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HADRONIC EFFECTIVE FIELD THEORYAPPLIED TO Λ-HYPERNUCLEIJeff MIntireDepartment of Physis, College of William and MaryWilliamsburg, VA 23187, USA(Reeived May 10, 2004)In the present work, the approah of Furnstahl, Serot, and Tang (FST)is extended to the region of nonzero strangeness in appliation to single-partile states in single Λ-hypernulei. To inlude Λ's, an additional on-tribution to their e�etive Lagrangian is systematially onstruted withinthe framework of FST. The relativisti Hartree (Kohn�Sham) equations aresolved numerially, and least-square �ts to a series of experimental levels areperformed at various levels of trunation in the extended Lagrangian. Theground-state properties of any Λ-hypernulei are then predited. In addi-tion, ground-state Λ-partile�nuleon�hole splittings are alulated whereappropriate, and the approah is alibrated against a alulation of the

s1/2-doublet splitting in the nuleus 32
15P17.PACS numbers: 21.80.+a 1. IntrodutionE�etive �eld theories have been developed in reent years to solve thenulear many-body problem. In the present work, we onsider one of thesetheories, proposed by Furnstahl, Serot, and Tang (FST) [1, 2℄, and extendtheir methodology to the ase of single Λ-hypernulei. Spei�ally, thephenomena of interest here are ground-state (GS) binding energies, den-sities, single-partile spetra, and partile�hole splittings of selet single

Λ-hypernulei.FST develop a self-onsistent framework for onstruting an e�etiveLagrangian that inorporates the priniples of both quantum mehanis andspeial relativity, the underlying symmetries of QCD, and the nonlinearrealization of spontaneously broken hiral symmetry [1℄. As this is a low-energy theory, the appropriate low lying hadrons are used as degrees of(2261)



2262 J. MIntirefreedom. In order to make any meaningful alulation, the Lagrangian,whih in priniple ontains an in�nite number of terms, must be trunatedin some way. Naive dimensional analysis (NDA) [3, 4℄ and relativisti mean�eld theory (RMFT) [2, 5℄ provide a formalism in whih higher order termsare, in general, suessively smaller; this allows for a systemati expansion,and onsequently a meaningful trunation, in the e�etive Lagrangian. HereFST utilize relativisti Hartree theory to redue the many-body equations tosingle-partile equations. The free parameters in the e�etive Lagrangian are�xed via least-squares �ts to experimental data from ordinary nulei alongthe valley of stability. These �ts are onduted at various levels of trunationin the underlying Lagrangian [1℄. One the values of these parameters areknown, this Lagrangian an be used to predit other properties of ordinarynulei. One example whih demonstrates the preditive power of this methodis its appliation to the study of nulei far from stability [6, 7℄.Density funtional theory (DFT) is a theoretial framework whih allowsone to alulate the GS properties of many-body systems without arryingaround all the baggage ontained in the many-partile wave funtions [8℄.Two points are of interest here. First, if the expetation value of the Hamilto-nian is onsidered as a funtional of the density, the exat GS density an bedetermined by minimizing the energy funtional. Seond, one only needs tosolve a series of self-onsistent, single-partile equations with lassial �elds,instead of many-body equations with quantum �elds [9℄. In other words,Kohn�Sham theory is formally equivalent to relativisti Hartree theory. Con-sequently, the problem is now redued to determining the orret form ofthe energy funtional, whih follows from the appropriate Lagrangian. Thefull interating Lagrangian of FST gives an appropriate energy funtionaland, as a result, DFT provides an underlying theoretial justi�ation for thisapproah.Hadroni e�etive Lagrangians using MFT have been developed in theliterature to desribe hypernulei. Early models ontaining only the lowestorder terms required muh weaker meson ouplings to the Λ than to the nu-leons to ahieve suess [10,11℄, partiularly in the weak spin�orbit intera-tion. Later, it was suggested that large meson ouplings to the Λ onsistentwith SU(3) were possible if the Lagrangian was extended to inlude tensorouplings [12�18℄. It turns out the spin�orbit splitting is very sensitive tothe size of the tensor oupling to the vetor �eld. The approah of FST hasalso been applied to strange hadroni matter [19℄. More reently, e�etivetheories onsistent with SU(3)L ⊗ SU(3)R have been onstruted [20�22℄.Another model of interest uses strangeness hanging response funtions toalulate the spetra of 16
Y O and 40

Y Ca1; the resulting GS partile�hole split-
1 Here Y denotes a hyperon.



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2263tings are small [23℄. Other studies inlude models that ouple the mesonsself-onsistently to the quarks within the baryons [24, 25℄ and a density de-pendent relativisti hadroni �eld theory [26℄.The following studies have attempted to �t potentials to the hyperon�nuleon interation. Experimental data has been analyzed to obtain a non-loal and density-dependent Λ-nuleus potential [27,28℄. Global optial po-tentials for Λ sattering o� nulei were developed [29℄. The hypernulearmass dependene of the binding energies is reprodued by a Λ moving ina Woods�Saxon potential [30℄. The Nijmegen group has developed Y �Npotentials based on the assumption of SU(3) symmetry [31�33℄; this �xesthe baryon�meson oupling onstants from N�N sattering �ts. Similarly,potentials were onstruted by the Julih group assuming SU(6) symme-try [34℄. Calulations of hypernulei using these Nijmegen or Julih poten-tials inlude [35�40℄. Comparable G-matrix alulations with a SU(6) quark-model baryon�baryon interation [41℄ and Skyrme-like hyperon�nuleon po-tentials [42℄ have also been investigated. Other reent approahes inludeusing the Fermi hypernetted hain method [43,44℄ and using a quark modelwith one boson exhange potentials [45℄.Many of these studies ahieve a good deal of suess. However, theframework of FST is more omprehensive than these approahes as it in-orporates diretly into a hadroni e�etive �eld theory all of the following:speial relativity, quantum mehanis, the underlying symmetry struture ofQCD, and the nonlinear realization of spontaneously broken hiral symme-try. Furthermore, this methodology is theoretially justi�ed by DFT. Oneall the parameters are �xed, their Lagrangian predits the GS properties ofany ordinary nuleus. This approah has had great suess [1, 6, 7℄. There-fore, it is of interest to extend this methodology, with all of its intrinsistrengths, to the strangeness setor, as is done here.In the present work, the approah developed by FST is expanded tothe region of the strangeness setor that orresponds to Λ-hypernulei with
S = −1 and T = 0. To this end, we inlude a single, isosalar Λ �eld in thetheory2. Now, a Λ-Lagrangian is onstruted as an additional ontributionto the full interating e�etive Lagrangian of FST, onsistent with theirmethodology. Sine the Λ is an isosalar, it does not ouple to either asingle Yukawa pion or the rho meson. Furthermore, we on�ne our theoryto the mesons already inluded3; thus, the meson Lagrangian, whih in

2 The Σ is not expliitly inluded in the present alulation. An idea of the possibleimpat of Λ�Σ mixing an be taken from [46℄. It should be mentioned that if oneviews the salar meson as a two-pion resonane, then the Σ enters impliitly as anintermediate state in our formalism.
3 The kaon is not inluded as a degree of freedom in this work. The reason is that, aswith the pion, the kaon has no mean �eld and does not e�et the RMFT alulations.



2264 J. MIntirethis approah ontains the majority of the omplexity, is unaltered. It hasbeen proposed that a tensor oupling to the vetor �eld be inluded toreprodue the orret experimental spin�orbit splitting of the p-states in Λ-hypernulei [12, 13℄. As it turns out, suh a term is a natural extension ofour Lagrangian in this framework. Additional higher order terms are alsoinluded to better approximate the exat energy funtional.Following the methodology of FST, our Λ-Lagrangian ontains a numberof free parameters. The onstants in both the nuleon and meson setorsare taken from a FST parameter set orresponding to their full Lagrangian.As before, the remaining unonstrained parameters are �xed here via least-squares �ts to a series of experimental data [47�52℄. The 10 piees of dataused inlude six GS binding energies, three s�p shell exitations for the Λ,and the spin�orbit splitting of the p-states in 13
Λ

C. The �ts are onduted atfour di�erent levels of trunation in the Λ-Lagrangian. One these param-eters are �xed, this Lagrangian an be used to predit other properties ofsingle Λ-hypernulei.One other property that is of interest to alulate here is what we referto as s1/2-splittings. These are GS partile�hole splittings of selet single
Λ-hypernulei, suh as 16

Λ
O, whih have a Λ in the GS and a hole in thelast �lled nuleon (proton or neutron) shell. For these systems, the angularmomenta of the Λ and the nuleon hole ouple to form a doublet. The size ofthese splittings is determined by the di�erene of two partile�hole matrixelements [53℄. The e�etive partile�hole interation utilized here followsdiretly from the e�etive theory of the preeding disussion. This intera-tion, to lowest order, is just simple salar and vetor meson exhange [54℄4.A simple Yukawa spatial dependene is obtained when retardation is ne-gleted in the meson propagators. With this exeption, the full Lorentzstruture is maintained [54℄. For the Λ�N ase, there is no isovetor om-ponent to the e�etive interation or exhange ontribution in the two-bodymatrix elements. Through angular momentum relations [57℄ and some al-gebra, the matrix elements are redued to radial Slater integrals. Using theHartree wave funtions from the Λ single-partile alulations to evaluatethe integrals, these matrix elements, and onsequently the s1/2-splitting,an now be fully determined. One the parameters in the Λ-Lagrangian areknown, the e�etive partile�hole interation is ompletely spei�ed in this

4 The retention of higher diagrams in the e�etive interation, partiularly those in-luding the tensor oupling to the Λ, is left for future work. Also, it is worth notingthat while the kaon makes no ontribution at the mean �eld level, kaon exhange mayplay a role in the e�etive interation. Some idea of the relative ontribution of kaonexhange an be obtained from the Nijmegen potentials [32,55,56℄. An investigationof the e�et of kaon exhange on the s1/2-splittings in e�etive �eld theory is alsoleft to future work.



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2265approah. In the ase of s1/2-splittings in Λ-hypernulei, only the spatialpart of the vetor exhange ontributes to the splitting. Preditions aregiven for the GS doublet splittings of every one of the Λ-hypernulei on-sidered here; all of the doublets used in the �tting proedure lie within theurrent experimental error bars on the GS energies. An upoming high res-olution experiment at Je�erson Lab will measure the s1/2-splittings in 12
Λ

Band 16
Λ

N [58, 59℄. The present alulations provide theoretial preditionsfor these quantities4. Non-relativisti alulations of similar partile�holesplittings have been arried out [60℄.The need for isovetor interations and exhange ontributions makealulations of similar splittings in ordinary nulei far more ompliated [54℄.As an example of a omparable system in an ordinary nuleus, and to atleast partially alibrate the present approah, the alulation of the s1/2-splitting in 32
15P17 is inluded here. Comparable systems for ordinary nuleihave also been examined [61℄.In Setion 2, we review the methodology of FST and in Setion 3, wedesribe the development of our Λ-Lagrangian. The framework for alulat-ing the partile�hole splittings is disussed in Setion 4. The results of theparameter �ts, single-partile alulations, and s1/2-splittings are given inSetion 5. 2. Methodology of FSTIn this setion we review the methodology of FST. They approah thenulear many-body problem by onstruting an e�etive �eld theory thatretains the underlying symmetries of QCD as well as the priniples of bothspeial relativity and quantum mehanis [1℄. At low-energy, hadrons arethe desired degrees of freedom and the ones whih FST use to onstrutan e�etive Lagrangian. The nonlinear realization of spontaneously brokenhiral symmetry is illustrated through a system of pions, nuleons, and rhomesons. They inorporate Goldstone pions through the �eld

U(xµ) ≡ ξ(xµ)1ξ(xµ) = eiπ(xµ)/fπ1eiπ(xµ)/fπ , (1)where the pion �eld, π(xµ) = 1
2~τ · ~π, appears to all orders, τ is a Paulimatrix, and fπ is the pion-deay onstant [1℄. An isodoublet nuleon �eld isinluded, represented by

N(xµ) =

(

p(xµ)
n(xµ)

)

. (2)The upper (lower) omponent orresponds to the proton (neutron). Toaount for the symmetry energy in nulear matter, an isovetor�vetor rhomeson, ρν(xµ) = 1
2~τ · ~ρ, is also inluded.



2266 J. MIntireThe following boson �elds are also inorporated into this framework, the�rst two of whih are isosalar hiral singlets. A salar �eld, φ, is inludedto simulate the medium-range nulear attration. Next, they inorporate avetor meson, Vµ, to reprodue the short-range nulear repulsion. Lastly,a photon �eld, Aµ, is added to take into onsideration the eletromagnetistruture of nulei.As all possible ombinations of the �elds, onsistent with this framework,are inluded, this Lagrangian ontains an in�nite number of terms. Toondut any meaningful alulation, this Lagrangian needs to be trunatedat some level. FST utilize both NDA and RMFT to aomplish this. NDAis a framework whih identi�es all the dimensional fators of a given term.One these dimensional fators, and some appropriate ounting fators, areextrated from a term, the remaining dimensionless onstant is of O(1) [3,4℄.This assumption is known as �naturalness�. RMFT states that when thebaryon density beomes appropriately large, the soures and meson �eldsan be replaed by their expetation values; here, the expetation valuesof the meson �elds are just their lassial �elds [5℄. Then we notie thatwhile the meson mean �elds are large, the ratios of these �elds to the hiralsymmetry breaking sale, M , are small. Furthermore, the size of derivativesis related to kF, whih is also small ompared toM . These e�ets are shownby [5℄
Φ

M
,
W

M
∼

1

3
;

kF

M
∼

1

4
, (3)where the saled meson mean �elds are de�ned as

Φ(~x) ≡ gSφ0 ; W (~x) ≡ gV V0 ;

R(~x) ≡ gρb0 ; A(~x) ≡ eA0 . (4)The ordering priniple developed by FST is
ν =

n

2
+ b+ d , (5)where for a given term ν is the order, n is the number of fermion �elds, bis the number of non-Goldstone bosons, and d is the number of derivatives.Now a ontrolled expansion is performed in whih higher order terms are,in general, progressively smaller.Using this ordering priniple, they onstrut an e�etive Lagrangian intwo parts [1℄

LFST(xµ) = LN (xµ) + LM(xµ) . (6)



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2267The fermion part to order ν = 4 is given by
LN (xµ) = −N̄

{

γµ

[

∂

∂xµ
+ ivµ − igAγ5aµ − igV Vµ − igρρµ

−
i

2
eAµ (1 + τ3)

]

+ (M − gSφ)

}

N +
fρgρ

4M
N̄σµνρµνN

+
fV gV

4M
N̄σµνVµνN +

κπ

M
N̄σµνvµνN +

e

4M
N̄λσµνFµνN

+
ie

2M2
N̄γµ (βS + βV τ3)N

∂

∂xν
Fµν , (7)where λ = 1

2λp(1 + τ3) + 1
2λn(1 − τ3) and λp = 1.793 (λn = −1.913) is theanomalous magneti moment of the proton (neutron). Note that for thepurposes of this work, the onventions of [5℄ are used. Here we have de�ned
Vµν =

∂Vν

∂xµ
−
∂Vµ

∂xν
, (8)

vµν , ρµν , and Fµν are similarly de�ned for vµ, ρµ, and Aµ respetively. Notiethat the pions only ouple to the fermions through the ombinations
vµ = −

i

2

(

ξ†
∂ξ

∂xµ
+ ξ

∂ξ†

∂xµ

)

= v†µ , (9)
aµ =

i

2

(

ξ†
∂ξ

∂xµ
− ξ

∂ξ†

∂xµ

)

= a†µ . (10)To lowest order, both vµ and aµ ontain derivatives of the pion �eld; thussoft pions deouple. The meson Lagrangian to order ν = 4 is
LM (xµ) = −

1

2

(

1 + α1
gSφ

M

)(

∂φ

∂xµ

)2

−
f2

π

4
tr

(

∂U

∂xµ

∂U †

∂xµ

)

−
1

2
tr (ρµνρµν)

−
1

4

(

1 + α2
gSφ

M

)

VµνVµν − gρππ
2f2

π

m2
ρ

tr (ρµνvµν)

+
m2

πf
2
π

4
tr

(

U + U † − 2
)

−
1

2

(

1 + η1
gSφ

M
+
η2

2

g2
Sφ

2

M2

)

m2
V VµVµ

+
1

4!
ζ0g

2
V (VµVµ)2 −

1

4
FµνFµν −

(

1 + ηρ
gSφ

M

)

m2
ρtr (ρµρµ)

−m2
Sφ

2

(

1

2
+
κ3

3!

gSφ

M
+
κ4

4!

g2
Sφ

2

M2

)

. (11)



2268 J. MIntireTerms suh as N̄Nφ2 are redundant in this formulation. This stems fromthe fat that FST employ meson �eld rede�nitions; sine the parametersare free, they are also just rede�ned. A detailed desription of how thisLagrangian was onstruted is presented in [1℄.This still onstitutes a system of many-body equations with quantum�elds. FST now employ Hartree theory and RMFT to redue the many-body system to a series of single-partile equations with lassial �elds. Thisis equivalent to Kohn�Sham theory in DFT; therefore, DFT provides thetheoretial justi�ation for this methodology. The single-partile Hamiltoniantakes the form [1℄
h(~x) = −i~α· ~∇ +W +

1

2
τ3R+

1

2
(1 + τ3)A+ β (M − gSΦ) −

i

2M
λβ~α· ~∇A

−
i

2M
β~α·

(

fV
~∇W + fρ

1

2
τ3~∇R

)

+
1

2M2
(βS + βV τ3)∇

2A . (12)Sine the pion has no mean �eld in a spherially symmetri system, all ofthe pion ouplings drop out. The Hartree wave funtions are of the form
ψα(~x) =

1

r

(

iGa(r)Φκm

−Fa(r)Φ−κm

)

ζt . (13)Here α = {a,m} = {nlsj,m}, ζt is a two omponent spinor, and ta is 1/2
(−1/2) for protons (neutrons). The Φκm are the spin spherial harmonis.Substituting this wave funtion into the Dira equation,

h(~x)ψα(~x) = Eaψα(~x) (14)one arrives at the following radial Hartree equations
[

∂

∂r
+
κ

r

]

Ga(r) − [Ea − U1 + U2]Fa(r) − U3Ga(r) = 0 , (15)
[

∂

∂r
−
κ

r

]

Fa(r) + [Ea − U1 − U2]Ga(r) + U3F a(r) = 0 , (16)where the single-partile potentials are
U1(r) = W (r)+taR(r)+

(

ta +
1

2

)

A(r)+
1

2M2
(βS+2taβV )∇2A(r),(17)

U2(r) = M − Φ(r) , (18)
U3(r) =

1

2M

[

fV
∂W (r)

∂r
+ tafρ

∂R(r)

∂r

]

+
1

2M

∂A(r)

∂r

[

(λp + λn)

2
+ ta(λp − λn)

]

. (19)



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2269The salar meson equation is determined by minimizing the variationalderivative of the e�etive Lagrangian with respet to the salar meson �eld.The other meson equations are onstruted in a similar fashion. These me-son equations are [1℄
−∇2

Φ +m2
SΦ = g2

SρS(~x) −
m2

S

M
Φ

2

(

κ3

2
+
κ4

3!

Φ

M

)

+
g2
S

2M

(

η1 + η2
Φ

M

)

m2
V

g2
V

W 2 +
α1

2M

[

(

~∇Φ

)2
+ 2Φ∇2

Φ

]

+
α2g

2
S

2Mg2
V

(

~∇W
)2

+
g2
Sηρ

2M

m2
ρ

g2
ρ

R2 , (20)
−∇2W +m2

VW = g2
V

[

ρB(~x) +
fV

2M
~∇·

(

ρT
B(~x)r̂

)

]

−

(

η1 +
η2

2

Φ

M

)

Φ

M
m2

VW −
1

3!
ζ0W

3

+
α2

M

(

~∇Φ· ~∇W + Φ∇2W
)

−
e2gV

3gγ
ρchg(~x) , (21)

−∇2R+m2
ρR =

1

2
g2
ρ

[

ρ3(~x) +
fρ

2M
~∇·

(

ρT
3 (~x)r̂

)

]

− ηρ
Φ

M
m2

ρR

−
e2gρ

gγ
ρchg(~x) , (22)

−∇2A = e2ρchg(~x) . (23)The baryon soures beome the densities in the meson equations and aregiven here by [1℄
ρS(~x) =

∑

a

2ja + 1

4πr2
(

G2
a(r) − F 2

a (r)
)

, (24)
ρB(~x) =

∑

a

2ja + 1

4πr2
(

G2
a(r) + F 2

a (r)
)

, (25)
ρT

B(~x) =
∑

a

2ja + 1

4πr2
2Ga(r)Fa(r) , (26)

ρ3(~x) =
∑

a

2ja + 1

4πr2
(2ta)

(

G2
a(r) + F 2

a (r)
)

, (27)
ρT
3 (~x) =

∑

a

2ja + 1

4πr2
(2ta) 2Ga(r)Fa(r) . (28)



2270 J. MIntireThe harge density is made up of two omponents
ρchg(~x) = ρd(~x) + ρm(~x), (29)where the �rst, the diret nuleon harge density, is

ρd(~x) = ρp(~x) +
1

2M
~∇·

(

ρT
a (~x)r̂

)

+
1

2M2

[

βS∇
2ρB + βV ∇

2ρ3

] (30)and the seond, the vetor meson ontribution, is
ρm(~x) =

1

gγgρ
∇2R+

1

3gγgV
∇2W . (31)The point proton and nuleon tensor densities in Eq. (30) are

ρp(~x) =
1

2

∑

a

2ja + 1

4πr2
(1 + 2ta)(G

2
a(r) + F 2

a (r))

=
1

2
(ρB + ρ3) , (32)

ρT
a (~x) =

∑

a

2ja + 1

4πr2
2λGa(r)Fa(r) , (33)respetively. Finally, the energy funtional is given by [1℄

E =
∑

a

Ea −

∫

d3xUm , (34)where
Um ≡ −

1

2
ΦρS +

1

2
W

(

ρB +
fV

2M
~∇· ρT

B r̂

)

+
1

4
R

(

ρ3 +
fρ

2M
~∇· ρT

3 r̂

)

+
1

2
Aρd +

m2
S

g2
S

Φ
3

M

(

κ3

12
+
κ4

24

Φ

M

)

−
ηρ

4

Φ

M

m2
ρ

g2
ρ

R2

−
Φ

4M

(

η1 + η2
Φ

M

)

m2
V

g2
V

W 2 −
1

4!g2
V

ζ0W
4

+
α1

4g2
S

Φ

M
(∇Φ)2 −

α2

4g2
V

Φ

M
(∇W )2 . (35)The radial Hartree equations and the meson equations form a system whihis solved self-onsistently until a global onvergene is ahieved. FST wrotea program to numerially solve the oupled, loal, nonlinear, di�erential



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2271equations. Huertas has written an independent program whih reproduesthe results of FST [6, 7℄. The free parameters in this system are listed inTable I. These are �t by FST to a series of experimental data along thevalley of stability at various levels of trunation in the underlying e�etiveLagrangian [1℄. The last three parameters are �t to the eletromagnetiproperties of the nuleon. The remaining onstants are determined by mini-mizing a least-squares χ2 �t where 29 piees of experimental data were used.The result of a parameter �t orresponding to their full Lagrangian is shownin Table I. Note that these parameters do indeed satisfy the naturalness as-sumption made earlier and as a result, higher order terms are suessivelysmaller. Also, we mention that inreasing the level of trunation beyondthat of the G2 parameter set does not signi�antly improve the �t [1℄. Onethe free parameters are determined, this Lagrangian an be used to preditother properties of ordinary nulei [1, 6, 7℄. TABLE IThe G2 parameter set developed by FST [1℄. The �rst 4 parameters orrespond to
ν = 2, the next 5 to ν = 3, the following 5 to ν = 4, and the last 2 to ν = 5.

mS/M gS/4π gV /4π gρ/4π η1 κ3G2 0.55410 0.83522 1.01560 0.75467 0.64992 3.2467
ηρ fV /4 fρ/4 η2 κ4 ζ0G2 0.3901 0.1734 0.9619 0.10975 0.63152 2.6416
βS βV α1 α2G2 −0.09328 −0.45964 1.7234 −1.57983. Appliation to Λ-hypernuleiWe now onsider an extension of this approah to the strangeness se-tor. The spei� phenomena that we seek to investigate here are GS bind-ing energies (i.e. hemial potentials), densities, single-partile spetra, andpartile�hole states of single Λ-hypernulei. To this end we add a single,isosalar Λ to the theory. Note that the Λ is also a hiral singlet. Then,we onstrut our e�etive Λ-Lagrangian as an additional ontribution to thefull ν = 4 Lagrangian of FST, utilizing their methodology. This Lagrangianis of the form
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L(xµ) = LFST(xµ) + LΛ(xµ) . (36)Here we restrit ourselves to the mesons already inorporated into the theoryby FST; therefore, the Λ-Lagrangian is on�ned to the fermion setor. First,we onsider all possible ontributions up to order ν = 2, onsistent with thisapproah. Our e�etive Λ-Lagrangian now takes the form

L
(2)
Λ

= −Λ̄

[

γµ

(

∂

∂xµ
− igV ΛVµ

)

+ (MΛ − gSΛφ)

]

Λ . (37)Notie that the oupling onstants, gSΛ and gV Λ, are free parameters andare di�erent from those used in the nuleon ase. Single Yukawa rho andpion ouplings to the Λ are absent as they do not onserve isospin. Also, noeletromagneti oupling is retained to this order as Q = 0 for the Λ. Fourfermion terms are disussed in Appendix A.However, this Lagrangian, to order ν = 2, fails to reprodue the smallexperimental spin�orbit splitting of the p-states, as in 13
Λ

C [50℄. It was pro-posed in the literature that tensor ouplings of order ν = 3 be introduedto orret for this limitation [12,13℄. We add tensor ouplings to the vetorand photon �elds, shown by
L

(T )
Λ

=
gTΛgV

4M
Λ̄σµνVµνΛ +

e

4M
Λ̄λΛσµνFµνΛ . (38)The onstant gTΛ is a free parameter. Here λΛ = −0.613 is the anomalousmagneti moment of the Λ. Sine we want to make a full expansion in our

Λ-Lagrangian to order ν = 3, onsistent with this approah, we must alsoinlude three additional terms, shown by the following
L

(N)
Λ

= µ1
g2
S

2M
Λ̄Λφ2 + µ2

g2
V

2M
Λ̄ΛVµVµ + iµ3

gSgV

M
Λ̄γµΛφVµ , (39)where µ1, µ2, and µ3 are three more free parameters. In the nuleon ase,the terms omparable to these last three were regrouped through rede�nitionof the meson �elds. However, in the Λ ase this is no longer possible unlessadditional mesons are added to the theory. A more omplete desription ofhow the terms in the Λ-Lagrangian are hosen is ontained in Appendix A.Now our Λ-Lagrangian, omplete to order ν = 3, is

LΛ = L
(2)
Λ

+ L
(T )
Λ

+ L
(N)
Λ

. (40)



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2273Note that our Lagrangian in Eq. (36) inludes all possible terms up to ν = 4in the nuleon and meson setors as well5.In the Hartree formalism, we add a new wave funtion for eah newbaryon, given here for the Λ by
ψΛ(~x) =

1

r

(

iGΛ(r)Φκm

−FΛ(r)Φ−κm

)

. (41)Plugging this wave funtion into the Dira equation yields the following newpair of Hartree equations
[

∂

∂r
+
κ

r

]

GΛ(r) − [EΛ − U4 + U5]FΛ(r) − U6GΛ(r) = 0 , (42)
[

∂

∂r
−
κ

r

]

FΛ(r) + [EΛ − U4 − U5]GΛ(r) + U6FΛ(r) = 0 , (43)where the Λ single-partile potentials are
U4 =

gV Λ

gV
W −

µ3

M
ΦW , (44)

U5 = MΛ −
gSΛ

gS
Φ +

µ1

2M
Φ

2 −
µ2

2M
W 2 , (45)

U6 =
gTΛ

2M

∂W

∂r
+

λΛ

2M

∂A

∂r
. (46)Sine all our additional terms are in the fermion Lagrangian, the only hangeto the meson equations are added ontributions to the soure terms. Thenew ontributions to the soure terms arising from the Λ-Lagrangian are

δρS =
1

4πr2
(

G2
Λ(r) − F 2

Λ(r)
)

(

gSΛ

gS
+
µ1

M
Φ

)

−
1

4πr2
(

G2
Λ(r) + F 2

Λ(r)
) µ3

M
W , (47)

5 It is of potential interest to onsider oupling additional salar and vetor mesons,suh as the f0 and the Φ, to the strangeness density and onserved strangeness ur-rent respetively. This allows one to eliminate the terms in L(N)
Λ

using the equationsof motion and rede�nitions of the new �elds. However, the number of additionalterms, and their aompanying free parameters, introdued to ν = 3 make this ap-proah more omplex than the present framework. Fortunately, the point is relativelyunimportant for the single Λ-hypernulei onsidered here as these new mesons areself-�elds of the Λ. If they are inluded, they would appear only in the energy fun-tional and have no e�et on the energy eigenvalues; as the last eigenvalue in thisapproah is equivalent to the total binding energy per baryon for the GS, they haveno e�et on the ases of interest here.
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δρB =

1

4πr2
(

G2
Λ(r) + F 2

Λ(r)
)

(

gV Λ

gV
−
µ3

M
Φ

)

−
1

4πr2
(

G2
Λ(r) − F 2

Λ(r)
) µ2

M
W , (48)

δρT
B =

1

4πr2
2GΛ(r)FΛ(r)

gTΛ

fV
, (49)

δρT
a =

1

4πr2
2λΛGΛ(r)FΛ(r) . (50)The new energy funtional is idential in form to the one used by FST,with only one additional energy eigenvalue, EΛ. The numerial solutionto the extended set of oupled, loal, nonlinear, di�erential equations wasobtained by extension of a program developed by Huertas [6, 7℄. Here weuse the parameter sets of FST for the nuleon and meson setors. Thereare six new parameters in our Λ-Lagrangian: gSΛ, gV Λ, gTΛ, µ1, µ2, and

µ3. Least-squares �ts to a series of experimentally known Λ single-partilelevels are onduted at various levels of trunation in our Λ-Lagrangian,while maintaining the full Lagrangian of FST to order ν = 4. Now thisLagrangian an be used to predit other properties of single Λ-hypernulei.One appliation we investigate in the next setion is s1/2-splittings.4. s1/2-doubletsConsider nulei like 16
Λ

O; the GSs of suh systems are partile�hole states.One proess by whih nulei of this type are reated is the reation (π+,K+)on target nulei with losed proton and neutron shells [47�49℄. During theourse of this reation a neutron is onverted into a Λ. As a result, a neutronhole is also reated whih, for the GS, inhabits the outermost neutron shell.The angular momentum of the Λ and the neutron hole ouple to form amultiplet. Sine the Λ oupies the 1s1/2 shell in the GS, there are only twostates in these multiplets. It is these on�gurations that we refer to as s1/2-doublets. The reation (e, e′K+) is another proess used to reate nulei ofthis type [58, 59℄. This proess di�ers in that a proton hole is reated hereand that greater resolution is possible.In order to alulate the splitting of these doublets, we �rst onsiderDira two-body matrix elements of the forms [54℄
〈(n1l1j1)(n2l2j2)JM |V (r12)|(n3l3j3)(n4l4j4)J

′M ′〉 (51)and
〈(n1l1j1)(n2l2j2)JM |V (r12)~σ

(1) · ~σ(2)|(n3l3j3)(n4l4j4)J
′M ′〉 , (52)



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2275where the single-partile wave funtions are spei�ed by {nlj}, orrespond-ing to either the upper or lower omponents in Eq. (13), and V (r12) is somee�etive interation. Next, we expand this e�etive interation in terms ofLegendre polynomials [54℄
V (r12) =

∞
∑

k=0

fk(r1, r2)Pk(cos θ12) (53)
=

∞
∑

k=0

fk(r1, r2)Ck(1) · Ck(2) , (54)where [57℄
Ckq =

(

4π

2k + 1

)1/2

Ykq(θ, φ) . (55)Inverting Eq. (53) yields the expression
fk(r1, r2) =

2k + 1

2

1
∫

−1

d(cos θ12)Pk(cos θ12)V (r12) . (56)In the ase of Eq. (52), the e�etive interation is oupled to Pauli matries.Therefore, Eq. (53) is modi�ed to
V (r12)~σ

(1) · ~σ(2) =
∑

kλ

(−1)k+1−λfk(r1, r2)χ
(k,1)
λ (1) · χ

(k,1)
λ (2) . (57)Here χ(k,1)

λµ are Ckq oupled to Pauli matries, shown by
χ

(k,1)
λµ =

∑

qq′

Ckqσ1q′〈kq1q
′|k1λµ〉 . (58)Now we introdue a spei� type of e�etive interation. The form we usehere follows diretly from the e�etive Lagrangian in the preeding setionand to lowest order, orresponds to simple Yukawa ouplings of both thesalar and vetor �elds, given by

V (r12) = γ
(1)
4 γ

(2)
4

[

−gSgSΛ

4π

e−mSr12

r12
+ γ(1)

µ γ(2)
µ

gV gV Λ

4π

e−mV r12

r12

]

. (59)Here r12 = |~r1 − ~r2|. This simplisti spatial dependene is possible beauseretardation in the meson propagators is negleted, or pµ = (~p, p4) → (~p, 0).Otherwise the full Lorentz struture is maintained [54℄. Couplings to the



2276 J. MIntirerho and pion �elds are absent as T = 0 for the Λ. In this formalism, we annow write
fk(r1, r2) = γ

(1)
4 γ

(2)
4

[

fS
k (r1, r2) + γ(1)

µ γ(2)
µ fV

k (r1, r2)
]

, (60)where
fS

k (r1, r2) = −
gSgSΛ

4π
(2k + 1)

2mS

π
ik(mSr<)kk(mSr>) , (61)

fV
k (r1, r2) =

gV gV Λ

4π
(2k + 1)

2mV

π
ik(mV r<)kk(mV r>) , (62)where r< (r>) is the smaller (larger) of r1 and r2. Here ik(mr) and kk(mr)are modi�ed spherial Bessel funtions of order k.The matrix elements in Eqs. (51) and (52) are atually six dimensionalintegrals. Treating the γ-matries as 2 × 2 blok matries operating onthe upper and lower omponents of the Hartree spinors, these Dira matrixelements, for eah term in the interation, are atually the sum of fourseparate integrals. The salar and vetor time (µ = 4) omponents of thee�etive interation take the form of Eq. (51); the vetor spatial (µ = 1, 2, 3)omponents take the form of Eq. (52). Thankfully, angular momentumrelations allow one to integrate out the angular dependene [57℄. Theseintegrals, for the salar and vetor time omponents, beome

(51) =

∞
∑

k=0

〈12|f i
k(r1, r2)|34〉(−1)j2+j3+J

{

J j2 j1
k j3 j4

}

δJJ ′δMM ′

×〈(l1
1
2 )j1||Ck (1)||(l3

1
2)j3〉〈(l2

1
2)j2||Ck (2)||(l4

1
2)j4〉 , (63)where i = S, V and (51) indiates the quantity in Eq. (51). For the vetorspatial omponents, these integrals beome

(52) =

∞
∑

k=0

∑

λ

〈12|fV
k (r1, r2)|34〉(−1)k+1−λ(−1)j2+j3+J

{

J j2 j1
λ j3 j4

}

×δJJ ′δMM ′〈(l1
1
2)j1||χ

(k,1)
λ (1)||(l3

1
2)j3〉〈(l2

1
2)j2||χ

(k,1)
λ (2)||(l4

1
2)j4〉 .(64)The 6-j symbols limit the possible allowed values of k and λ. The reduedmatrix elements are evaluated using [57℄ and further limit k and λ. Notethat as the upper and lower Hartree spinors have di�erent l values, theredued matrix elements in Eqs. (63) and (64) must have the orresponding,appropriate l values.



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2277Now onsider the remaining two-dimensional radial integrals, where thenumbers are a shorthand for all the quantum numbers needed to uniquelyspeify the radial wave funtions [54℄,
〈12|f i

k(r1, r2)|34〉 =

∞
∫

0

∞
∫

0

dr1dr2U1(r1)U2(r2)f
i
k(r1, r2)U3(r1)U4(r2) . (65)Here R(r) = U(r)/r are the appropriate radial Dira wave funtions, interms of Ga(r) and Fa(r), and again i = S, V .Using the Hartree spinor representation, the partile�hole matrix elementis expressed as a sum of Dira matrix elements of the types shown above [53℄

vJ
ab;lm =

∑

J ′

(2J ′ + 1)

{

jm ja J ′

jb jl J

}

〈lbJ ′|V |amJ ′〉 . (66)No exhange term is required, due to the fat that the Λ and the nuleonare distinguishable partiles here. For example, the partile�hole matrixelement for the vetor spatial omponent of the e�etive interation is
vJ
32;14(vs) = (−1)j2+j3+J

∞
∑

k

∑

λ

(−1)k
{

j2 j4 λ
j1 j3 J

}
∫ ∫

dr1dr2

×
{

G1(r1)F3(r1)fk
V (r1, r2)G2(r2)F4(r2)

× 〈(l1A
1
2 )j1||χ

(k,1)
λ (1)||(l3B

1
2)j3〉〈(l2A

1
2)j2||χ

(k,1)
λ (2)||(l4B

1
2)j4〉

− G1(r1)F3(r1)fk
V (r1, r2)F2(r2)G4(r2)

× 〈(l1A
1
2 )j1||χ

(k,1)
λ (1)||(l3B

1
2)j3〉〈(l2B

1
2)j2||χ

(k,1)
λ (2)||(l4A

1
2)j4〉

− F1(r1)G3(r1)fk
V (r1, r2)G2(r2)F4(r2)

× 〈(l1B
1
2)j1||χ

(k,1)
λ (1)||(l3A

1
2)j3〉〈(l2A

1
2)j2||χ

(k,1)
λ (2)||(l4B

1
2)j4〉

+ F1(r1)G3(r1)fk
V (r1, r2)F2(r2)G4(r2)

× 〈(l1B
1
2)j1||χ

(k,1)
λ (1)||(l3A

1
2)j3〉〈(l2B

1
2)j2||χ

(k,1)
λ (2)||(l4A

1
2)j4〉

}

.(67)Here liA and liB are the l values orresponding to the upper and lowerHartree spinors respetively for the ith wave funtion where i = 1. . 4. Nowthe splitting, for a s1/2-doublet, is just the di�erene between the partile�hole matrix elements of the two available states, or
δǫ = vJ=j1+j2

nΛ;nΛ
− v

J=|j1−j2|
nΛ;nΛ

. (68)



2278 J. MIntireThe substitutions used to aquire the appropriate indies for this ase are
n = 1, 3 and Λ = 2, 4. The solution to the Hartree equations yields asingle-partile energy level for the GS, EΛ. As previously mentioned, for theases under onsideration this level is in fat a doublet; however, Eq. (68)evaluates only the size of the splitting. In order to determine the positionof the doublet relative to EΛ, one needs the relation

∑

J

(2J + 1) δǫ = 0 . (69)We now have a framework with whih to alulate the size of the s1/2-splittings of the single Λ-hypernulei of interest here and to determine theirloation relative to EΛ. The problem is redued to Slater integrals andsome algebra; the 6-j and 9-j symbols are determined using [62, 63℄. TheDira wave funtions needed to solve the radial integrals are taken as thesolutions to the Hartree equations from the previous setion. One all theparameters in the underlying Lagrangian are �xed, the splitting is ompletelydetermined in this approah as there are no additional onstants �t to exitedstate properties [54℄. We also mention that this approah is appliable toexited states and multiplets for this lass of nulei.To alibrate this approah, we apply it to ordinary nulei. Two mod-i�ations to our framework are required here. First, an exhange term isinluded beause the proton and neutron are indistinguishable partiles. Asa result, the partile�hole matrix element beomes the following [53℄
vJ
ab;lm =

∑

J ′

(2J ′ + 1)

{

jm ja J ′

jb jl J

}

×
[

〈lbJ ′|V |amJ ′〉 − (−1)ja+jm+J ′

〈lbJ ′|V |maJ ′〉
]

. (70)Seond, the e�etive interation is also modi�ed, requiring additional ou-plings to the rho and pion �elds [54℄
V (r12) = γ

(1)
4 γ

(2)
4

[

−g2
S

4π

e−mSr12

r12
+ γ(1)

µ γ(2)
µ

g2
V

4π

e−mV r12

r12

+ γ(1)
µ γ(2)

µ

~τ (1) · ~τ (2)

4

g2
ρ

4π

e−mρr12

r12
+ γ

(1)
5 γ

(2)
5 ~τ (1) · ~τ (2) g

2
π

4π

e−mπr12

r12

]

.(71)These alterations make the ordinary nulear matter ase onsiderably moreompliated than the ase of single Λ-hypernulei.



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 22795. Results5.1. Parameter �tsThe full Lagrangian ontains a number of free parameters. Those on-stants whih lie in the nuleon and meson setors are �xed by the G2 param-eter set of FST [1℄, given in Table I. In the Λ setor of the Lagrangian, a totalof six parameters remain undetermined to order ν = 3. Fits are ondutedat various levels of trunation in the underlying Λ-Lagrangian to �x therelevant onstants. The �ts performed here are entirely separate from theone whih determined the G2 parameter set; however, the framework whihFST used to ondut their �ts is idential to the one employed here. Theexperimental data utilized to onstrain the parameters in the Λ-Lagrangianis listed in Table II and onsists of three types of observables: GS bind-ing energies, s�p shell Λ exitation energies, and spin�orbit splittings of the
p-states. Now we use the framework outlined in Setions 2 and 3 to alu-late these same observables for some initial guess of the parameters. Thealulated and experimental values are both substituted into the equation

χ2
N =

∑

i

∑

X

[

X
(i)
exp −X

(i)
th

W
(i)
X X

(i)
exp

]2

, (72)where N is the number of data points and W (i)
X are the weights. The param-eters are varied suh that the theoretial and experimental values onverge.The onstants are �xed at the values that produe a minimum in χ2

N .Our underlying Λ-Lagrangian is trunated at four di�erent levels and sep-arate parameter �ts are onduted at eah. First, we onsider the simplestpossible ase; only terms to order ν = 2 are retained in the Λ-Lagrangian,whih orresponds to L
(2)
Λ
. This Λ-Lagrangian has a total of two free pa-rameters, gSΛ and gV Λ. In this ase, the vetor oupling is assumed to beuniversal, as it is oupled to the onserved baryon urrent, and the salaroupling is �t to reprodue the binding energy of a single Λ in nulear mat-ter, whih is about −28 MeV [27℄. These assumptions are in keeping withthe previous work in [64℄. The parameters determined here are shown inTable III as the M1 set. This set reprodues the GS binding energies fairlywell, but is unable to simulate either the orret spin�orbit splitting in the

p-states or the s�p shell exitation energies in light Λ-hypernulei.In order to obtain a better �t to the data, we inrease the level of trun-ation. Therefore, tensor ouplings to both the vetor and photon �elds areinluded, whih orrespond to the terms in L
(T )
Λ

. As a result, a third freeparameter, gTΛ, is introdued. This �t is performed using seven piees ofexperimental data: the six GS binding energies and the spin�orbit splitting



2280 J. MIntire TABLE IIThe experimental data used in the parameter �ts. This inludes six GS bindingenergies (E/B), one spin�orbit splitting of the p-states (ESO = |E1p1/2
− E1p3/2

|),and three s�p shell Λ exitation energies (ESP = |E1p3/2
− E1s1/2

|). The alulatedvalues of these observables, using the M2 set, are also shown. These values aregiven in MeV. Experimental data M2 alulationGS E/B 13
Λ

C −11.69± 0.12 [52℄ −10.89
16
Λ

O −12.50± 0.35 [47℄ −12.03
28
Λ

Si −16.60± 0.2 [49℄ −17.37
32
Λ

S −17.50± 0.5 [48℄ −17.95
40
Λ

Ca −18.70± 1.1 [47℄ −18.63
208
Λ

Pb −26.5 ± 0.5 [49℄ −27.81

ESO
13
Λ

C 0.15 ± 0.09 [50℄ 0.150
ESP

13
Λ

C 10.83 ± 0.03 [50℄ 8.849
16
Λ

O 10.6 ± 0.1 [51℄ 8.314
40
Λ

Ca 7.70 ± 1.0 [48℄ 7.832 TABLE IIILists of the onstants in the �ve parameter sets onstruted here. Note that all theonstants are natural and that these sets represent di�erent levels of sophistiationin the Λ-Lagrangian. M1 M2 M3-1 M3-2 M4
gSΛ/gS 0.87357 0.87697 0.87390 0.87090 0.87697
gV Λ/gV 1.0 0.98623 0.97766 0.98050 0.98623
gTΛ −0.892 −0.891 −0.877 −0.892

µ1 −0.1550 0.1500 0.0700
µ2 −0.2517 0.2436 0.3111
µ3 0.0700given in Table II. In this partiular ase, the weights in Eq. (72) are all takento be equal. The resulting parameters are given in Table III as the M2 setand all satisfy the assumption of naturalness. Table II also outlines thenumerial results of this 3-parameter �t. The outome of this �t is showngraphially in Fig. 1. One an see that both the GS binding energies and the
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Fig. 1. Results of the unweighted 3-parameter �t to a series of experimental data.The G2 parameter set of FST is used for both the nuleon and meson setors [1℄.The alulated binding energy of a single Λ in in�nite nulear matter is also shown.TABLE IVThe χ2 values for both the unweighted (UW) and weighted (W) �ts relative to the
χ2 of the M1 set. Here χ2 is determined from Eq. (72) using 10 piees of data.M2 M3-1 M3-2 M4

χ2
10(UW) × 100 0.105 0.0877
χ2

10(W) × 10 0.598 0.515 0.485



2282 J. MIntiresmall spin�orbit splitting in the p-states are reprodued well. The alulated
s�p shell exitation energies fail to dupliate the experimental values for thelightest Λ-hypernulei; however, it is orretly given by the time one gets to
40
Λ

Ca. In Fig. 1, the value of −32.4 MeV is given as the alulated bindingenergy of a single Λ in nulear matter. This M2 parameter set will be usedin the subsequent alulation of the s1/2-splittings.A plot of the proton, neutron, and Λ densities for the GS of 40
Λ

Ca alu-lated using this M2 set is shown in Fig. 2. A graph of the Hartree spinorsfrom the Λ wave funtion, GΛ(r) and FΛ(r), for the GS of 40
Λ

Ca using the
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Ca.Bottom: radial wave funtions of the Λ in the (1s1/2) state for the GS of 40
Λ

Ca.Here the M2 parameter set was used.



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2283M2 set is also given in Fig. 2. Notie that the magnitude of the lower spinoris very small; this indiates that the Λ is essentially behaving as a nonrela-tivisti partile in the nulear potential.Next, the two terms nonlinear in the salar and vetor �eld, shown in
L

(N)
Λ

, are retained. This brings the number of unonstrained parameters upto �ve. For this 5-parameter �t, ten piees of experimental data are used;in addition to the data utilized in the 3-parameter �t, the three s�p shell Λexitation energies listed in Table II are also inluded. Two versions of the5-parameter �t were onduted here: one unweighted and one weighted. Inthe former ase, all of the weights are equal. For the latter, the weightingsheme is as follows: W (i)
X = 1.0 for GS binding energies; W (i)

X = 10.0 for
s�p shell Λ exitation energies; and W (i)

X = 40.0 for the spin�orbit splitting.The weights were seleted using the formula W (i)
X = fi(∆Eexp/Eexp) where

fi is an arbitrary fator hosen to prevent any observable from dominatingthe �t [65℄. However, not enough similar data was available to onstrainthe two new parameters individually. As a result, we initially restrit theseparameters with the relation
µ2

µ1
=

(

gSφ0

gV V0

)2

n.m.

= 1.624 , (73)where n.m. denotes the nulear matter values [2℄. The results of both5-parameter �ts are shown in Table III; the M3-1 and M3-2 sets denotethe unweighted and weighted shemes respetively. Again notie the pa-rameters are all natural. However, the new parameters are not very welldetermined and fail to signi�antly improve the �t in either ase, as an beseen from Table IV. Therefore, we leave the onstraint of Eq. (73) intat.Lastly, to inlude all possible terms in the Λ-Lagrangian up to order
ν = 3, all three terms in L

(N)
Λ

are retained. Again, not enough similar datawas available to individually onstrain the new parameters; therefore, werestrit these parameters with the relation
µ1 = µ3 = 0.225µ2 (74)and �x the remaining onstants using the M2 set. These ratios were hosenbeause they tend to onentrate the e�ets of the new ontributions inthe surfae of the nuleus, i.e. the additional ontributions now vanish foruniform nulear matter. This will have a greater e�et on the s�p shellexitations than on the GSs. The weighting sheme desribed above wasused. The resulting parameters are listed in Table III as the M4 set. Again,as seen in Table IV the improvement in the overall �t is negligible. TheM3-2 and M4 sets both improve the �t to the GSs but do worse with respet



2284 J. MIntireto the s�p shell exitations; the M3-1 set has the opposite e�et. Also wemention that the parameter sets M3-1, M3-2, and M4 yield very similardensity distributions to those aquired from the M2 set.5.2. s1/2-splittingsIn this setion we disuss the alulation of the s1/2-splittings in Λ-hypernulei and the results obtained from these alulations. Following themethodology established in Setion 4, one needs to evaluate δǫ from Eq. (68)to determine the size of these doublets. It is possible to separate δǫ intoontributions from eah portion of the e�etive interation, or
δǫ = δǫ(s) + δǫ(vt) + δǫ(vs) , (75)where s, vt, and vs represent the salar, vetor time, and vetor spatial om-ponents respetively. As it turns out, the salar and vetor time omponentseah anel in the splitting, shown by

δǫ(s) = δǫ(vt) = 0 . (76)Therefore, the s1/2-splittings are entirely determined from the vetor spatialterm in the e�etive interation, or
δǫ = δǫ(vs) . (77)This is true for any system in whih either the Λ or the nuleon hole has

j = 1/2. Note that this alulation tests a di�erent setor of the underlyingLagrangian than the mean �eld analysis and that, as there is no orre-sponding interpretation in the stati limit (M → ∞), it is here an entirelyrelativisti e�et. Now, to determine the splitting we only need to evaluatethe matrix element in Eq. (67) for the two appropriate J values. The inte-grals are solved using the Hartree spinors, Ga(r) and Fa(r), alulated inthe single-partile analysis. Notie that the integrals in the vetor spatialontribution mix the upper and lower omponents of the Hartree wave fun-tions. Numerially, the integration is performed using Simpson's method.The results of this analysis are ontained in Table V. The splittings witha neutron hole listed in Table V all orrespond to single-partile levels whihwere used in the �ts of the preeding disussion, as shown in Fig. 1. The
s1/2-splittings for 16

Λ
O, 28

Λ
Si, 32

Λ
S, and 40

Λ
Ca are plotted in Fig. 3; notie thatthese four splittings are all within the experimental error bars and that theappropriate level orderings are shown. It should be mentioned that the threeexited states with neutron holes shown in Table V will overlap with otherstates of the same J value. Therefore in these ases one must diagonalize
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s1/2-splittings, and some exited states, are shown with their respetive on�gura-tions, level orderings, and doublet magnitudes. Here LL denotes lower level and
|δǫ| is in keV. Nuleus State Levels |δǫ|

12
Λ

B (1p3/2)
−1
p (1s1/2)Λ 2−

GS
, 1− 426

16
Λ

N (1p1/2)p(1s1/2)Λ 1−
GS

, 0− 472
(1p3/2)

−1
p (1s1/2)Λ 2−

LL
, 1− 316

16
Λ

O (1p1/2)n(1s1/2)Λ 1−
GS

, 0− 480
(1p1/2)n(1p3/2)Λ 2+

LL
, 1+ 125

(1p1/2)n(1p1/2)Λ 1+

LL
, 0+ 661

28
Λ

Si (1d5/2)
−1
n (1s1/2)Λ 3+

GS
, 2+ 293

32
Λ

S (2s1/2)n(1s1/2)Λ 1+

GS
, 0+ 216

40
Λ

Ca (1d3/2)
−1
n (1s1/2)Λ 2+

GS
, 1+ 308

(1d3/2)
−1
n (1p1/2)Λ 2−

LL
, 1− 393

208
Λ

Pb (1i13/2)
−1
n (1s1/2)Λ 7+

GS
, 6+ 24the Hamiltonian to determine the orret splitting and level ordering. Theremaining doublets in Table V, those with proton holes, are for predited Λsingle-partile levels. These three are shown in Fig. 4; here, in addition tothe GS splittings for both 12

Λ
B and 16

Λ
N, the doublet for the �rst alulatedexited state in 16

Λ
N is also given. These splittings will be measured inan upoming experiment using the reation (e, e′K+) with muh greaterresolution than the (π+,K+) reations [58, 59℄. As the e�etive interationused here is isosalar, there is no distintion in this approah between protonand neutron holes. This is apparent when omparing the GSs of 16

Λ
N and

16
Λ

O; the slight di�erene in their splittings, whih is only about 10 keV, arisesfrom Coulomb e�ets. Also note that the splittings for on�gurations withthe holes in the same shell are larger for the smaller j value. For example,the doublet for the GS of 12
Λ

B, in the (1p3/2)
−1
p (1s1/2)Λ on�guration, issmaller than that of the GS of 16

Λ
N, in the (1p1/2)

−1
p (1s1/2)Λ state. The levelorderings for eah alulated doublet are also given in Table V. Notie thatfor all of the ases onsidered here, the state with the higher J value is theGS or, in the ase of exited states, the lower level.Reent gamma-ray spetrosopy experiments [67℄ (and the experimentalerror bars on the GS binding energy of 12

Λ
B) suggest that these partile�hole splittings are in fat muh smaller. In addition, the measured GSspins of 12

Λ
B and 16

Λ
O are 1 and 0 respetively [66, 68℄, whereas the values
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+Fig. 3. Graph of GS partile�hole splittings and their respetive level orderings for

16
Λ

O and 28
Λ

Si on the top and 32
Λ

S and 40
Λ

Ca on the bottom. The single-partile al-ulations were onduted using the M2 parameter set and are plotted alongside theexperimental values [47�49℄. Notie that the splittings lie within the experimentalerror bars in all four ases.predited here is 0 and 1 respetively. As the tensor oupling was importantin the spin�orbit splittings, it may play an important role in the ase ofthe s1/2-splittings. Higher order terms in the e�etive interation, espeiallythose involving the tensor oupling to the Λ, may be required to obtain aquantitative desription of the small s1/2-doublet splitting and the orretlevel ordering. This is left for future work.



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2287The present analysis was also extended to the ase of ordinary nulei.The neessary modi�ations to the theory were disussed in Setion 4. Weapply this approah to the ase of 32
15P17 in the (2s1/2)p(1d3/2)n state. Asnoted before, this alulation will require diret and exhange ontributionsfrom the salar, vetor, rho, and pion terms in the e�etive interation.Fortunately, the statement of Eq. (76) holds here for the diret term and
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Fig. 4. Top: graph of partile�hole splittings for 12
Λ

B and 16
Λ

N and their respetivelevel orderings. In addition to the GSs, the �rst alulated exited state in 16
Λ

Nis also inluded. These alulations were onduted using the M2 parameter set.The experimental value for the GS of 12
Λ

B is taken from [66℄. Bottom: partile�holesplitting for the GS of 32
15P17. The level orderings and splittings are shown for boththeory and experiment. Here the G2 parameter set of FST was used [1℄.



2288 J. MIntirean be extended to inlude the diret rho time omponent as well. Theresult of our alulation is 413 keV; the observed value is 77 keV [60℄. Thisis shown graphially in Fig. 4; notie that the orret magnitude and levelordering is obtained. However, it should be noted that this alulation isonsiderably more ompliated than the Λ�N ase.In summary, we have suessfully extended the hadroni e�etive �eldtheory developed by FST to the region of the strangeness setor orrespond-ing to single Λ-hypernulei. This framework has the intrinsi strength ofdiretly inorporating the following: speial relativity, quantum mehanis,the underlying symmetry struture of QCD, and the nonlinear realizationof spontaneously broken hiral symmetry. Furthermore, DFT provides atheoretial justi�ation for this approah. This Lagrangian an be usedfor preditive purposes one all the free parameters are determined. As aresult, it was of interest to make a minimalist extension of this methodol-ogy in whih a single, isosalar Λ is added to the theory. An appropriate
Λ-Lagrangian was onstruted as an additional ontribution to the full in-terating Lagrangian of FST. This system was solved using the Kohn�Shamanalysis. Parameter �ts were onduted at various levels of sophistiationin the Λ-Lagrangian while maintaining the full FST Lagrangian with theirG2 parameter set. The 3-parameter �t reprodues the GS binding energiesand small spin�orbit splittings well, but fails to simulate fully the s�p shellexitations in the lightest hypernulei, although by 40

Λ
Ca the orret exi-tation energy is obtained. The inlusion of additional parameters does notsigni�antly improve the quality of the �t.Many of the GSs used in the �ts were atually partile�hole states; asa result, it was of interest to alulate their splittings. A methodology forexamining these splittings was developed using Dira two-body matrix ele-ments of an e�etive interation. This e�etive interation followed diretlyfrom the underlying Lagrangian and to lowest order orresponded to simplesalar and vetor exhange4. Note that this Lagrangian was designed toalulate other phenomena and there is nothing ontained in it that guar-antees the prodution of small partile�hole splittings. The primary on-lusion from the present analysis is that all of the results obtained for the

s1/2-doublet splittings used in the �tting proedure lie within the urrentexperimental error bars. As a partial alibration, a alulation of the GSpartile�hole splitting in 32
15P17, a muh more ompliated ase, ahieved theorret level ordering and doublet magnitude. Using this approah predi-tions were made for nulei that will be measured in an upoming (e, e′K+)experiment at Je�erson Lab [58, 59℄4.



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2289I would like to thank the following: Dr. J.D. Waleka for his supportand advie; Dr. M. Huertas for the early use of a program he wrote to solvethe Hartree equations [7℄ and for his help in its modi�ation; and Dr. B.D.Serot for his areful reading of the manusript and his helpful omments.This work was supported in part by DOE grant DE-FG02-97ER41023.Appendix AIn this appendix, we disuss the seletion of the terms in our Λ-Lagran-gian to order ν = 3. It is straightforward to see whih terms are retainedto order ν = 2, with the exeption of the four fermion terms. Therefore,the following is a list of all remaining possible ombinations of the �elds toorder ν = 3, onsistent with this approah, and a short disussion of eah.
• Four fermion terms in the nulear ase, suh as N̄NN̄N , are eliminatedby substituting the meson equations of motion into the Lagrangian.Under normal irumstanes this is not feasible; however, this is al-lowed when the system is already in equilibrium. Here we want to ex-tend the framework of FST to single Λ-hypernulei with no additionalmesons. In this ase, either N̄N Λ̄Λ or Λ̄ΛΛ̄Λ an be eliminated usingthis method, but not both simultaneously. Fortunately, the seondterm involves self-�elds of the Λ and onsequently, an be disarded.This sheme also applies to terms with more than four fermion �elds.
• The term Λ̄σµνVµνΛ is onsistent with this framework.
• The terms Λ̄Λφ2 and Λ̄ΛVµ

2 are onsistent with this framework. Inthe nuleon setor, terms of this variety were regrouped using meson�eld rede�nitions. Here the terms have di�erent onstants than inthe nuleon ase; therefore, these terms annot simply be regrouped,unless additional mesons are inluded.
• The term Λ̄γµΛφVµ is also retained. In the nulear ase, it was elimi-nated via the Dira equation, but this is not possible here.
• Next, the following term is onsistent with this methodology, but anbe rewritten as

Λ̄γµΛ
∂φ

∂xµ
=

∂

∂xµ

(

Λ̄γµΛφ
)

−

[

∂

∂xµ

(

Λ̄γµΛ
)

]

φ . (A.1)The seond term is a total derivative, whih does not hange the ation,and the third term is a four derivative of a onserved urrent, whihis zero. Therefore this term an be negleted.
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• Consider the following three terms: Λ̄γµφ

∂
∂xµ

Λ, Λ̄γµγνVµ
∂

∂xν
Λ, and

Λ̄γµγν
∂

∂xµ

∂
∂xν

Λ. The Dira equation for the Λ an be substituted intoeah of these to onvert them into a type of term already onsidered.
• Lastly, all of the ontributions with Aµ are absorbed into other termsin the same manner as like terms with Vµ. However, the terms Λ̄γµΛAµand Λ̄ΛA2

µ an be disarded as Q = 0 for the Λ. Therefore, the onlyremaining eletromagneti term is Λ̄σµνFµνΛ.Note that the parameters have yet to be determined. When the terms areregrouped, the free parameters an be rede�ned to suit our purposes.REFERENCES[1℄ R.J. Furnstahl, B.D. Serot, H.-B. Tang, Nul. Phys. A615, 441 (1997);(E) Nul. Phys. A640, 505 (1998).[2℄ B.D. Serot, J.D. Waleka, Inter. J. Mod. Phys. E6, 515 (1997).[3℄ A. Manohar, H. Georgi, Nul. Phys. B234, 189 (1984).[4℄ H. Georgi, Phys. Lett. B298, 187 (1993).[5℄ J.D. Waleka, Theoretial Nulear and Subnulear Physis, Oxford UniversityPress, Oxford 1995.[6℄ M.A. Huertas, Phys. Rev. C66, 024318 (2002); (E) Phys. Rev. C67, 019901(2003).[7℄ M.A. Huertas, Ata Phys. Pol. B 34, 4269 (2003).[8℄ W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).[9℄ B.D. Serot, J.D. Waleka, 150 Years of Quantum Many-Body Theory, WorldSienti�, Singapore 2001, p. 203.[10℄ R. Brokmann, W. Weise, Phys. Lett. 69B, 167 (1977).[11℄ J. Boguta, R. Bohrmann, Phys. Lett. 102B, 93 (1981).[12℄ J.V. Noble, Phys. Lett. B89, 325 (1980).[13℄ J. Mares, B.K. Jennings, Phys. Rev. C49, 2472 (1994); Nul. Phys. A585,347 (1995).[14℄ J. Cohen, J.V. Noble, Phys. Rev. C46, 801 (1992).[15℄ J. Cohen, H.J. Weber, Phys. Rev. C44, 1181 (1991).[16℄ B.K. Jennings, Phys. Lett. B246, 325 (1990).[17℄ R.J. Lombard, S. Maros, J. Mares, Phys. Rev. C51, 1784 (1995).[18℄ N.K. Glendenning, D. Von-Ei�, M. Haft, H. Lenske, M.K. Weigel, Phys. Rev.C48, 889 (1993).[19℄ L.L. Zhang, H.Q. Song, P. Wang, R.K. Su, J. Phys. G 26, 1301 (2000).



Hadroni E�etive Field Theory Applied to Λ-Hypernulei 2291[20℄ P. Papazoglou, S. Shramm, J. Sha�ner-Bielih, H. Stoker, W. Greiner,Phys. Rev. C57, 2576 (1998).[21℄ P. Papazoglou, D. Zshieshe, S. Shramm, J. Sha�ner-Bielih, H. Stoker,W. Greiner, Phys. Rev. C59, 411 (1999).[22℄ Ch. Bekmann, P. Papazoglou, D. Zshieshe, S. Shramm, H. Stoker,W. Greiner, Phys. Rev. C65, 024301 (2002).[23℄ H. Muller, J. Piekarewiz, J. Phys. G 27, 41 (2001).[24℄ H. Shen, H. Toki, Nul. Phys. A707, 469 (2002).[25℄ K. Tsushima, K. Saito, A.W. Thomas, Phys. Lett. B411, 9 (1997); (E) Phys.Lett. B421, 413 (1998).[26℄ C.M. Keil, F. Ho�mann, H. Lenske, Phys. Rev. C61, 064309 (2000).[27℄ D.J. Millener, C.B. Dover, A. Gal, Phys. Rev. C38, 2700 (1988).[28℄ Y. Yamamoto, H. Bando, J. Zofka, Prog. Theor. Phys. 80, 757 (1988).[29℄ E.D. Cooper, B.K. Jennings, J. Mares, Nul. Phys. A580, 419 (1994); Nul.Phys. A585, 157 (1995).[30℄ O. Hashimoto, Hyper. Int. 103, 245 (1996).[31℄ Th.A. Rijken, Nul. Phys. A639, 29 (1998).[32℄ Th.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C59, 21 (1999).[33℄ D. Halderson, Phys. Rev. C60, 064001 (1999).[34℄ A. Reuber, K. Holinde, J. Speth, Nul. Phys. A570, 543 (1994).[35℄ J. Hao, T.T.S. Kuo, Phys. Rep. 264, 233 (1996).[36℄ I. Vidana, A. Polls, A. Ramos, M. Hjorth-Jensen, Nul. Phys. A644, 201(1998).[37℄ Y. Yamamoto, S. Nishizaki, T. Takatsuka, Prog. Theor. Phys. 103, 981 (2000).[38℄ J. Cugnon, A. Lejeune, H.J. Shulze, Phys. Rev. C62, 064308 (2000).[39℄ I. Vidana, A. Polls, A. Ramos, H.J. Shulze, Phys. Rev. C64, 044301 (2001).[40℄ S. Fujii, R. Okamoto, K. Suzuki, Nul. Phys. A651, 411 (1999).[41℄ M. Kohno, Y. Fujiwara, T. Fujita, C. Nakamoto, Y. Suzuki, Nul. Phys.A670,319 (2000); Nul. Phys. A674, 229 (2000b).[42℄ D.E. Lanskoy, Y. Yamamoto, Phys. Rev. C55, 2330 (1997).[43℄ Q.N. Usmani, A.R. Bodmer, Phys. Rev. C60, 055215 (1999).[44℄ F. Arias de Saavedra, G. Co, A. Fabroini, Phys. Rev. C63, 064308 (2001).[45℄ M. Oka, Nul. Phys. A629, 379 (1998).[46℄ C. Dover, H. Feshbah, A. Gal, Phys. Rev. C51, 541 (1995).[47℄ P.H. Pile, et al., Phys. Rev. Lett. 66, 2585 (1991).[48℄ R. Bertini, et al., Phys. Lett. 83B, 306 (1979).[49℄ T. Hasagawa, et al., Phys. Rev. C53, 1210 (1996).[50℄ H. Kohri, et al., Phys. Rev. C65, 034607 (2002).[51℄ T. Takahashi, et al., Nul. Phys. A670, 265 (2000).



2292 J. MIntire[52℄ T. Cantwell, et al., Nul. Phys. A236, 445 (1974).[53℄ A. Fetter, J.D. Waleka, Quantum Theory of Many-partile Systems, MGraw-Hill, 1971.[54℄ R.J. Furnstahl, Phys. Lett. 152B, 313 (1985).[55℄ V.G.J. Stoks, Th. A. Rijken, Phys. Rev. C59, 3009 (1999).[56℄ P.M.M. Maessen, Th. A. Rijken, J.J. de Swart, Phys. Rev. C40, 2226 (1989).[57℄ A. Edmonds, Angular Momentum in Quantum Mehanis, Prineton Univer-sity Press, Prineton 1957.[58℄ F. Garibaldi, et al., E-94-107 proposal: High Resolution Hypernulear 1p ShellSpetrosopy (1994).[59℄ G.M. Uriuoli, et al., Nul. Phys. A691, 43 (2001).[60℄ J.D. Waleka, Ann. Phys. 63, 219 (1971).[61℄ A. De-Shalit, J.D. Waleka, Nul. Phys. 22, 184 (1961).[62℄ H. Matsunobu, H. Takebe, Prog. Theor. Phys. 14, 589 (1955).[63℄ M. Rotenberg, R. Bivins, N. Metropolis, J. Wooten, The 3-j and 6-j Symbols,The Tehnology Press, Cambridge 1959.[64℄ J. MIntire, Phys. Rev. C66, 064319 (2002).[65℄ B.A. Nikolaus, T. Hoh, D.G. Madland, Phys. Rev. C46, 1757 (1992).[66℄ M. Juri, et al., Nul. Phys. B52, 1 (1973).[67℄ H. Tamura, et al., Mod. Phys. Lett. 18, 85 (2003).[68℄ D.J. Millener, nul-th/0402091.


