(u))|0) is spherically symmetric in the rest frame of u. Therefore in
the subspace of spherically symmetric states the Casimir operator C; does
have a lower bound. This means that the asymptotic behaviour of solutions
of Eq. (29) for 0 — oo is determined by the state with the lowest eigenvalue.

Assume that the spectral decomposition of C7 does contain a bound
state with the lowest eigenvalue. Then Eq. (29) has to have for 0 — oo an
asymptotic solution of the form

co(0,2) = A(z) e 7BG) (31)

Putting this into Eq. (29) we obtain on the left hand side a polynomial of
second degree in ¢ with coefficients depending on z. Thus for ¢ — oo all
three coefficients have to vanish. This gives us three ordinary differential
equations for two functions A(z) and B(z). Remarkably enough, all three
equations can be simultaneously solved with the result

A(z)=(1—2)€e*, B(z)=z2(2-2). (32)

In this way we have the following lemma: the function cy(o,z) = (1 —z)e*-
exp[—oz(2 — z)] is an exact solution of the partial differential equation (29).
This obviously suggests that in the state |u) there is a bound state of the
Casimir operator C; with the eigenvalue z(2 — z) and the probability of
occurrence (1 — z)e*. This probability cannot be negative which means that
the state can exist only for 0 < z < 1. It is thus seen that the coupling
constant z = e2/7 = 1 is critical and separates two kinematically different
regimes of the theory. For 0 < z <1, 0 < z(2 — z) < 1 which means that
the bound state belongs to the so called supplementary series of irreducible
unitary representations of the proper orthochronous Lorentz group [2], since
for the main series 1 < C1 < oo [2].



2256 A. STARUSZKIEWICZ

5. Calculation of the resolvent (u|(C; — X)~!|u)

Let us multiply Eq. (25) by exp(Ao), assume that A is smaller than
the smallest eigenvalue of the Casimir operator C present in the spectral
decomposition of the matrix element (u|exp(—oCh)|u) and integrate both
sides over o, 0 < ¢ < oo. All integrals on the right hand side are absolutely
convergent and their order can be interchanged. In this way we obtain

(“fer=al

. oo ) )
— Qﬁ /dd} Sinh¢€_z(¢COth¢_1) . ’g[)/dO’O'_?)/Q e—a(l—/\)—zﬁ—a
0 0

1
Ci— A

_ /d/(/} sinhw 6—z(w cothp—1)—p/T—X ) (33)
0

The last integral exists for 1 —z — /1 — XA < 0 i.e. for A < z(2 — z) which
was assumed from the very beginning.

It is again remarkable that the last integral which is not given in the
Ryzhik and Gradshteyn Tables (I checked it in the VI*" American Edition)
can be calculated exactly with the help of the partial differential equation
which this integral is a solution of.

In fact, consider the integral

[e.o]

Fla,y) = / dgeS-veeo (34)
0

which exists for x + y > 0. Differentiating and integrating by parts, as

in Section 3, one can show that this integral fulfills the partial differential
equation

OF  OF O*F  O*F

Fto—+y—+y|l 55— 55| =0. 35

e y@y y<8y2 8x2> (35)

This is a hyperbolic equation for which the straight line x + y = 0 is the

boundary of the domain of influence of the positive z axis y = 0, x > 0.

Hence we can try to solve the Cauchy problem with the initial data on the

positive z axis y = 0, x > 0. We have that

e}

F(x,0) = /dg e % = i (36)

0
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This singularity must propagate to the left since F(x,y) is regular for
x+y > 0. The function 1/(xz+y) is an exact solution of Eq. (35). Therefore
F(z,y) = 1/(z+y) plus a solution of Eq. (35) which vanishes for y = 0. We
have

oF| T .
Wl _O/dge (=)C coth . (37)

Subtracting from this function the function

9 1
oy (x+y)|
y=0

-1 (38)

2

I can say that F'(z,y) = 1/(z+vy) plus a solution of Eq. (35) which vanishes
at y = 0 and whose y derivative at y = 0 is equal to

1 1
0

From the superposition principle it is seen that the problem is thus reduced
to the following one: find a solution of Eq. (35) which vanishes for y = 0
and whose y derivative at y = 0 is equal to —2/(x +2n+2)2. One can check
that this solution is equal to

9 (x+2n+2—y)" (40)
y(:p+2n+2+y)”+2'

Therefore for x +y > 0

[e.o]

1 (22— y)
d —x(—y( coth ¢ _ _9 41
/ “e T4y yz;)(w+2n+2+y)"+2 ()

0

which is a nice result not to be found in the Ryzhik and Gradshteyn Tables.

The result (41) allows us to calculate the resolvent (33) since sinhi) =
(1/2)(exp ¢ — exp(—1))) and the integral (33) is seen to be of the form (34).
Making the obvious substitutions we obtain for 0 < z < 1:

< 1 '>_ (1—2)e?
ule)\u _2(272)7)\

. (VI—-X+2n+1—-2)"
22 Z(\/T—&—Qn—i—l—i-z)”“'

(42)
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This formula shows at once the eigenvalue of the bound state, the probability
of its occurrence and the cut 1 < A < oo which reflects the contribution
from the main series of irreducible unitary representations of the proper
orthochronous Lorentz group.

We see from the formula (42) that the bound state cannot exist for
z > 1 since the probability of occurrence cannot be negative. This can also
be seen from the calculation leading to the formula (42). For z +y > 1 we
have instead of (41)

o.9]
/ d( sinh ¢ e~ *TYe o<
0

1/2 2n +1—y)"!
_ / 22 r+2n+1-y) . @3)
r+y—1 a:—y+1 (x+2n+ 14 y)nt

This formula can be derived in the same way as the previous one, given in
Eq. (41). Making the obvious substitutions we obtain for z > 1:

< 1 ’ > . 1 VI-A+3z+1
u u = e —
Ci—=A 2V1—-A+2z-1) 2(\/1—/\—&—2—1—12

+22Z \/1* +2n+1 )
(VI=X+2n+1+ z)"*2

(44)

This resolvent has only the cut 1 < A < oo which reflects contribution from
the main series.

6. A method to calculate the averages (u|(C1)™|u) for integer n

Differentiating both sides of Eq. (42) with respect to A and putting
A = 0 we can calculate all the averages of the form (u|(Ci)™"|u), n =

1, 2, 3,... . On the other hand there is no simple way to calculate the av-
erages (u|(C1)"|u), n =1, 2, 3,... . Professor Wosiek and dr Rostworowski
calculated from first principles the following averages (z = €2/7):
(u|Cilu) = 2z
20
()l = 27
8
(u)(C1)3u) = §z2(12 + 352)
16

(u)(C)Yu) = e 22(192 + 560z + 52522)
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32
(u(C1)°|u) = 522(192 + 704z + 84022 + 3852%)

64
(u)(C1)%u) = %22(147456 + 6478082 + 9777602% + 6468002°

+1751752%)
.............................. . (45)

One can see from these expressions that these averages increase so quickly
that the autocorrelation function (u|exp(iocCy)|u) cannot have a convergent
Taylor series in o. This is not a problem, of course. Autocorrelation func-
tions do not have to be analytic at the origin. Nevertheless, we have observed
the following “experimental” fact: the averages (45) can be recovered from
the differential equation (29) in the following way.

We write formally

(uleC ) = clo.2) = 3 S e ) (40)
n=0 ’

we put this into Eq. (29) and obtain the recurrence relation
2 —(z+1)d, —2nc, = dn(n—1)zcp—a—nldz(n—1)+2(1432)]cp—1 . (47)

Knowing that ¢o(z) = 1, ¢1(2) = 2z and assuming that ¢, (z) is a polynomial
of degree n one recovers the polynomials (45), which have been correctly
calculated from first principles. We fail to see the mathematical justification
of this procedure and therefore state it simply as an “experimental” fact
which does allow us to calculate the averages (u|(C1)"|u), n=1,2,3, ....
This calculation is much easier than the calculation which starts from first
principles.

I am greatly indebted to Professor Pawel O. Mazur from the Department
of Physics and Astronomy, University of South Carolina, for many useful
discussions and for having created for me excellent working conditions at
Columbia, SC, where the most important parts of this paper were written.
I am also indebted to Professor Jacek Wosiek and dr Andrzej Rostworowski
from the Department of Physics, Jagellonian University, for many useful
discussions.
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