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HADRONIC EFFECTIVE FIELD THEORYAPPLIED TO Λ-HYPERNUCLEIJeff M
IntireDepartment of Physi
s, College of William and MaryWilliamsburg, VA 23187, USA(Re
eived May 10, 2004)In the present work, the approa
h of Furnstahl, Serot, and Tang (FST)is extended to the region of nonzero strangeness in appli
ation to single-parti
le states in single Λ-hypernu
lei. To in
lude Λ's, an additional 
on-tribution to their e�e
tive Lagrangian is systemati
ally 
onstru
ted withinthe framework of FST. The relativisti
 Hartree (Kohn�Sham) equations aresolved numeri
ally, and least-square �ts to a series of experimental levels areperformed at various levels of trun
ation in the extended Lagrangian. Theground-state properties of any Λ-hypernu
lei are then predi
ted. In addi-tion, ground-state Λ-parti
le�nu
leon�hole splittings are 
al
ulated whereappropriate, and the approa
h is 
alibrated against a 
al
ulation of the

s1/2-doublet splitting in the nu
leus 32
15P17.PACS numbers: 21.80.+a 1. Introdu
tionE�e
tive �eld theories have been developed in re
ent years to solve thenu
lear many-body problem. In the present work, we 
onsider one of thesetheories, proposed by Furnstahl, Serot, and Tang (FST) [1, 2℄, and extendtheir methodology to the 
ase of single Λ-hypernu
lei. Spe
i�
ally, thephenomena of interest here are ground-state (GS) binding energies, den-sities, single-parti
le spe
tra, and parti
le�hole splittings of sele
t single

Λ-hypernu
lei.FST develop a self-
onsistent framework for 
onstru
ting an e�e
tiveLagrangian that in
orporates the prin
iples of both quantum me
hani
s andspe
ial relativity, the underlying symmetries of QCD, and the nonlinearrealization of spontaneously broken 
hiral symmetry [1℄. As this is a low-energy theory, the appropriate low lying hadrons are used as degrees of(2261)
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Intirefreedom. In order to make any meaningful 
al
ulation, the Lagrangian,whi
h in prin
iple 
ontains an in�nite number of terms, must be trun
atedin some way. Naive dimensional analysis (NDA) [3, 4℄ and relativisti
 mean�eld theory (RMFT) [2, 5℄ provide a formalism in whi
h higher order termsare, in general, su

essively smaller; this allows for a systemati
 expansion,and 
onsequently a meaningful trun
ation, in the e�e
tive Lagrangian. HereFST utilize relativisti
 Hartree theory to redu
e the many-body equations tosingle-parti
le equations. The free parameters in the e�e
tive Lagrangian are�xed via least-squares �ts to experimental data from ordinary nu
lei alongthe valley of stability. These �ts are 
ondu
ted at various levels of trun
ationin the underlying Lagrangian [1℄. On
e the values of these parameters areknown, this Lagrangian 
an be used to predi
t other properties of ordinarynu
lei. One example whi
h demonstrates the predi
tive power of this methodis its appli
ation to the study of nu
lei far from stability [6, 7℄.Density fun
tional theory (DFT) is a theoreti
al framework whi
h allowsone to 
al
ulate the GS properties of many-body systems without 
arryingaround all the baggage 
ontained in the many-parti
le wave fun
tions [8℄.Two points are of interest here. First, if the expe
tation value of the Hamilto-nian is 
onsidered as a fun
tional of the density, the exa
t GS density 
an bedetermined by minimizing the energy fun
tional. Se
ond, one only needs tosolve a series of self-
onsistent, single-parti
le equations with 
lassi
al �elds,instead of many-body equations with quantum �elds [9℄. In other words,Kohn�Sham theory is formally equivalent to relativisti
 Hartree theory. Con-sequently, the problem is now redu
ed to determining the 
orre
t form ofthe energy fun
tional, whi
h follows from the appropriate Lagrangian. Thefull intera
ting Lagrangian of FST gives an appropriate energy fun
tionaland, as a result, DFT provides an underlying theoreti
al justi�
ation for thisapproa
h.Hadroni
 e�e
tive Lagrangians using MFT have been developed in theliterature to des
ribe hypernu
lei. Early models 
ontaining only the lowestorder terms required mu
h weaker meson 
ouplings to the Λ than to the nu-
leons to a
hieve su

ess [10,11℄, parti
ularly in the weak spin�orbit intera
-tion. Later, it was suggested that large meson 
ouplings to the Λ 
onsistentwith SU(3) were possible if the Lagrangian was extended to in
lude tensor
ouplings [12�18℄. It turns out the spin�orbit splitting is very sensitive tothe size of the tensor 
oupling to the ve
tor �eld. The approa
h of FST hasalso been applied to strange hadroni
 matter [19℄. More re
ently, e�e
tivetheories 
onsistent with SU(3)L ⊗ SU(3)R have been 
onstru
ted [20�22℄.Another model of interest uses strangeness 
hanging response fun
tions to
al
ulate the spe
tra of 16
Y O and 40

Y Ca1; the resulting GS parti
le�hole split-
1 Here Y denotes a hyperon.
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tive Field Theory Applied to Λ-Hypernu
lei 2263tings are small [23℄. Other studies in
lude models that 
ouple the mesonsself-
onsistently to the quarks within the baryons [24, 25℄ and a density de-pendent relativisti
 hadroni
 �eld theory [26℄.The following studies have attempted to �t potentials to the hyperon�nu
leon intera
tion. Experimental data has been analyzed to obtain a non-lo
al and density-dependent Λ-nu
leus potential [27,28℄. Global opti
al po-tentials for Λ s
attering o� nu
lei were developed [29℄. The hypernu
learmass dependen
e of the binding energies is reprodu
ed by a Λ moving ina Woods�Saxon potential [30℄. The Nijmegen group has developed Y �Npotentials based on the assumption of SU(3) symmetry [31�33℄; this �xesthe baryon�meson 
oupling 
onstants from N�N s
attering �ts. Similarly,potentials were 
onstru
ted by the Juli
h group assuming SU(6) symme-try [34℄. Cal
ulations of hypernu
lei using these Nijmegen or Juli
h poten-tials in
lude [35�40℄. Comparable G-matrix 
al
ulations with a SU(6) quark-model baryon�baryon intera
tion [41℄ and Skyrme-like hyperon�nu
leon po-tentials [42℄ have also been investigated. Other re
ent approa
hes in
ludeusing the Fermi hypernetted 
hain method [43,44℄ and using a quark modelwith one boson ex
hange potentials [45℄.Many of these studies a
hieve a good deal of su

ess. However, theframework of FST is more 
omprehensive than these approa
hes as it in-
orporates dire
tly into a hadroni
 e�e
tive �eld theory all of the following:spe
ial relativity, quantum me
hani
s, the underlying symmetry stru
ture ofQCD, and the nonlinear realization of spontaneously broken 
hiral symme-try. Furthermore, this methodology is theoreti
ally justi�ed by DFT. On
eall the parameters are �xed, their Lagrangian predi
ts the GS properties ofany ordinary nu
leus. This approa
h has had great su

ess [1, 6, 7℄. There-fore, it is of interest to extend this methodology, with all of its intrinsi
strengths, to the strangeness se
tor, as is done here.In the present work, the approa
h developed by FST is expanded tothe region of the strangeness se
tor that 
orresponds to Λ-hypernu
lei with
S = −1 and T = 0. To this end, we in
lude a single, isos
alar Λ �eld in thetheory2. Now, a Λ-Lagrangian is 
onstru
ted as an additional 
ontributionto the full intera
ting e�e
tive Lagrangian of FST, 
onsistent with theirmethodology. Sin
e the Λ is an isos
alar, it does not 
ouple to either asingle Yukawa pion or the rho meson. Furthermore, we 
on�ne our theoryto the mesons already in
luded3; thus, the meson Lagrangian, whi
h in

2 The Σ is not expli
itly in
luded in the present 
al
ulation. An idea of the possibleimpa
t of Λ�Σ mixing 
an be taken from [46℄. It should be mentioned that if oneviews the s
alar meson as a two-pion resonan
e, then the Σ enters impli
itly as anintermediate state in our formalism.
3 The kaon is not in
luded as a degree of freedom in this work. The reason is that, aswith the pion, the kaon has no mean �eld and does not e�e
t the RMFT 
al
ulations.
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Intirethis approa
h 
ontains the majority of the 
omplexity, is unaltered. It hasbeen proposed that a tensor 
oupling to the ve
tor �eld be in
luded toreprodu
e the 
orre
t experimental spin�orbit splitting of the p-states in Λ-hypernu
lei [12, 13℄. As it turns out, su
h a term is a natural extension ofour Lagrangian in this framework. Additional higher order terms are alsoin
luded to better approximate the exa
t energy fun
tional.Following the methodology of FST, our Λ-Lagrangian 
ontains a numberof free parameters. The 
onstants in both the nu
leon and meson se
torsare taken from a FST parameter set 
orresponding to their full Lagrangian.As before, the remaining un
onstrained parameters are �xed here via least-squares �ts to a series of experimental data [47�52℄. The 10 pie
es of dataused in
lude six GS binding energies, three s�p shell ex
itations for the Λ,and the spin�orbit splitting of the p-states in 13
Λ

C. The �ts are 
ondu
ted atfour di�erent levels of trun
ation in the Λ-Lagrangian. On
e these param-eters are �xed, this Lagrangian 
an be used to predi
t other properties ofsingle Λ-hypernu
lei.One other property that is of interest to 
al
ulate here is what we referto as s1/2-splittings. These are GS parti
le�hole splittings of sele
t single
Λ-hypernu
lei, su
h as 16

Λ
O, whi
h have a Λ in the GS and a hole in thelast �lled nu
leon (proton or neutron) shell. For these systems, the angularmomenta of the Λ and the nu
leon hole 
ouple to form a doublet. The size ofthese splittings is determined by the di�eren
e of two parti
le�hole matrixelements [53℄. The e�e
tive parti
le�hole intera
tion utilized here followsdire
tly from the e�e
tive theory of the pre
eding dis
ussion. This intera
-tion, to lowest order, is just simple s
alar and ve
tor meson ex
hange [54℄4.A simple Yukawa spatial dependen
e is obtained when retardation is ne-gle
ted in the meson propagators. With this ex
eption, the full Lorentzstru
ture is maintained [54℄. For the Λ�N 
ase, there is no isove
tor 
om-ponent to the e�e
tive intera
tion or ex
hange 
ontribution in the two-bodymatrix elements. Through angular momentum relations [57℄ and some al-gebra, the matrix elements are redu
ed to radial Slater integrals. Using theHartree wave fun
tions from the Λ single-parti
le 
al
ulations to evaluatethe integrals, these matrix elements, and 
onsequently the s1/2-splitting,
an now be fully determined. On
e the parameters in the Λ-Lagrangian areknown, the e�e
tive parti
le�hole intera
tion is 
ompletely spe
i�ed in this

4 The retention of higher diagrams in the e�e
tive intera
tion, parti
ularly those in-
luding the tensor 
oupling to the Λ, is left for future work. Also, it is worth notingthat while the kaon makes no 
ontribution at the mean �eld level, kaon ex
hange mayplay a role in the e�e
tive intera
tion. Some idea of the relative 
ontribution of kaonex
hange 
an be obtained from the Nijmegen potentials [32,55,56℄. An investigationof the e�e
t of kaon ex
hange on the s1/2-splittings in e�e
tive �eld theory is alsoleft to future work.
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lei 2265approa
h. In the 
ase of s1/2-splittings in Λ-hypernu
lei, only the spatialpart of the ve
tor ex
hange 
ontributes to the splitting. Predi
tions aregiven for the GS doublet splittings of every one of the Λ-hypernu
lei 
on-sidered here; all of the doublets used in the �tting pro
edure lie within the
urrent experimental error bars on the GS energies. An up
oming high res-olution experiment at Je�erson Lab will measure the s1/2-splittings in 12
Λ

Band 16
Λ

N [58, 59℄. The present 
al
ulations provide theoreti
al predi
tionsfor these quantities4. Non-relativisti
 
al
ulations of similar parti
le�holesplittings have been 
arried out [60℄.The need for isove
tor intera
tions and ex
hange 
ontributions make
al
ulations of similar splittings in ordinary nu
lei far more 
ompli
ated [54℄.As an example of a 
omparable system in an ordinary nu
leus, and to atleast partially 
alibrate the present approa
h, the 
al
ulation of the s1/2-splitting in 32
15P17 is in
luded here. Comparable systems for ordinary nu
leihave also been examined [61℄.In Se
tion 2, we review the methodology of FST and in Se
tion 3, wedes
ribe the development of our Λ-Lagrangian. The framework for 
al
ulat-ing the parti
le�hole splittings is dis
ussed in Se
tion 4. The results of theparameter �ts, single-parti
le 
al
ulations, and s1/2-splittings are given inSe
tion 5. 2. Methodology of FSTIn this se
tion we review the methodology of FST. They approa
h thenu
lear many-body problem by 
onstru
ting an e�e
tive �eld theory thatretains the underlying symmetries of QCD as well as the prin
iples of bothspe
ial relativity and quantum me
hani
s [1℄. At low-energy, hadrons arethe desired degrees of freedom and the ones whi
h FST use to 
onstru
tan e�e
tive Lagrangian. The nonlinear realization of spontaneously broken
hiral symmetry is illustrated through a system of pions, nu
leons, and rhomesons. They in
orporate Goldstone pions through the �eld

U(xµ) ≡ ξ(xµ)1ξ(xµ) = eiπ(xµ)/fπ1eiπ(xµ)/fπ , (1)where the pion �eld, π(xµ) = 1
2~τ · ~π, appears to all orders, τ is a Paulimatrix, and fπ is the pion-de
ay 
onstant [1℄. An isodoublet nu
leon �eld isin
luded, represented by

N(xµ) =

(

p(xµ)
n(xµ)

)

. (2)The upper (lower) 
omponent 
orresponds to the proton (neutron). Toa

ount for the symmetry energy in nu
lear matter, an isove
tor�ve
tor rhomeson, ρν(xµ) = 1
2~τ · ~ρ, is also in
luded.
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IntireThe following boson �elds are also in
orporated into this framework, the�rst two of whi
h are isos
alar 
hiral singlets. A s
alar �eld, φ, is in
ludedto simulate the medium-range nu
lear attra
tion. Next, they in
orporate ave
tor meson, Vµ, to reprodu
e the short-range nu
lear repulsion. Lastly,a photon �eld, Aµ, is added to take into 
onsideration the ele
tromagneti
stru
ture of nu
lei.As all possible 
ombinations of the �elds, 
onsistent with this framework,are in
luded, this Lagrangian 
ontains an in�nite number of terms. To
ondu
t any meaningful 
al
ulation, this Lagrangian needs to be trun
atedat some level. FST utilize both NDA and RMFT to a

omplish this. NDAis a framework whi
h identi�es all the dimensional fa
tors of a given term.On
e these dimensional fa
tors, and some appropriate 
ounting fa
tors, areextra
ted from a term, the remaining dimensionless 
onstant is of O(1) [3,4℄.This assumption is known as �naturalness�. RMFT states that when thebaryon density be
omes appropriately large, the sour
es and meson �elds
an be repla
ed by their expe
tation values; here, the expe
tation valuesof the meson �elds are just their 
lassi
al �elds [5℄. Then we noti
e thatwhile the meson mean �elds are large, the ratios of these �elds to the 
hiralsymmetry breaking s
ale, M , are small. Furthermore, the size of derivativesis related to kF, whi
h is also small 
ompared toM . These e�e
ts are shownby [5℄
Φ

M
,
W

M
∼

1

3
;

kF

M
∼

1

4
, (3)where the s
aled meson mean �elds are de�ned as

Φ(~x) ≡ gSφ0 ; W (~x) ≡ gV V0 ;

R(~x) ≡ gρb0 ; A(~x) ≡ eA0 . (4)The ordering prin
iple developed by FST is
ν =

n

2
+ b+ d , (5)where for a given term ν is the order, n is the number of fermion �elds, bis the number of non-Goldstone bosons, and d is the number of derivatives.Now a 
ontrolled expansion is performed in whi
h higher order terms are,in general, progressively smaller.Using this ordering prin
iple, they 
onstru
t an e�e
tive Lagrangian intwo parts [1℄

LFST(xµ) = LN (xµ) + LM(xµ) . (6)
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lei 2267The fermion part to order ν = 4 is given by
LN (xµ) = −N̄

{

γµ

[

∂

∂xµ
+ ivµ − igAγ5aµ − igV Vµ − igρρµ

−
i

2
eAµ (1 + τ3)

]

+ (M − gSφ)

}

N +
fρgρ

4M
N̄σµνρµνN

+
fV gV

4M
N̄σµνVµνN +

κπ

M
N̄σµνvµνN +

e

4M
N̄λσµνFµνN

+
ie

2M2
N̄γµ (βS + βV τ3)N

∂

∂xν
Fµν , (7)where λ = 1

2λp(1 + τ3) + 1
2λn(1 − τ3) and λp = 1.793 (λn = −1.913) is theanomalous magneti
 moment of the proton (neutron). Note that for thepurposes of this work, the 
onventions of [5℄ are used. Here we have de�ned
Vµν =

∂Vν

∂xµ
−
∂Vµ

∂xν
, (8)

vµν , ρµν , and Fµν are similarly de�ned for vµ, ρµ, and Aµ respe
tively. Noti
ethat the pions only 
ouple to the fermions through the 
ombinations
vµ = −

i

2

(

ξ†
∂ξ

∂xµ
+ ξ

∂ξ†

∂xµ

)

= v†µ , (9)
aµ =

i

2

(

ξ†
∂ξ

∂xµ
− ξ

∂ξ†

∂xµ

)

= a†µ . (10)To lowest order, both vµ and aµ 
ontain derivatives of the pion �eld; thussoft pions de
ouple. The meson Lagrangian to order ν = 4 is
LM (xµ) = −

1

2

(

1 + α1
gSφ

M

)(

∂φ

∂xµ

)2

−
f2

π

4
tr

(

∂U

∂xµ

∂U †

∂xµ

)

−
1

2
tr (ρµνρµν)

−
1

4

(

1 + α2
gSφ

M

)

VµνVµν − gρππ
2f2

π

m2
ρ

tr (ρµνvµν)

+
m2

πf
2
π

4
tr

(

U + U † − 2
)

−
1

2

(

1 + η1
gSφ

M
+
η2

2

g2
Sφ

2

M2

)

m2
V VµVµ

+
1

4!
ζ0g

2
V (VµVµ)2 −

1

4
FµνFµν −

(

1 + ηρ
gSφ

M

)

m2
ρtr (ρµρµ)

−m2
Sφ

2

(

1

2
+
κ3

3!

gSφ

M
+
κ4

4!

g2
Sφ

2

M2

)

. (11)
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IntireTerms su
h as N̄Nφ2 are redundant in this formulation. This stems fromthe fa
t that FST employ meson �eld rede�nitions; sin
e the parametersare free, they are also just rede�ned. A detailed des
ription of how thisLagrangian was 
onstru
ted is presented in [1℄.This still 
onstitutes a system of many-body equations with quantum�elds. FST now employ Hartree theory and RMFT to redu
e the many-body system to a series of single-parti
le equations with 
lassi
al �elds. Thisis equivalent to Kohn�Sham theory in DFT; therefore, DFT provides thetheoreti
al justi�
ation for this methodology. The single-parti
le Hamiltoniantakes the form [1℄
h(~x) = −i~α· ~∇ +W +

1

2
τ3R+

1

2
(1 + τ3)A+ β (M − gSΦ) −

i

2M
λβ~α· ~∇A

−
i

2M
β~α·

(

fV
~∇W + fρ

1

2
τ3~∇R

)

+
1

2M2
(βS + βV τ3)∇

2A . (12)Sin
e the pion has no mean �eld in a spheri
ally symmetri
 system, all ofthe pion 
ouplings drop out. The Hartree wave fun
tions are of the form
ψα(~x) =

1

r

(

iGa(r)Φκm

−Fa(r)Φ−κm

)

ζt . (13)Here α = {a,m} = {nlsj,m}, ζt is a two 
omponent spinor, and ta is 1/2
(−1/2) for protons (neutrons). The Φκm are the spin spheri
al harmoni
s.Substituting this wave fun
tion into the Dira
 equation,

h(~x)ψα(~x) = Eaψα(~x) (14)one arrives at the following radial Hartree equations
[

∂

∂r
+
κ

r

]

Ga(r) − [Ea − U1 + U2]Fa(r) − U3Ga(r) = 0 , (15)
[

∂

∂r
−
κ

r

]

Fa(r) + [Ea − U1 − U2]Ga(r) + U3F a(r) = 0 , (16)where the single-parti
le potentials are
U1(r) = W (r)+taR(r)+

(

ta +
1

2

)

A(r)+
1

2M2
(βS+2taβV )∇2A(r),(17)

U2(r) = M − Φ(r) , (18)
U3(r) =

1

2M

[

fV
∂W (r)

∂r
+ tafρ

∂R(r)

∂r

]

+
1

2M

∂A(r)

∂r

[

(λp + λn)

2
+ ta(λp − λn)

]

. (19)
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lei 2269The s
alar meson equation is determined by minimizing the variationalderivative of the e�e
tive Lagrangian with respe
t to the s
alar meson �eld.The other meson equations are 
onstru
ted in a similar fashion. These me-son equations are [1℄
−∇2

Φ +m2
SΦ = g2

SρS(~x) −
m2

S

M
Φ

2

(

κ3

2
+
κ4

3!

Φ

M

)

+
g2
S

2M

(

η1 + η2
Φ

M

)

m2
V

g2
V

W 2 +
α1

2M

[

(

~∇Φ

)2
+ 2Φ∇2

Φ

]

+
α2g

2
S

2Mg2
V

(

~∇W
)2

+
g2
Sηρ

2M

m2
ρ

g2
ρ

R2 , (20)
−∇2W +m2

VW = g2
V

[

ρB(~x) +
fV

2M
~∇·

(

ρT
B(~x)r̂

)

]

−

(

η1 +
η2

2

Φ

M

)

Φ

M
m2

VW −
1

3!
ζ0W

3

+
α2

M

(

~∇Φ· ~∇W + Φ∇2W
)

−
e2gV

3gγ
ρchg(~x) , (21)

−∇2R+m2
ρR =

1

2
g2
ρ

[

ρ3(~x) +
fρ

2M
~∇·

(

ρT
3 (~x)r̂

)

]

− ηρ
Φ

M
m2

ρR

−
e2gρ

gγ
ρchg(~x) , (22)

−∇2A = e2ρchg(~x) . (23)The baryon sour
es be
ome the densities in the meson equations and aregiven here by [1℄
ρS(~x) =

∑

a

2ja + 1

4πr2
(

G2
a(r) − F 2

a (r)
)

, (24)
ρB(~x) =

∑

a

2ja + 1

4πr2
(

G2
a(r) + F 2

a (r)
)

, (25)
ρT

B(~x) =
∑

a

2ja + 1

4πr2
2Ga(r)Fa(r) , (26)

ρ3(~x) =
∑

a

2ja + 1

4πr2
(2ta)

(

G2
a(r) + F 2

a (r)
)

, (27)
ρT
3 (~x) =

∑

a

2ja + 1

4πr2
(2ta) 2Ga(r)Fa(r) . (28)
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IntireThe 
harge density is made up of two 
omponents
ρchg(~x) = ρd(~x) + ρm(~x), (29)where the �rst, the dire
t nu
leon 
harge density, is

ρd(~x) = ρp(~x) +
1

2M
~∇·

(

ρT
a (~x)r̂

)

+
1

2M2

[

βS∇
2ρB + βV ∇

2ρ3

] (30)and the se
ond, the ve
tor meson 
ontribution, is
ρm(~x) =

1

gγgρ
∇2R+

1

3gγgV
∇2W . (31)The point proton and nu
leon tensor densities in Eq. (30) are

ρp(~x) =
1

2

∑

a

2ja + 1

4πr2
(1 + 2ta)(G

2
a(r) + F 2

a (r))

=
1

2
(ρB + ρ3) , (32)

ρT
a (~x) =

∑

a

2ja + 1

4πr2
2λGa(r)Fa(r) , (33)respe
tively. Finally, the energy fun
tional is given by [1℄

E =
∑

a

Ea −

∫

d3xUm , (34)where
Um ≡ −

1

2
ΦρS +

1

2
W

(

ρB +
fV

2M
~∇· ρT

B r̂

)

+
1

4
R

(

ρ3 +
fρ

2M
~∇· ρT

3 r̂

)

+
1

2
Aρd +

m2
S

g2
S

Φ
3

M

(

κ3

12
+
κ4

24

Φ

M

)

−
ηρ

4

Φ

M

m2
ρ

g2
ρ

R2

−
Φ

4M

(

η1 + η2
Φ

M

)

m2
V

g2
V

W 2 −
1

4!g2
V

ζ0W
4

+
α1

4g2
S

Φ

M
(∇Φ)2 −

α2

4g2
V

Φ

M
(∇W )2 . (35)The radial Hartree equations and the meson equations form a system whi
his solved self-
onsistently until a global 
onvergen
e is a
hieved. FST wrotea program to numeri
ally solve the 
oupled, lo
al, nonlinear, di�erential
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lei 2271equations. Huertas has written an independent program whi
h reprodu
esthe results of FST [6, 7℄. The free parameters in this system are listed inTable I. These are �t by FST to a series of experimental data along thevalley of stability at various levels of trun
ation in the underlying e�e
tiveLagrangian [1℄. The last three parameters are �t to the ele
tromagneti
properties of the nu
leon. The remaining 
onstants are determined by mini-mizing a least-squares χ2 �t where 29 pie
es of experimental data were used.The result of a parameter �t 
orresponding to their full Lagrangian is shownin Table I. Note that these parameters do indeed satisfy the naturalness as-sumption made earlier and as a result, higher order terms are su

essivelysmaller. Also, we mention that in
reasing the level of trun
ation beyondthat of the G2 parameter set does not signi�
antly improve the �t [1℄. On
ethe free parameters are determined, this Lagrangian 
an be used to predi
tother properties of ordinary nu
lei [1, 6, 7℄. TABLE IThe G2 parameter set developed by FST [1℄. The �rst 4 parameters 
orrespond to
ν = 2, the next 5 to ν = 3, the following 5 to ν = 4, and the last 2 to ν = 5.

mS/M gS/4π gV /4π gρ/4π η1 κ3G2 0.55410 0.83522 1.01560 0.75467 0.64992 3.2467
ηρ fV /4 fρ/4 η2 κ4 ζ0G2 0.3901 0.1734 0.9619 0.10975 0.63152 2.6416
βS βV α1 α2G2 −0.09328 −0.45964 1.7234 −1.57983. Appli
ation to Λ-hypernu
leiWe now 
onsider an extension of this approa
h to the strangeness se
-tor. The spe
i�
 phenomena that we seek to investigate here are GS bind-ing energies (i.e. 
hemi
al potentials), densities, single-parti
le spe
tra, andparti
le�hole states of single Λ-hypernu
lei. To this end we add a single,isos
alar Λ to the theory. Note that the Λ is also a 
hiral singlet. Then,we 
onstru
t our e�e
tive Λ-Lagrangian as an additional 
ontribution to thefull ν = 4 Lagrangian of FST, utilizing their methodology. This Lagrangianis of the form
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L(xµ) = LFST(xµ) + LΛ(xµ) . (36)Here we restri
t ourselves to the mesons already in
orporated into the theoryby FST; therefore, the Λ-Lagrangian is 
on�ned to the fermion se
tor. First,we 
onsider all possible 
ontributions up to order ν = 2, 
onsistent with thisapproa
h. Our e�e
tive Λ-Lagrangian now takes the form

L
(2)
Λ

= −Λ̄

[

γµ

(

∂

∂xµ
− igV ΛVµ

)

+ (MΛ − gSΛφ)

]

Λ . (37)Noti
e that the 
oupling 
onstants, gSΛ and gV Λ, are free parameters andare di�erent from those used in the nu
leon 
ase. Single Yukawa rho andpion 
ouplings to the Λ are absent as they do not 
onserve isospin. Also, noele
tromagneti
 
oupling is retained to this order as Q = 0 for the Λ. Fourfermion terms are dis
ussed in Appendix A.However, this Lagrangian, to order ν = 2, fails to reprodu
e the smallexperimental spin�orbit splitting of the p-states, as in 13
Λ

C [50℄. It was pro-posed in the literature that tensor 
ouplings of order ν = 3 be introdu
edto 
orre
t for this limitation [12,13℄. We add tensor 
ouplings to the ve
torand photon �elds, shown by
L

(T )
Λ

=
gTΛgV

4M
Λ̄σµνVµνΛ +

e

4M
Λ̄λΛσµνFµνΛ . (38)The 
onstant gTΛ is a free parameter. Here λΛ = −0.613 is the anomalousmagneti
 moment of the Λ. Sin
e we want to make a full expansion in our

Λ-Lagrangian to order ν = 3, 
onsistent with this approa
h, we must alsoin
lude three additional terms, shown by the following
L

(N)
Λ

= µ1
g2
S

2M
Λ̄Λφ2 + µ2

g2
V

2M
Λ̄ΛVµVµ + iµ3

gSgV

M
Λ̄γµΛφVµ , (39)where µ1, µ2, and µ3 are three more free parameters. In the nu
leon 
ase,the terms 
omparable to these last three were regrouped through rede�nitionof the meson �elds. However, in the Λ 
ase this is no longer possible unlessadditional mesons are added to the theory. A more 
omplete des
ription ofhow the terms in the Λ-Lagrangian are 
hosen is 
ontained in Appendix A.Now our Λ-Lagrangian, 
omplete to order ν = 3, is

LΛ = L
(2)
Λ

+ L
(T )
Λ

+ L
(N)
Λ

. (40)
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lei 2273Note that our Lagrangian in Eq. (36) in
ludes all possible terms up to ν = 4in the nu
leon and meson se
tors as well5.In the Hartree formalism, we add a new wave fun
tion for ea
h newbaryon, given here for the Λ by
ψΛ(~x) =

1

r

(

iGΛ(r)Φκm

−FΛ(r)Φ−κm

)

. (41)Plugging this wave fun
tion into the Dira
 equation yields the following newpair of Hartree equations
[

∂

∂r
+
κ

r

]

GΛ(r) − [EΛ − U4 + U5]FΛ(r) − U6GΛ(r) = 0 , (42)
[

∂

∂r
−
κ

r

]

FΛ(r) + [EΛ − U4 − U5]GΛ(r) + U6FΛ(r) = 0 , (43)where the Λ single-parti
le potentials are
U4 =

gV Λ

gV
W −

µ3

M
ΦW , (44)

U5 = MΛ −
gSΛ

gS
Φ +

µ1

2M
Φ

2 −
µ2

2M
W 2 , (45)

U6 =
gTΛ

2M

∂W

∂r
+

λΛ

2M

∂A

∂r
. (46)Sin
e all our additional terms are in the fermion Lagrangian, the only 
hangeto the meson equations are added 
ontributions to the sour
e terms. Thenew 
ontributions to the sour
e terms arising from the Λ-Lagrangian are

δρS =
1

4πr2
(

G2
Λ(r) − F 2

Λ(r)
)

(

gSΛ

gS
+
µ1

M
Φ

)

−
1

4πr2
(

G2
Λ(r) + F 2

Λ(r)
) µ3

M
W , (47)

5 It is of potential interest to 
onsider 
oupling additional s
alar and ve
tor mesons,su
h as the f0 and the Φ, to the strangeness density and 
onserved strangeness 
ur-rent respe
tively. This allows one to eliminate the terms in L(N)
Λ

using the equationsof motion and rede�nitions of the new �elds. However, the number of additionalterms, and their a

ompanying free parameters, introdu
ed to ν = 3 make this ap-proa
h more 
omplex than the present framework. Fortunately, the point is relativelyunimportant for the single Λ-hypernu
lei 
onsidered here as these new mesons areself-�elds of the Λ. If they are in
luded, they would appear only in the energy fun
-tional and have no e�e
t on the energy eigenvalues; as the last eigenvalue in thisapproa
h is equivalent to the total binding energy per baryon for the GS, they haveno e�e
t on the 
ases of interest here.
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δρB =

1

4πr2
(

G2
Λ(r) + F 2

Λ(r)
)

(

gV Λ

gV
−
µ3

M
Φ

)

−
1

4πr2
(

G2
Λ(r) − F 2

Λ(r)
) µ2

M
W , (48)

δρT
B =

1

4πr2
2GΛ(r)FΛ(r)

gTΛ

fV
, (49)

δρT
a =

1

4πr2
2λΛGΛ(r)FΛ(r) . (50)The new energy fun
tional is identi
al in form to the one used by FST,with only one additional energy eigenvalue, EΛ. The numeri
al solutionto the extended set of 
oupled, lo
al, nonlinear, di�erential equations wasobtained by extension of a program developed by Huertas [6, 7℄. Here weuse the parameter sets of FST for the nu
leon and meson se
tors. Thereare six new parameters in our Λ-Lagrangian: gSΛ, gV Λ, gTΛ, µ1, µ2, and

µ3. Least-squares �ts to a series of experimentally known Λ single-parti
lelevels are 
ondu
ted at various levels of trun
ation in our Λ-Lagrangian,while maintaining the full Lagrangian of FST to order ν = 4. Now thisLagrangian 
an be used to predi
t other properties of single Λ-hypernu
lei.One appli
ation we investigate in the next se
tion is s1/2-splittings.4. s1/2-doubletsConsider nu
lei like 16
Λ

O; the GSs of su
h systems are parti
le�hole states.One pro
ess by whi
h nu
lei of this type are 
reated is the rea
tion (π+,K+)on target nu
lei with 
losed proton and neutron shells [47�49℄. During the
ourse of this rea
tion a neutron is 
onverted into a Λ. As a result, a neutronhole is also 
reated whi
h, for the GS, inhabits the outermost neutron shell.The angular momentum of the Λ and the neutron hole 
ouple to form amultiplet. Sin
e the Λ o

upies the 1s1/2 shell in the GS, there are only twostates in these multiplets. It is these 
on�gurations that we refer to as s1/2-doublets. The rea
tion (e, e′K+) is another pro
ess used to 
reate nu
lei ofthis type [58, 59℄. This pro
ess di�ers in that a proton hole is 
reated hereand that greater resolution is possible.In order to 
al
ulate the splitting of these doublets, we �rst 
onsiderDira
 two-body matrix elements of the forms [54℄
〈(n1l1j1)(n2l2j2)JM |V (r12)|(n3l3j3)(n4l4j4)J

′M ′〉 (51)and
〈(n1l1j1)(n2l2j2)JM |V (r12)~σ

(1) · ~σ(2)|(n3l3j3)(n4l4j4)J
′M ′〉 , (52)
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lei 2275where the single-parti
le wave fun
tions are spe
i�ed by {nlj}, 
orrespond-ing to either the upper or lower 
omponents in Eq. (13), and V (r12) is somee�e
tive intera
tion. Next, we expand this e�e
tive intera
tion in terms ofLegendre polynomials [54℄
V (r12) =

∞
∑

k=0

fk(r1, r2)Pk(cos θ12) (53)
=

∞
∑

k=0

fk(r1, r2)Ck(1) · Ck(2) , (54)where [57℄
Ckq =

(

4π

2k + 1

)1/2

Ykq(θ, φ) . (55)Inverting Eq. (53) yields the expression
fk(r1, r2) =

2k + 1

2

1
∫

−1

d(cos θ12)Pk(cos θ12)V (r12) . (56)In the 
ase of Eq. (52), the e�e
tive intera
tion is 
oupled to Pauli matri
es.Therefore, Eq. (53) is modi�ed to
V (r12)~σ

(1) · ~σ(2) =
∑

kλ

(−1)k+1−λfk(r1, r2)χ
(k,1)
λ (1) · χ

(k,1)
λ (2) . (57)Here χ(k,1)

λµ are Ckq 
oupled to Pauli matri
es, shown by
χ

(k,1)
λµ =

∑

qq′

Ckqσ1q′〈kq1q
′|k1λµ〉 . (58)Now we introdu
e a spe
i�
 type of e�e
tive intera
tion. The form we usehere follows dire
tly from the e�e
tive Lagrangian in the pre
eding se
tionand to lowest order, 
orresponds to simple Yukawa 
ouplings of both thes
alar and ve
tor �elds, given by

V (r12) = γ
(1)
4 γ

(2)
4

[

−gSgSΛ

4π

e−mSr12

r12
+ γ(1)

µ γ(2)
µ

gV gV Λ

4π

e−mV r12

r12

]

. (59)Here r12 = |~r1 − ~r2|. This simplisti
 spatial dependen
e is possible be
auseretardation in the meson propagators is negle
ted, or pµ = (~p, p4) → (~p, 0).Otherwise the full Lorentz stru
ture is maintained [54℄. Couplings to the
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annow write
fk(r1, r2) = γ

(1)
4 γ

(2)
4

[

fS
k (r1, r2) + γ(1)

µ γ(2)
µ fV

k (r1, r2)
]

, (60)where
fS

k (r1, r2) = −
gSgSΛ

4π
(2k + 1)

2mS

π
ik(mSr<)kk(mSr>) , (61)

fV
k (r1, r2) =

gV gV Λ

4π
(2k + 1)

2mV

π
ik(mV r<)kk(mV r>) , (62)where r< (r>) is the smaller (larger) of r1 and r2. Here ik(mr) and kk(mr)are modi�ed spheri
al Bessel fun
tions of order k.The matrix elements in Eqs. (51) and (52) are a
tually six dimensionalintegrals. Treating the γ-matri
es as 2 × 2 blo
k matri
es operating onthe upper and lower 
omponents of the Hartree spinors, these Dira
 matrixelements, for ea
h term in the intera
tion, are a
tually the sum of fourseparate integrals. The s
alar and ve
tor time (µ = 4) 
omponents of thee�e
tive intera
tion take the form of Eq. (51); the ve
tor spatial (µ = 1, 2, 3)
omponents take the form of Eq. (52). Thankfully, angular momentumrelations allow one to integrate out the angular dependen
e [57℄. Theseintegrals, for the s
alar and ve
tor time 
omponents, be
ome

(51) =

∞
∑

k=0

〈12|f i
k(r1, r2)|34〉(−1)j2+j3+J

{

J j2 j1
k j3 j4

}

δJJ ′δMM ′

×〈(l1
1
2 )j1||Ck (1)||(l3

1
2)j3〉〈(l2

1
2)j2||Ck (2)||(l4

1
2)j4〉 , (63)where i = S, V and (51) indi
ates the quantity in Eq. (51). For the ve
torspatial 
omponents, these integrals be
ome

(52) =

∞
∑

k=0

∑

λ

〈12|fV
k (r1, r2)|34〉(−1)k+1−λ(−1)j2+j3+J

{

J j2 j1
λ j3 j4

}

×δJJ ′δMM ′〈(l1
1
2)j1||χ

(k,1)
λ (1)||(l3

1
2)j3〉〈(l2

1
2)j2||χ

(k,1)
λ (2)||(l4

1
2)j4〉 .(64)The 6-j symbols limit the possible allowed values of k and λ. The redu
edmatrix elements are evaluated using [57℄ and further limit k and λ. Notethat as the upper and lower Hartree spinors have di�erent l values, theredu
ed matrix elements in Eqs. (63) and (64) must have the 
orresponding,appropriate l values.
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lei 2277Now 
onsider the remaining two-dimensional radial integrals, where thenumbers are a shorthand for all the quantum numbers needed to uniquelyspe
ify the radial wave fun
tions [54℄,
〈12|f i

k(r1, r2)|34〉 =

∞
∫

0

∞
∫

0

dr1dr2U1(r1)U2(r2)f
i
k(r1, r2)U3(r1)U4(r2) . (65)Here R(r) = U(r)/r are the appropriate radial Dira
 wave fun
tions, interms of Ga(r) and Fa(r), and again i = S, V .Using the Hartree spinor representation, the parti
le�hole matrix elementis expressed as a sum of Dira
 matrix elements of the types shown above [53℄

vJ
ab;lm =

∑

J ′

(2J ′ + 1)

{

jm ja J ′

jb jl J

}

〈lbJ ′|V |amJ ′〉 . (66)No ex
hange term is required, due to the fa
t that the Λ and the nu
leonare distinguishable parti
les here. For example, the parti
le�hole matrixelement for the ve
tor spatial 
omponent of the e�e
tive intera
tion is
vJ
32;14(vs) = (−1)j2+j3+J

∞
∑

k

∑

λ

(−1)k
{

j2 j4 λ
j1 j3 J

}
∫ ∫

dr1dr2

×
{

G1(r1)F3(r1)fk
V (r1, r2)G2(r2)F4(r2)

× 〈(l1A
1
2 )j1||χ

(k,1)
λ (1)||(l3B

1
2)j3〉〈(l2A

1
2)j2||χ

(k,1)
λ (2)||(l4B

1
2)j4〉

− G1(r1)F3(r1)fk
V (r1, r2)F2(r2)G4(r2)

× 〈(l1A
1
2 )j1||χ

(k,1)
λ (1)||(l3B

1
2)j3〉〈(l2B

1
2)j2||χ

(k,1)
λ (2)||(l4A

1
2)j4〉

− F1(r1)G3(r1)fk
V (r1, r2)G2(r2)F4(r2)

× 〈(l1B
1
2)j1||χ

(k,1)
λ (1)||(l3A

1
2)j3〉〈(l2A

1
2)j2||χ

(k,1)
λ (2)||(l4B

1
2)j4〉

+ F1(r1)G3(r1)fk
V (r1, r2)F2(r2)G4(r2)

× 〈(l1B
1
2)j1||χ

(k,1)
λ (1)||(l3A

1
2)j3〉〈(l2B

1
2)j2||χ

(k,1)
λ (2)||(l4A

1
2)j4〉

}

.(67)Here liA and liB are the l values 
orresponding to the upper and lowerHartree spinors respe
tively for the ith wave fun
tion where i = 1. . 4. Nowthe splitting, for a s1/2-doublet, is just the di�eren
e between the parti
le�hole matrix elements of the two available states, or
δǫ = vJ=j1+j2

nΛ;nΛ
− v

J=|j1−j2|
nΛ;nΛ

. (68)
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quire the appropriate indi
es for this 
ase are
n = 1, 3 and Λ = 2, 4. The solution to the Hartree equations yields asingle-parti
le energy level for the GS, EΛ. As previously mentioned, for the
ases under 
onsideration this level is in fa
t a doublet; however, Eq. (68)evaluates only the size of the splitting. In order to determine the positionof the doublet relative to EΛ, one needs the relation

∑

J

(2J + 1) δǫ = 0 . (69)We now have a framework with whi
h to 
al
ulate the size of the s1/2-splittings of the single Λ-hypernu
lei of interest here and to determine theirlo
ation relative to EΛ. The problem is redu
ed to Slater integrals andsome algebra; the 6-j and 9-j symbols are determined using [62, 63℄. TheDira
 wave fun
tions needed to solve the radial integrals are taken as thesolutions to the Hartree equations from the previous se
tion. On
e all theparameters in the underlying Lagrangian are �xed, the splitting is 
ompletelydetermined in this approa
h as there are no additional 
onstants �t to ex
itedstate properties [54℄. We also mention that this approa
h is appli
able toex
ited states and multiplets for this 
lass of nu
lei.To 
alibrate this approa
h, we apply it to ordinary nu
lei. Two mod-i�
ations to our framework are required here. First, an ex
hange term isin
luded be
ause the proton and neutron are indistinguishable parti
les. Asa result, the parti
le�hole matrix element be
omes the following [53℄
vJ
ab;lm =

∑

J ′

(2J ′ + 1)

{

jm ja J ′

jb jl J

}

×
[

〈lbJ ′|V |amJ ′〉 − (−1)ja+jm+J ′

〈lbJ ′|V |maJ ′〉
]

. (70)Se
ond, the e�e
tive intera
tion is also modi�ed, requiring additional 
ou-plings to the rho and pion �elds [54℄
V (r12) = γ

(1)
4 γ

(2)
4

[

−g2
S

4π

e−mSr12

r12
+ γ(1)

µ γ(2)
µ

g2
V

4π

e−mV r12

r12

+ γ(1)
µ γ(2)

µ

~τ (1) · ~τ (2)

4

g2
ρ

4π

e−mρr12

r12
+ γ

(1)
5 γ

(2)
5 ~τ (1) · ~τ (2) g

2
π

4π

e−mπr12

r12

]

.(71)These alterations make the ordinary nu
lear matter 
ase 
onsiderably more
ompli
ated than the 
ase of single Λ-hypernu
lei.
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lei 22795. Results5.1. Parameter �tsThe full Lagrangian 
ontains a number of free parameters. Those 
on-stants whi
h lie in the nu
leon and meson se
tors are �xed by the G2 param-eter set of FST [1℄, given in Table I. In the Λ se
tor of the Lagrangian, a totalof six parameters remain undetermined to order ν = 3. Fits are 
ondu
tedat various levels of trun
ation in the underlying Λ-Lagrangian to �x therelevant 
onstants. The �ts performed here are entirely separate from theone whi
h determined the G2 parameter set; however, the framework whi
hFST used to 
ondu
t their �ts is identi
al to the one employed here. Theexperimental data utilized to 
onstrain the parameters in the Λ-Lagrangianis listed in Table II and 
onsists of three types of observables: GS bind-ing energies, s�p shell Λ ex
itation energies, and spin�orbit splittings of the
p-states. Now we use the framework outlined in Se
tions 2 and 3 to 
al
u-late these same observables for some initial guess of the parameters. The
al
ulated and experimental values are both substituted into the equation

χ2
N =

∑

i

∑

X

[

X
(i)
exp −X

(i)
th

W
(i)
X X

(i)
exp

]2

, (72)where N is the number of data points and W (i)
X are the weights. The param-eters are varied su
h that the theoreti
al and experimental values 
onverge.The 
onstants are �xed at the values that produ
e a minimum in χ2

N .Our underlying Λ-Lagrangian is trun
ated at four di�erent levels and sep-arate parameter �ts are 
ondu
ted at ea
h. First, we 
onsider the simplestpossible 
ase; only terms to order ν = 2 are retained in the Λ-Lagrangian,whi
h 
orresponds to L
(2)
Λ
. This Λ-Lagrangian has a total of two free pa-rameters, gSΛ and gV Λ. In this 
ase, the ve
tor 
oupling is assumed to beuniversal, as it is 
oupled to the 
onserved baryon 
urrent, and the s
alar
oupling is �t to reprodu
e the binding energy of a single Λ in nu
lear mat-ter, whi
h is about −28 MeV [27℄. These assumptions are in keeping withthe previous work in [64℄. The parameters determined here are shown inTable III as the M1 set. This set reprodu
es the GS binding energies fairlywell, but is unable to simulate either the 
orre
t spin�orbit splitting in the

p-states or the s�p shell ex
itation energies in light Λ-hypernu
lei.In order to obtain a better �t to the data, we in
rease the level of trun-
ation. Therefore, tensor 
ouplings to both the ve
tor and photon �elds arein
luded, whi
h 
orrespond to the terms in L
(T )
Λ

. As a result, a third freeparameter, gTΛ, is introdu
ed. This �t is performed using seven pie
es ofexperimental data: the six GS binding energies and the spin�orbit splitting
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ludes six GS bindingenergies (E/B), one spin�orbit splitting of the p-states (ESO = |E1p1/2
− E1p3/2

|),and three s�p shell Λ ex
itation energies (ESP = |E1p3/2
− E1s1/2

|). The 
al
ulatedvalues of these observables, using the M2 set, are also shown. These values aregiven in MeV. Experimental data M2 
al
ulationGS E/B 13
Λ

C −11.69± 0.12 [52℄ −10.89
16
Λ

O −12.50± 0.35 [47℄ −12.03
28
Λ

Si −16.60± 0.2 [49℄ −17.37
32
Λ

S −17.50± 0.5 [48℄ −17.95
40
Λ

Ca −18.70± 1.1 [47℄ −18.63
208
Λ

Pb −26.5 ± 0.5 [49℄ −27.81

ESO
13
Λ

C 0.15 ± 0.09 [50℄ 0.150
ESP

13
Λ

C 10.83 ± 0.03 [50℄ 8.849
16
Λ

O 10.6 ± 0.1 [51℄ 8.314
40
Λ

Ca 7.70 ± 1.0 [48℄ 7.832 TABLE IIILists of the 
onstants in the �ve parameter sets 
onstru
ted here. Note that all the
onstants are natural and that these sets represent di�erent levels of sophisti
ationin the Λ-Lagrangian. M1 M2 M3-1 M3-2 M4
gSΛ/gS 0.87357 0.87697 0.87390 0.87090 0.87697
gV Λ/gV 1.0 0.98623 0.97766 0.98050 0.98623
gTΛ −0.892 −0.891 −0.877 −0.892

µ1 −0.1550 0.1500 0.0700
µ2 −0.2517 0.2436 0.3111
µ3 0.0700given in Table II. In this parti
ular 
ase, the weights in Eq. (72) are all takento be equal. The resulting parameters are given in Table III as the M2 setand all satisfy the assumption of naturalness. Table II also outlines thenumeri
al results of this 3-parameter �t. The out
ome of this �t is showngraphi
ally in Fig. 1. One 
an see that both the GS binding energies and the
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Fig. 1. Results of the unweighted 3-parameter �t to a series of experimental data.The G2 parameter set of FST is used for both the nu
leon and meson se
tors [1℄.The 
al
ulated binding energy of a single Λ in in�nite nu
lear matter is also shown.TABLE IVThe χ2 values for both the unweighted (UW) and weighted (W) �ts relative to the
χ2 of the M1 set. Here χ2 is determined from Eq. (72) using 10 pie
es of data.M2 M3-1 M3-2 M4

χ2
10(UW) × 100 0.105 0.0877
χ2

10(W) × 10 0.598 0.515 0.485
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Intiresmall spin�orbit splitting in the p-states are reprodu
ed well. The 
al
ulated
s�p shell ex
itation energies fail to dupli
ate the experimental values for thelightest Λ-hypernu
lei; however, it is 
orre
tly given by the time one gets to
40
Λ

Ca. In Fig. 1, the value of −32.4 MeV is given as the 
al
ulated bindingenergy of a single Λ in nu
lear matter. This M2 parameter set will be usedin the subsequent 
al
ulation of the s1/2-splittings.A plot of the proton, neutron, and Λ densities for the GS of 40
Λ

Ca 
al
u-lated using this M2 set is shown in Fig. 2. A graph of the Hartree spinorsfrom the Λ wave fun
tion, GΛ(r) and FΛ(r), for the GS of 40
Λ

Ca using the
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Fig. 2. Top: plot of the proton, neutron, and lambda densities for the GS of 40
Λ

Ca.Bottom: radial wave fun
tions of the Λ in the (1s1/2) state for the GS of 40
Λ

Ca.Here the M2 parameter set was used.
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e that the magnitude of the lower spinoris very small; this indi
ates that the Λ is essentially behaving as a nonrela-tivisti
 parti
le in the nu
lear potential.Next, the two terms nonlinear in the s
alar and ve
tor �eld, shown in
L

(N)
Λ

, are retained. This brings the number of un
onstrained parameters upto �ve. For this 5-parameter �t, ten pie
es of experimental data are used;in addition to the data utilized in the 3-parameter �t, the three s�p shell Λex
itation energies listed in Table II are also in
luded. Two versions of the5-parameter �t were 
ondu
ted here: one unweighted and one weighted. Inthe former 
ase, all of the weights are equal. For the latter, the weightings
heme is as follows: W (i)
X = 1.0 for GS binding energies; W (i)

X = 10.0 for
s�p shell Λ ex
itation energies; and W (i)

X = 40.0 for the spin�orbit splitting.The weights were sele
ted using the formula W (i)
X = fi(∆Eexp/Eexp) where

fi is an arbitrary fa
tor 
hosen to prevent any observable from dominatingthe �t [65℄. However, not enough similar data was available to 
onstrainthe two new parameters individually. As a result, we initially restri
t theseparameters with the relation
µ2

µ1
=

(

gSφ0

gV V0

)2

n.m.

= 1.624 , (73)where n.m. denotes the nu
lear matter values [2℄. The results of both5-parameter �ts are shown in Table III; the M3-1 and M3-2 sets denotethe unweighted and weighted s
hemes respe
tively. Again noti
e the pa-rameters are all natural. However, the new parameters are not very welldetermined and fail to signi�
antly improve the �t in either 
ase, as 
an beseen from Table IV. Therefore, we leave the 
onstraint of Eq. (73) inta
t.Lastly, to in
lude all possible terms in the Λ-Lagrangian up to order
ν = 3, all three terms in L

(N)
Λ

are retained. Again, not enough similar datawas available to individually 
onstrain the new parameters; therefore, werestri
t these parameters with the relation
µ1 = µ3 = 0.225µ2 (74)and �x the remaining 
onstants using the M2 set. These ratios were 
hosenbe
ause they tend to 
on
entrate the e�e
ts of the new 
ontributions inthe surfa
e of the nu
leus, i.e. the additional 
ontributions now vanish foruniform nu
lear matter. This will have a greater e�e
t on the s�p shellex
itations than on the GSs. The weighting s
heme des
ribed above wasused. The resulting parameters are listed in Table III as the M4 set. Again,as seen in Table IV the improvement in the overall �t is negligible. TheM3-2 and M4 sets both improve the �t to the GSs but do worse with respe
t



2284 J. M
Intireto the s�p shell ex
itations; the M3-1 set has the opposite e�e
t. Also wemention that the parameter sets M3-1, M3-2, and M4 yield very similardensity distributions to those a
quired from the M2 set.5.2. s1/2-splittingsIn this se
tion we dis
uss the 
al
ulation of the s1/2-splittings in Λ-hypernu
lei and the results obtained from these 
al
ulations. Following themethodology established in Se
tion 4, one needs to evaluate δǫ from Eq. (68)to determine the size of these doublets. It is possible to separate δǫ into
ontributions from ea
h portion of the e�e
tive intera
tion, or
δǫ = δǫ(s) + δǫ(vt) + δǫ(vs) , (75)where s, vt, and vs represent the s
alar, ve
tor time, and ve
tor spatial 
om-ponents respe
tively. As it turns out, the s
alar and ve
tor time 
omponentsea
h 
an
el in the splitting, shown by

δǫ(s) = δǫ(vt) = 0 . (76)Therefore, the s1/2-splittings are entirely determined from the ve
tor spatialterm in the e�e
tive intera
tion, or
δǫ = δǫ(vs) . (77)This is true for any system in whi
h either the Λ or the nu
leon hole has

j = 1/2. Note that this 
al
ulation tests a di�erent se
tor of the underlyingLagrangian than the mean �eld analysis and that, as there is no 
orre-sponding interpretation in the stati
 limit (M → ∞), it is here an entirelyrelativisti
 e�e
t. Now, to determine the splitting we only need to evaluatethe matrix element in Eq. (67) for the two appropriate J values. The inte-grals are solved using the Hartree spinors, Ga(r) and Fa(r), 
al
ulated inthe single-parti
le analysis. Noti
e that the integrals in the ve
tor spatial
ontribution mix the upper and lower 
omponents of the Hartree wave fun
-tions. Numeri
ally, the integration is performed using Simpson's method.The results of this analysis are 
ontained in Table V. The splittings witha neutron hole listed in Table V all 
orrespond to single-parti
le levels whi
hwere used in the �ts of the pre
eding dis
ussion, as shown in Fig. 1. The
s1/2-splittings for 16

Λ
O, 28

Λ
Si, 32

Λ
S, and 40

Λ
Ca are plotted in Fig. 3; noti
e thatthese four splittings are all within the experimental error bars and that theappropriate level orderings are shown. It should be mentioned that the threeex
ited states with neutron holes shown in Table V will overlap with otherstates of the same J value. Therefore in these 
ases one must diagonalize
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s1/2-splittings, and some ex
ited states, are shown with their respe
tive 
on�gura-tions, level orderings, and doublet magnitudes. Here LL denotes lower level and
|δǫ| is in keV. Nu
leus State Levels |δǫ|

12
Λ

B (1p3/2)
−1
p (1s1/2)Λ 2−

GS
, 1− 426

16
Λ

N (1p1/2)p(1s1/2)Λ 1−
GS

, 0− 472
(1p3/2)

−1
p (1s1/2)Λ 2−

LL
, 1− 316

16
Λ

O (1p1/2)n(1s1/2)Λ 1−
GS

, 0− 480
(1p1/2)n(1p3/2)Λ 2+

LL
, 1+ 125

(1p1/2)n(1p1/2)Λ 1+

LL
, 0+ 661

28
Λ

Si (1d5/2)
−1
n (1s1/2)Λ 3+

GS
, 2+ 293

32
Λ

S (2s1/2)n(1s1/2)Λ 1+

GS
, 0+ 216

40
Λ

Ca (1d3/2)
−1
n (1s1/2)Λ 2+

GS
, 1+ 308

(1d3/2)
−1
n (1p1/2)Λ 2−

LL
, 1− 393

208
Λ

Pb (1i13/2)
−1
n (1s1/2)Λ 7+

GS
, 6+ 24the Hamiltonian to determine the 
orre
t splitting and level ordering. Theremaining doublets in Table V, those with proton holes, are for predi
ted Λsingle-parti
le levels. These three are shown in Fig. 4; here, in addition tothe GS splittings for both 12

Λ
B and 16

Λ
N, the doublet for the �rst 
al
ulatedex
ited state in 16

Λ
N is also given. These splittings will be measured inan up
oming experiment using the rea
tion (e, e′K+) with mu
h greaterresolution than the (π+,K+) rea
tions [58, 59℄. As the e�e
tive intera
tionused here is isos
alar, there is no distin
tion in this approa
h between protonand neutron holes. This is apparent when 
omparing the GSs of 16

Λ
N and

16
Λ

O; the slight di�eren
e in their splittings, whi
h is only about 10 keV, arisesfrom Coulomb e�e
ts. Also note that the splittings for 
on�gurations withthe holes in the same shell are larger for the smaller j value. For example,the doublet for the GS of 12
Λ

B, in the (1p3/2)
−1
p (1s1/2)Λ 
on�guration, issmaller than that of the GS of 16

Λ
N, in the (1p1/2)

−1
p (1s1/2)Λ state. The levelorderings for ea
h 
al
ulated doublet are also given in Table V. Noti
e thatfor all of the 
ases 
onsidered here, the state with the higher J value is theGS or, in the 
ase of ex
ited states, the lower level.Re
ent gamma-ray spe
tros
opy experiments [67℄ (and the experimentalerror bars on the GS binding energy of 12

Λ
B) suggest that these parti
le�hole splittings are in fa
t mu
h smaller. In addition, the measured GSspins of 12

Λ
B and 16

Λ
O are 1 and 0 respe
tively [66, 68℄, whereas the values
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+Fig. 3. Graph of GS parti
le�hole splittings and their respe
tive level orderings for

16
Λ

O and 28
Λ

Si on the top and 32
Λ

S and 40
Λ

Ca on the bottom. The single-parti
le 
al-
ulations were 
ondu
ted using the M2 parameter set and are plotted alongside theexperimental values [47�49℄. Noti
e that the splittings lie within the experimentalerror bars in all four 
ases.predi
ted here is 0 and 1 respe
tively. As the tensor 
oupling was importantin the spin�orbit splittings, it may play an important role in the 
ase ofthe s1/2-splittings. Higher order terms in the e�e
tive intera
tion, espe
iallythose involving the tensor 
oupling to the Λ, may be required to obtain aquantitative des
ription of the small s1/2-doublet splitting and the 
orre
tlevel ordering. This is left for future work.
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lei 2287The present analysis was also extended to the 
ase of ordinary nu
lei.The ne
essary modi�
ations to the theory were dis
ussed in Se
tion 4. Weapply this approa
h to the 
ase of 32
15P17 in the (2s1/2)p(1d3/2)n state. Asnoted before, this 
al
ulation will require dire
t and ex
hange 
ontributionsfrom the s
alar, ve
tor, rho, and pion terms in the e�e
tive intera
tion.Fortunately, the statement of Eq. (76) holds here for the dire
t term and
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Fig. 4. Top: graph of parti
le�hole splittings for 12
Λ

B and 16
Λ

N and their respe
tivelevel orderings. In addition to the GSs, the �rst 
al
ulated ex
ited state in 16
Λ

Nis also in
luded. These 
al
ulations were 
ondu
ted using the M2 parameter set.The experimental value for the GS of 12
Λ

B is taken from [66℄. Bottom: parti
le�holesplitting for the GS of 32
15P17. The level orderings and splittings are shown for boththeory and experiment. Here the G2 parameter set of FST was used [1℄.
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an be extended to in
lude the dire
t rho time 
omponent as well. Theresult of our 
al
ulation is 413 keV; the observed value is 77 keV [60℄. Thisis shown graphi
ally in Fig. 4; noti
e that the 
orre
t magnitude and levelordering is obtained. However, it should be noted that this 
al
ulation is
onsiderably more 
ompli
ated than the Λ�N 
ase.In summary, we have su

essfully extended the hadroni
 e�e
tive �eldtheory developed by FST to the region of the strangeness se
tor 
orrespond-ing to single Λ-hypernu
lei. This framework has the intrinsi
 strength ofdire
tly in
orporating the following: spe
ial relativity, quantum me
hani
s,the underlying symmetry stru
ture of QCD, and the nonlinear realizationof spontaneously broken 
hiral symmetry. Furthermore, DFT provides atheoreti
al justi�
ation for this approa
h. This Lagrangian 
an be usedfor predi
tive purposes on
e all the free parameters are determined. As aresult, it was of interest to make a minimalist extension of this methodol-ogy in whi
h a single, isos
alar Λ is added to the theory. An appropriate
Λ-Lagrangian was 
onstru
ted as an additional 
ontribution to the full in-tera
ting Lagrangian of FST. This system was solved using the Kohn�Shamanalysis. Parameter �ts were 
ondu
ted at various levels of sophisti
ationin the Λ-Lagrangian while maintaining the full FST Lagrangian with theirG2 parameter set. The 3-parameter �t reprodu
es the GS binding energiesand small spin�orbit splittings well, but fails to simulate fully the s�p shellex
itations in the lightest hypernu
lei, although by 40

Λ
Ca the 
orre
t ex
i-tation energy is obtained. The in
lusion of additional parameters does notsigni�
antly improve the quality of the �t.Many of the GSs used in the �ts were a
tually parti
le�hole states; asa result, it was of interest to 
al
ulate their splittings. A methodology forexamining these splittings was developed using Dira
 two-body matrix ele-ments of an e�e
tive intera
tion. This e�e
tive intera
tion followed dire
tlyfrom the underlying Lagrangian and to lowest order 
orresponded to simples
alar and ve
tor ex
hange4. Note that this Lagrangian was designed to
al
ulate other phenomena and there is nothing 
ontained in it that guar-antees the produ
tion of small parti
le�hole splittings. The primary 
on-
lusion from the present analysis is that all of the results obtained for the

s1/2-doublet splittings used in the �tting pro
edure lie within the 
urrentexperimental error bars. As a partial 
alibration, a 
al
ulation of the GSparti
le�hole splitting in 32
15P17, a mu
h more 
ompli
ated 
ase, a
hieved the
orre
t level ordering and doublet magnitude. Using this approa
h predi
-tions were made for nu
lei that will be measured in an up
oming (e, e′K+)experiment at Je�erson Lab [58, 59℄4.
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uss the sele
tion of the terms in our Λ-Lagran-gian to order ν = 3. It is straightforward to see whi
h terms are retainedto order ν = 2, with the ex
eption of the four fermion terms. Therefore,the following is a list of all remaining possible 
ombinations of the �elds toorder ν = 3, 
onsistent with this approa
h, and a short dis
ussion of ea
h.
• Four fermion terms in the nu
lear 
ase, su
h as N̄NN̄N , are eliminatedby substituting the meson equations of motion into the Lagrangian.Under normal 
ir
umstan
es this is not feasible; however, this is al-lowed when the system is already in equilibrium. Here we want to ex-tend the framework of FST to single Λ-hypernu
lei with no additionalmesons. In this 
ase, either N̄N Λ̄Λ or Λ̄ΛΛ̄Λ 
an be eliminated usingthis method, but not both simultaneously. Fortunately, the se
ondterm involves self-�elds of the Λ and 
onsequently, 
an be dis
arded.This s
heme also applies to terms with more than four fermion �elds.
• The term Λ̄σµνVµνΛ is 
onsistent with this framework.
• The terms Λ̄Λφ2 and Λ̄ΛVµ

2 are 
onsistent with this framework. Inthe nu
leon se
tor, terms of this variety were regrouped using meson�eld rede�nitions. Here the terms have di�erent 
onstants than inthe nu
leon 
ase; therefore, these terms 
annot simply be regrouped,unless additional mesons are in
luded.
• The term Λ̄γµΛφVµ is also retained. In the nu
lear 
ase, it was elimi-nated via the Dira
 equation, but this is not possible here.
• Next, the following term is 
onsistent with this methodology, but 
anbe rewritten as

Λ̄γµΛ
∂φ

∂xµ
=

∂

∂xµ

(

Λ̄γµΛφ
)

−

[

∂

∂xµ

(

Λ̄γµΛ
)

]

φ . (A.1)The se
ond term is a total derivative, whi
h does not 
hange the a
tion,and the third term is a four derivative of a 
onserved 
urrent, whi
his zero. Therefore this term 
an be negle
ted.
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• Consider the following three terms: Λ̄γµφ

∂
∂xµ

Λ, Λ̄γµγνVµ
∂

∂xν
Λ, and

Λ̄γµγν
∂

∂xµ

∂
∂xν

Λ. The Dira
 equation for the Λ 
an be substituted intoea
h of these to 
onvert them into a type of term already 
onsidered.
• Lastly, all of the 
ontributions with Aµ are absorbed into other termsin the same manner as like terms with Vµ. However, the terms Λ̄γµΛAµand Λ̄ΛA2

µ 
an be dis
arded as Q = 0 for the Λ. Therefore, the onlyremaining ele
tromagneti
 term is Λ̄σµνFµνΛ.Note that the parameters have yet to be determined. When the terms areregrouped, the free parameters 
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