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A NEW PROOF OF EXISTENCE OF A BOUND STATEIN THE QUANTUM COULOMB FIELDAndrzej StaruszkiewizMarian Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: astar�th.if.uj.edu.pl(Reeived June 9, 2004)Let S(x) be a massless salar quantum �eld whih lives on the three-dimensional hyperboloid xx = (x0)2−(x1)2−(x2)2−(x3)2 = −1. The las-sial ation is assumed to be (~ = 1 = c)(8πe2)−1

∫

dxgik∂iS∂kS, where
e2 is the oupling onstant, dx is the invariant measure on the de Sit-ter hyperboloid xx = −1 and gik, i, k = 1, 2, 3, is the internal metri onthis hyperboloid. Let u be a �xed four-veloity i.e. a �xed unit time-likevetor. The �eld S(u) = (1/4π)

∫

dxδ(ux)S(x)is smooth enough to beexponentiated, being an average of the operator valued distribution S(x)over the entire Cauhy surfae ux = 0. We prove that if 0 < e2 < π,then the state |u〉 = exp(−iS(u)) | 0〉, where | 0〉 is the Lorentz invariantvauum state, ontains a normalizable eigenstate of the Casimir operator
C1 = −(1/2)MµνM

µν ; Mµν are generators of the proper orthohronousLorentz group. The eigenvalue is (e2/π)(2−(e2/π)). This theorem was �rstproven by the Author in 1992 in his ontribution to the Czy» Festshrift,see Erratum Ata Phys. Pol. B 23, 959 (1992). In this paper a ompletelydi�erent proof is given: we derive the partial, di�erential equation satis�edby the matrix element 〈u | exp(−σC1) | u〉, σ > 0, and show that the fun-tion exp(z) · (1− z) · exp[−σz(2− z)], z = e2/π, is an exat solution of thisdi�erential equation, reovering thus both the eigenvalue and the probabil-ity of ourrene of the bound state. A beautiful integral is alulated asa byprodut.PACS numbers: 12.20.Ds, 11.10.Jj1. IntrodutionWe use mehanial units suh that ~ = 1 = c. We use eletri units suhthat the �ne struture onstant is equal to 1/e2, where e is the eletron'sharge. We use spae-time metri suh that g(x, x) = xx = (x0)2 − (x1)2 −
(x2)2 − (x3)2 is the square of the length of the vetor x.In Ref. [1℄ we were led to onsider the following theoretial struture.Let xµ, µ = 0, 1, 2, 3, denote spae-time Cartesian oordinates in an inertial(2249)



2250 A. Staruszkiewizreferene frame. The equation xx = −1 de�nes a subspae whih is loallya three-dimensional spae-time and is maximally symmetri, admitting sixKilling vetors. Thus it is a three-dimensional analogue of de Sitter spae-time and will be alled simply three-dimensional de Sitter spae-time. Asalar massless quantum �eld is assumed to live on the de Sitter spae-time
xx = −1. Its lassial ation is assumed to be

1

8πe2

∫

xx=−1

dxgik∂iS∂kS , (1)where e2 is the oupling onstant, dx is the invariant measure on the de Sit-ter hyperboloid xx = −1 and gik, i, k = 1, 2, 3, is the internal metri on thishyperboloid. The above ation has the following symmetries: the Lorentzsymmetry, whih, via the �rst Noether theorem, gives rise to six onstantsof motion Mµν = −Mνµ and the �gauge� symmetry S(x) → S(x)+ onst,whih, again via the �rst Noether theorem, gives rise to the additional on-stant of motion alled the total harge,
Q =

−1

4πe

∫

C.S.

dΣi∂iS . (2)Here C.S. means a Cauhy surfae in the de Sitter hyperboloid xx = −1 and
dΣi is the integration element on this surfae.A quantum �eld theory is obtained if we assume that

[Mµν , S(x)] =
1

i

(

xµ
∂

∂xν
− xν

∂

∂xµ

)

S(x) (3)and that there exists a state |0〉 suh that
Mµν |0〉 = 0 , 〈0|Mµν = 0 , 〈0|0〉 = 1 . (4)Eqs (3) and (4) an hold only if

[Q,S(x)] = ie (5)and
Q|0〉 = 0 , 〈0|Q = 0 , 〈0|0〉 = 1 . (6)There are many misleading or erroneous statements in the literature on thevauum state in de Sitter spae-time; for this reason the reader is invited tohek the onsisteny of Eqs (3)�(5), and (6) with the help of Ref. [1℄.The quantum �eld S(x) is an operator valued distribution and annotbe a subjet of nonlinear operations. It is, however, a very fortunate ir-umstane that Cauhy surfaes in the de Sitter spae-time xx = −1 are



A New Proof of Existene of a Bound State in . . . 2251ompat. For this reason averaging over a Cauhy surfae has the qualityof smearing out with an arbitrarily smooth funtion of ompat support inQED.Let us hoose a �xed unit time-like vetor u. The quantum �eld
S(u) =

1

4π

∫

xx=−1

dxδ(ux)S(x) (7)is the average of the �eld S(x) over the ompat setion of the spae-likeplane ux = 0 and the de Sitter hyperboloid xx = −1 and is smooth enoughto be exponentiated. S(u) is a quantum �eld whih lives in the Lobahevskyspae of four-veloities uu = +1. It is easy to see that
[Mµν , S(u)] =

1

i

(

uµ
∂

∂uν
− uν

∂

∂uµ

)

S(u) (8)and
[Q, S(u)] = ie . (9)Using the smooth quantum �eld S(u) we an onsistently form a hargedstate

|u〉 = exp(−iS(u))|0〉 (10)whih is an eigenstate of the total harge Q:
Q|u〉 = e|u〉 , 〈u|u〉 = 1 . (11)We shall investigate in this paper some properties of harged states ofthe form exp(−iS(u))|0〉. In partiular, we shall give a ompletely new proofof the theorem that the spetral ontents of the state exp(−iS(u))|0〉 in theregions 0 < e2 < π and e2 > π are di�erent. By spetral ontent we meanthe way in whih a given state an be represented as a superposition ofeigenstates of the �rst Casimir operator

C1 = −1
2MµνM

µν . (12)2. Calulation of the matrix element 〈u| exp(−σC1)|u〉 , σ > 0To save spae we shall write ∇µν(u) instead of
uµ

∂

∂uν
− uν

∂

∂uµ
.In expressions like ∇µν(u)S(u) one an even drop the �rst argument u be-ause the argument u of S(u) indiates the variable with respet to whihthe di�erentiation is arried out. Let us note �rst that

[S(u) , S(v)] = 0 (13)



2252 A. Staruszkiewizfor eah pair of points u, v in the Lobahevsky spae uu = +1. This is sobeause the de�nition (7) of S(u) piks up only the even part of the �eld
S(x) i.e. the part (1/2)[S(x)+S(−x)] and even parts do ommute with eahother on the strength of anonial ommutation relations (3). As an obviousonsequene we have that

[S(u) , ∇µνS(u)] = 0 . (14)Consider now [S(u) , C1]. We have
[S(u) , C1] =

1

2
[MµνM

µν , S(u)]

=
1

2

{

1

i
∇µνS(u) ·Mµν +Mµν · 1

i
∇µνS(u)

}

. (15)Therefore
[S(u) , [S(u) , C1]] = ∇µνS(u)∇µνS(u) (16)and

[S(u) , [S(u) , [S(u) , C1]]] = 0 . (17)Consider now the matrix element 〈v| exp(−σC1)|u〉, where v is a �xed four-veloity di�erent from u and σ > 0. Using Eqs (14)�(16) and (17) in anobvious way we have
− ∂

∂σ
〈v| e−σC1 |u〉 = 〈v| e−σC1 e−iS(u)−1

2
∇µνS(u)∇µνS(u)|0〉 . (18)On the other hand, let us apply the Laplae�Beltrami operator ∆(u) =

−(1/2)∇µν(u)∇µν(u) to the matrix element 〈v| exp(−σC1)|u〉. Taking intoaount that ∆(u)S(u) = 0 as a onsequene of the equation of motion
∆(x)S(x) = 0 we have

∆(u)〈v| e−σC1 |u〉 = 〈v| e−σC1 e−iS(u)−1

2
∇µνS(u)∇µνS(u)|0〉 . (19)Comparing (18) and (19) we see that

{

∂

∂σ
−∆(u)

}

〈v| e−σC1 |u〉 = 0 . (20)This means that the matrix element 〈v| exp(−σC1)|u〉 is a solution of theheat transport equation in the Lobahevsky spae of four-veloities uu = +1.The initial value for this solution is obviously the matrix element 〈v|u〉 whihwas alulated in Ref. [1℄ as exp(−(e2/π)(λ coth λ − 1)), where λ is thehyperboli angle between u and v:



A New Proof of Existene of a Bound State in . . . 2253
gµνu

µvν = coshλ . (21)To solve the Cauhy problem for the heat transport equation (20) we applythe standard proedure: we represent the initial value as a superpositionof plane waves, solve the heat transport equation for eah plane wave, andrepresent the �nal value as a superposition of time evolved plane waves.However, sine we are in the Lobahevsky spae of four-veloities uu = +1,we have to apply plane waves in Lobahevsky spae whih Gelfand, Graev,and Vilenkin desribed in their great book [2℄. This means that we have toapply Eqs (20) and (21) whih Gelfand, Graev, and Vilenkin give on page477 of their book. These equations give the Fourier transform and its inversein Lobahevsky spae. The result of this obvious proedure is summarized inthe following lemma: suppose that f(u; 0) is the initial value for the funtion
f(u;σ) whih solves the heat transport equation in the Lobahevsky spae
uu = +1,

{

∂

∂σ
−∆(u)

}

f(u;σ) = 0 .Then
f(u;σ) =

1

2π2

∫

du′f(u′; 0)
1

sinh λ

∞
∫

0

dνν e−σ(1+ν2) sin(νλ) , (22)where du is the invariant measure in the Lobahevsky spae uu = +1 and λis the hyperboli angle between the observation point u and the integrationpoint u′. The seond integral in (22) an be alulated. In this way weobtain
f(u;σ) =

e−σ

(4πσ)3/2

∫

du′f(u′; 0)
λ

sinh λ
e−

λ2

4σ , (23)where λ is the hyperboli angle between the observation point u and theintegration point u′.Now, we took the matrix element 〈v| exp(−σC1)|u〉 in order to be able todi�erentiate with respet to u while leaving v untouhed. In fat, however,we are interested in the matrix element 〈u| exp(−σC1)|u〉. Geometriallythis means that we have to take in Eq. (23) the observation point u at theorigin of the spherially symmetri distribution f(u′; 0). Introduing thespherial oordinates
u′ 0 = coshψ ,

u′ 1 = sinhψ sinϑ cosϕ ,

u′ 2 = sinhψ sinϑ sinϕ ,

u′ 3 = sinhψ cos ϑ , (24)



2254 A. Staruszkiewizand taking the solution at the origin of spherial symmetry we have �nally
(z = e2/π)

〈u| e−σC1 |u〉 =
1

2
√
π

e−σ

σ3/2

∞
∫

0

dψ sinhψ e−z(ψ cothψ−1) · ψ e−ψ2

4σ . (25)3. The di�erential equation satis�ed by the matrix element
〈u| exp(−σC1)|u〉It is remarkable that the matrix element 〈u| exp(−σC1)|u〉 satis�es aertain partial di�erential equation. This equation, as well as the equationarrived at later on, satis�ed by the resolvent 〈u|(C1 − λ)−1|u〉, is obviouslya trae of some deeper struture whih, for the time being, we fail to under-stand.In fat let us put

f(ν, z) =

∞
∫

0

dψ sinhψ e−zψ cothψ · ψ e−νψ2

, ν > 0 . (26)Then
∂f

∂z
= −

∞
∫

0

dψ e−zψ cothψ coshψ · ψ2 e−νψ
2

=

∞
∫

0

dψ sinhψ
d

dψ

{

e−zψ cothψ · ψ2 e−νψ
2
}

= z
∂f

∂z
+ z

∂2f

∂z2
+ z

∂f

∂ν
+ 2f + 2ν

∂f

∂ν
(27)whih means that the funtion f(ν, z) is a solution of the partial di�erentialequation

(z − 1)
∂f

∂z
+ z

∂2f

∂z2
+ z

∂f

∂ν
+ 2ν

∂f

∂ν
+ 2f = 0 . (28)Having this equation we an multiply the funtion f(ν, z) = f(1/4σ, z)by trivial fators σ−3/2 exp(z − σ) and obtain the following lemma: let

〈u| exp(−σC1)|u〉 = c(σ, z); then the funtion c(σ, z) satis�es the partialdi�erential equation
z
∂2c

∂z2
− (z + 1)

∂c

∂z
− 2σ(1 + 2σz)

∂c

∂σ
− 2σ(1 + 3z + 2σz)c = 0 . (29)



A New Proof of Existene of a Bound State in . . . 22554. The eigenvalue and the probability of ourrene of the boundstate of the Casimir operator C1 in the state
|u〉 = exp(−iS(u))|0〉The Casimir operator C1 is known to have no lower bound; its eigenvaluesin the so alled main series of irreduible unitary representations of theproper orthohronous Lorentz group are [2℄ 1 + ν2 − n2, where ν is a realnumber and n is an integer. However, n is proportional to the eigenvalue ofthe seond Casimir operator

C2 = M01M23 +M02M31 +M03M12 (30)whih obviously annihilates all spherially symmetri states. |u〉 =
exp(−iS(u))|0〉 is spherially symmetri in the rest frame of u. Therefore inthe subspae of spherially symmetri states the Casimir operator C1 doeshave a lower bound. This means that the asymptoti behaviour of solutionsof Eq. (29) for σ → ∞ is determined by the state with the lowest eigenvalue.Assume that the spetral deomposition of C1 does ontain a boundstate with the lowest eigenvalue. Then Eq. (29) has to have for σ → ∞ anasymptoti solution of the form

c0(σ, z) = A(z) e−σB(z) . (31)Putting this into Eq. (29) we obtain on the left hand side a polynomial ofseond degree in σ with oe�ients depending on z. Thus for σ → ∞ allthree oe�ients have to vanish. This gives us three ordinary di�erentialequations for two funtions A(z) and B(z). Remarkably enough, all threeequations an be simultaneously solved with the result
A(z) = (1 − z) ez , B(z) = z(2 − z) . (32)In this way we have the following lemma: the funtion c0(σ, z) = (1− z) ez ·

exp[−σz(2− z)] is an exat solution of the partial di�erential equation (29).This obviously suggests that in the state |u〉 there is a bound state of theCasimir operator C1 with the eigenvalue z(2 − z) and the probability ofourrene (1−z) ez . This probability annot be negative whih means thatthe state an exist only for 0 < z < 1. It is thus seen that the ouplingonstant z = e2/π = 1 is ritial and separates two kinematially di�erentregimes of the theory. For 0 < z < 1 , 0 < z(2 − z) < 1 whih means thatthe bound state belongs to the so alled supplementary series of irreduibleunitary representations of the proper orthohronous Lorentz group [2℄, sinefor the main series 1 < C1 <∞ [2℄.



2256 A. Staruszkiewiz5. Calulation of the resolvent 〈u|(C1 − λ)−1|u〉Let us multiply Eq. (25) by exp(λσ), assume that λ is smaller thanthe smallest eigenvalue of the Casimir operator C1 present in the spetraldeomposition of the matrix element 〈u| exp(−σC1)|u〉 and integrate bothsides over σ, 0 < σ <∞. All integrals on the right hand side are absolutelyonvergent and their order an be interhanged. In this way we obtain
〈

u

∣

∣

∣

∣

1

C1 − λ

∣

∣

∣

∣

u

〉

=
1

2
√
π

∞
∫

0

dψ sinhψ e−z(ψ cothψ−1) · ψ
∞

∫

0

dσσ−3/2 e−σ(1−λ)−ψ2

4σ

=

∞
∫

0

dψ sinhψ e−z(ψ cothψ−1)−ψ
√

1−λ . (33)The last integral exists for 1 − z −
√

1 − λ < 0 i.e. for λ < z(2 − z) whihwas assumed from the very beginning.It is again remarkable that the last integral whih is not given in theRyzhik and Gradshteyn Tables (I heked it in the VIth Amerian Edition)an be alulated exatly with the help of the partial di�erential equationwhih this integral is a solution of.In fat, onsider the integral
F (x, y) =

∞
∫

0

dζe−xζ−yζ coth ζ (34)whih exists for x + y > 0. Di�erentiating and integrating by parts, asin Setion 3, one an show that this integral ful�lls the partial di�erentialequation
F + x

∂F

∂x
+ y

∂F

∂y
+ y

(

∂2F

∂y2
− ∂2F

∂x2

)

= 0 . (35)This is a hyperboli equation for whih the straight line x + y = 0 is theboundary of the domain of in�uene of the positive x axis y = 0, x > 0.Hene we an try to solve the Cauhy problem with the initial data on thepositive x axis y = 0, x > 0. We have that
F (x, 0) =

∞
∫

0

dζ e−xζ =
1

x
. (36)



A New Proof of Existene of a Bound State in . . . 2257This singularity must propagate to the left sine F (x, y) is regular for
x+y > 0. The funtion 1/(x+y) is an exat solution of Eq. (35). Therefore
F (x, y) = 1/(x+y) plus a solution of Eq. (35) whih vanishes for y = 0. Wehave

∂F

∂y

∣

∣

∣

∣

∣

y=0

=

∞
∫

0

dζ e−xζ(−)ζ coth ζ . (37)Subtrating from this funtion the funtion
∂

∂y

1

(x+ y)

∣

∣

∣

∣

∣

y=0

= − 1

x2
(38)I an say that F (x, y) = 1/(x+y) plus a solution of Eq. (35) whih vanishesat y = 0 and whose y derivative at y = 0 is equal to

1

x2
−

∞
∫

0

dζζ e−xζ coth ζ = −2

∞
∑

n=0

1

(x+ 2n+ 2)2
. (39)From the superposition priniple it is seen that the problem is thus reduedto the following one: �nd a solution of Eq. (35) whih vanishes for y = 0and whose y derivative at y = 0 is equal to −2/(x+2n+2)2. One an hekthat this solution is equal to

−2y
(x+ 2n + 2 − y)n

(x+ 2n + 2 + y)n+2
. (40)Therefore for x+ y > 0

∞
∫

0

dζ e−xζ−yζ coth ζ =
1

x+ y
− 2y

∞
∑

n=0

(x+ 2n + 2 − y)n

(x+ 2n + 2 + y)n+2
(41)whih is a nie result not to be found in the Ryzhik and Gradshteyn Tables.The result (41) allows us to alulate the resolvent (33) sine sinhψ =

(1/2)(exp ψ− exp(−ψ)) and the integral (33) is seen to be of the form (34).Making the obvious substitutions we obtain for 0 < z < 1:
〈

u

∣

∣

∣

∣

1

C1 − λ

∣

∣

∣

∣

u

〉

=
(1 − z)ez

z(2 − z) − λ

+2z2ez
∞
∑

n=0

(
√

1 − λ+ 2n+ 1 − z)n−1

(
√

1 − λ+ 2n+ 1 + z)n+2
. (42)



2258 A. StaruszkiewizThis formula shows at one the eigenvalue of the bound state, the probabilityof its ourrene and the ut 1 ≤ λ < ∞ whih re�ets the ontributionfrom the main series of irreduible unitary representations of the properorthohronous Lorentz group.We see from the formula (42) that the bound state annot exist for
z > 1 sine the probability of ourrene annot be negative. This an alsobe seen from the alulation leading to the formula (42). For x+ y > 1 wehave instead of (41)

∞
∫

0

dζ sinh ζ e−xζ−yζ coth ζ

=
1/2

x+ y − 1
− 1/2

x− y + 1
+ 2y2

∞
∑

n=0

(x+ 2n+ 1 − y)n−1

(x+ 2n+ 1 + y)n+2
. (43)This formula an be derived in the same way as the previous one, given inEq. (41). Making the obvious substitutions we obtain for z > 1:

〈

u

∣

∣

∣

∣

1

C1 − λ

∣

∣

∣

∣

u

〉

= ez

{

1

2(
√

1 − λ+ z − 1)
−

√
1 − λ+ 3z + 1

2(
√

1 − λ+ z + 1)2

+2z2
∞
∑

n=1

(
√

1 − λ+ 2n+ 1 − z)n−1

(
√

1 − λ+ 2n+ 1 + z)n+2

}

. (44)This resolvent has only the ut 1 ≤ λ <∞ whih re�ets ontribution fromthe main series.6. A method to alulate the averages 〈u|(C1)
n|u〉 for integer nDi�erentiating both sides of Eq. (42) with respet to λ and putting

λ = 0 we an alulate all the averages of the form 〈u|(C1)
−n|u〉, n =

1, 2, 3, . . . . On the other hand there is no simple way to alulate the av-erages 〈u|(C1)
n|u〉, n = 1, 2, 3, . . . . Professor Wosiek and dr Rostworowskialulated from �rst priniples the following averages (z = e2/π):

〈u|C1|u〉 = 2z

〈u|(C1)
2|u〉 =

20

3
z2

〈u|(C1)
3|u〉 =

8

9
z2(12 + 35z)

〈u|(C1)
4|u〉 =

16

45
z2(192 + 560z + 525z2)
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〈u|(C1)

5|u〉 =
32

9
z2(192 + 704z + 840z2 + 385z3)

〈u|(C1)
6|u〉 =

64

945
z2(147456 + 647808z + 977760z2 + 646800z3

+175175z4)

.............................. . (45)One an see from these expressions that these averages inrease so quiklythat the autoorrelation funtion 〈u| exp(iσC1)|u〉 annot have a onvergentTaylor series in σ. This is not a problem, of ourse. Autoorrelation fun-tions do not have to be analyti at the origin. Nevertheless, we have observedthe following �experimental� fat: the averages (45) an be reovered fromthe di�erential equation (29) in the following way.We write formally
〈u|e−σC1 |u〉 = c(σ, z) =

∞
∑

n=0

(−1)n

n!
σncn(z) ; (46)we put this into Eq. (29) and obtain the reurrene relation

zc′′n−(z+1)c′n−2ncn = 4n(n−1)zcn−2−n[4z(n−1)+2(1+3z)]cn−1 . (47)Knowing that c0(z) = 1, c1(z) = 2z and assuming that cn(z) is a polynomialof degree n one reovers the polynomials (45), whih have been orretlyalulated from �rst priniples. We fail to see the mathematial justi�ationof this proedure and therefore state it simply as an �experimental� fatwhih does allow us to alulate the averages 〈u|(C1)
n|u〉, n = 1, 2, 3, . . . .This alulation is muh easier than the alulation whih starts from �rstpriniples.I am greatly indebted to Professor Pawel O. Mazur from the Departmentof Physis and Astronomy, University of South Carolina, for many usefuldisussions and for having reated for me exellent working onditions atColumbia, SC, where the most important parts of this paper were written.I am also indebted to Professor Jaek Wosiek and dr Andrzej Rostworowskifrom the Department of Physis, Jagellonian University, for many usefuldisussions. REFERENCES[1℄ A Staruszkiewiz, Ann. Phys. (NY) 190, 354 (1989).[2℄ I.M. Gelfand, M.I. Graev, N.Ya. Vilenkin, Generalized Funtions, Vol. 5, Gos.Izd. Fiz. Mat. Lit., Mosow 1962 (in Russian).


