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In the present work, the approach of Furnstahl, Serot, and Tang (FST)
is extended to the region of nonzero strangeness in application to single-
particle states in single A-hypernuclei. To include A’s, an additional con-
tribution to their effective Lagrangian is systematically constructed within
the framework of FST. The relativistic Hartree (Kohn—Sham) equations are
solved numerically, and least-square fits to a series of experimental levels are
performed at various levels of truncation in the extended Lagrangian. The
ground-state properties of any A-hypernuclei are then predicted. In addi-
tion, ground-state A-particle-nucleon—hole splittings are calculated where
appropriate, and the approach is calibrated against a calculation of the
s1/2-doublet splitting in the nucleus {2P17.

PACS numbers: 21.80.-+a

1. Introduction

Effective field theories have been developed in recent years to solve the
nuclear many-body problem. In the present work, we consider one of these
theories, proposed by Furnstahl, Serot, and Tang (FST) [1,2], and extend
their methodology to the case of single A-hypernuclei. Specifically, the
phenomena of interest here are ground-state (GS) binding energies, den-
sities, single-particle spectra, and particle-hole splittings of select single
A-hypernuclei.

FST develop a self-consistent framework for constructing an effective
Lagrangian that incorporates the principles of both quantum mechanics and
special relativity, the underlying symmetries of QCD, and the nonlinear
realization of spontaneously broken chiral symmetry [1]. As this is a low-
energy theory, the appropriate low lying hadrons are used as degrees of
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freedom. In order to make any meaningful calculation, the Lagrangian,
which in principle contains an infinite number of terms, must be truncated
in some way. Naive dimensional analysis (NDA) [3,4] and relativistic mean
field theory (RMFT) [2,5] provide a formalism in which higher order terms
are, in general, successively smaller; this allows for a systematic expansion,
and consequently a meaningful truncation, in the effective Lagrangian. Here
FST utilize relativistic Hartree theory to reduce the many-body equations to
single-particle equations. The free parameters in the effective Lagrangian are
fixed via least-squares fits to experimental data from ordinary nuclei along
the valley of stability. These fits are conducted at various levels of truncation
in the underlying Lagrangian [1]. Once the values of these parameters are
known, this Lagrangian can be used to predict other properties of ordinary
nuclei. One example which demonstrates the predictive power of this method
is its application to the study of nuclei far from stability [6,7].

Density functional theory (DFT) is a theoretical framework which allows
one to calculate the GS properties of many-body systems without carrying
around all the baggage contained in the many-particle wave functions [8].
Two points are of interest here. First, if the expectation value of the Hamilto-
nian is considered as a functional of the density, the exact GS density can be
determined by minimizing the energy functional. Second, one only needs to
solve a series of self-consistent, single-particle equations with classical fields,
instead of many-body equations with quantum fields [9]. In other words,
Kohn—Sham theory is formally equivalent to relativistic Hartree theory. Con-
sequently, the problem is now reduced to determining the correct form of
the energy functional, which follows from the appropriate Lagrangian. The
full interacting Lagrangian of FST gives an appropriate energy functional
and, as a result, DFT provides an underlying theoretical justification for this
approach.

Hadronic effective Lagrangians using MFT have been developed in the
literature to describe hypernuclei. Early models containing only the lowest
order terms required much weaker meson couplings to the A than to the nu-
cleons to achieve success [10,11], particularly in the weak spin—orbit interac-
tion. Later, it was suggested that large meson couplings to the A consistent
with SU(3) were possible if the Lagrangian was extended to include tensor
couplings [12-18]. It turns out the spin—orbit splitting is very sensitive to
the size of the tensor coupling to the vector field. The approach of FST has
also been applied to strange hadronic matter [19]. More recently, effective
theories consistent with SU(3)r, ® SU(3)gr have been constructed [20-22].
Another model of interest uses strangeness changing response functions to
calculate the spectra of %/GO and gl/OCal; the resulting GS particle-hole split-

! Here Y denotes a hyperon.
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tings are small [23]. Other studies include models that couple the mesons
self-consistently to the quarks within the baryons [24,25] and a density de-
pendent relativistic hadronic field theory [26].

The following studies have attempted to fit potentials to the hyperon—
nucleon interaction. Experimental data has been analyzed to obtain a non-
local and density-dependent A-nucleus potential [27,28]. Global optical po-
tentials for A scattering off nuclei were developed [29]. The hypernuclear
mass dependence of the binding energies is reproduced by a A moving in
a Woods—Saxon potential [30]. The Nijmegen group has developed Y-N
potentials based on the assumption of SU(3) symmetry [31-33]; this fixes
the baryon—meson coupling constants from N-N scattering fits. Similarly,
potentials were constructed by the Julich group assuming SU(6) symme-
try [34]. Calculations of hypernuclei using these Nijmegen or Julich poten-
tials include [35-40]. Comparable G-matrix calculations with a SU(6) quark-
model baryon—baryon interaction [41] and Skyrme-like hyperon—nucleon po-
tentials [42] have also been investigated. Other recent approaches include
using the Fermi hypernetted chain method [43,44] and using a quark model
with one boson exchange potentials [45].

Many of these studies achieve a good deal of success. However, the
framework of FST is more comprehensive than these approaches as it in-
corporates directly into a hadronic effective field theory all of the following:
special relativity, quantum mechanics, the underlying symmetry structure of
QCD, and the nonlinear realization of spontaneously broken chiral symme-
try. Furthermore, this methodology is theoretically justified by DF'T. Once
all the parameters are fixed, their Lagrangian predicts the GS properties of
any ordinary nucleus. This approach has had great success [1,6,7]. There-
fore, it is of interest to extend this methodology, with all of its intrinsic
strengths, to the strangeness sector, as is done here.

In the present work, the approach developed by FST is expanded to
the region of the strangeness sector that corresponds to A-hypernuclei with
S =—1and T = 0. To this end, we include a single, isoscalar A field in the
theory?. Now, a A-Lagrangian is constructed as an additional contribution
to the full interacting effective Lagrangian of FST, consistent with their
methodology. Since the A is an isoscalar, it does not couple to either a
single Yukawa pion or the rho meson. Furthermore, we confine our theory
to the mesons already included®; thus, the meson Lagrangian, which in

2 The X is not explicitly included in the present calculation. An idea of the possible
impact of A-Y mixing can be taken from [46]. It should be mentioned that if one
views the scalar meson as a two-pion resonance, then the X enters implicitly as an
intermediate state in our formalism.

3 The kaon is not included as a degree of freedom in this work. The reason is that, as
with the pion, the kaon has no mean field and does not effect the RMFT calculations.
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this approach contains the majority of the complexity, is unaltered. It has
been proposed that a tensor coupling to the vector field be included to
reproduce the correct experimental spin—orbit splitting of the p-states in A-
hypernuclei [12,13]. As it turns out, such a term is a natural extension of
our Lagrangian in this framework. Additional higher order terms are also
included to better approximate the exact energy functional.

Following the methodology of FST, our A-Lagrangian contains a number
of free parameters. The constants in both the nucleon and meson sectors
are taken from a FST parameter set corresponding to their full Lagrangian.
As before, the remaining unconstrained parameters are fixed here via least-
squares fits to a series of experimental data [47-52]. The 10 pieces of data
used include six GS binding energies, three s—p shell excitations for the A,
and the spin—orbit splitting of the p-states in }13(]. The fits are conducted at
four different levels of truncation in the A-Lagrangian. Once these param-
eters are fixed, this Lagrangian can be used to predict other properties of
single A-hypernuclei.

One other property that is of interest to calculate here is what we refer
to as sy/p-splittings. These are GS particle-hole splittings of select single
A-hypernuclei, such as 1°0, which have a A in the GS and a hole in the
last filled nucleon (proton or neutron) shell. For these systems, the angular
momenta of the A and the nucleon hole couple to form a doublet. The size of
these splittings is determined by the difference of two particle-hole matrix
elements [53]. The effective particle-hole interaction utilized here follows
directly from the effective theory of the preceding discussion. This interac-
tion, to lowest order, is just simple scalar and vector meson exchange [54|*.
A simple Yukawa spatial dependence is obtained when retardation is ne-
glected in the meson propagators. With this exception, the full Lorentz
structure is maintained [54|. For the A-N case, there is no isovector com-
ponent to the effective interaction or exchange contribution in the two-body
matrix elements. Through angular momentum relations [57] and some al-
gebra, the matrix elements are reduced to radial Slater integrals. Using the
Hartree wave functions from the A single-particle calculations to evaluate
the integrals, these matrix elements, and consequently the sy /o-splitting,
can now be fully determined. Once the parameters in the A-Lagrangian are
known, the effective particle-hole interaction is completely specified in this

4 The retention of higher diagrams in the effective interaction, particularly those in-
cluding the tensor coupling to the A, is left for future work. Also, it is worth noting
that while the kaon makes no contribution at the mean field level, kaon exchange may
play a role in the effective interaction. Some idea of the relative contribution of kaon
exchange can be obtained from the Nijmegen potentials [32,55,56]. An investigation
of the effect of kaon exchange on the s;,5-splittings in effective field theory is also
left to future work.
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approach. In the case of s;/;-splittings in A-hypernuclei, only the spatial
part of the vector exchange contributes to the splitting. Predictions are
given for the GS doublet splittings of every one of the A-hypernuclei con-
sidered here; all of the doublets used in the fitting procedure lie within the
current experimental error bars on the GS energies. An upcoming high res-
olution experiment at Jefferson Lab will measure the sy /5-splittings in }EB
and }PN [58,59]. The present calculations provide theoretical predictions
for these quantities*. Non-relativistic calculations of similar particle-hole
splittings have been carried out [60].

The need for isovector interactions and exchange contributions make
calculations of similar splittings in ordinary nuclei far more complicated [54].
As an example of a comparable system in an ordinary nucleus, and to at
least partially calibrate the present approach, the calculation of the sy /o
splitting in $2P17 is included here. Comparable systems for ordinary nuclei
have also been examined [61].

In Section 2, we review the methodology of FST and in Section 3, we
describe the development of our A-Lagrangian. The framework for calculat-
ing the particle-hole splittings is discussed in Section 4. The results of the
parameter fits, single-particle calculations, and s; -splittings are given in
Section 5.

2. Methodology of FST

In this section we review the methodology of FST. They approach the
nuclear many-body problem by constructing an effective field theory that
retains the underlying symmetries of QCD as well as the principles of both
special relativity and quantum mechanics [1]. At low-energy, hadrons are
the desired degrees of freedom and the ones which FST use to construct
an effective Lagrangian. The nonlinear realization of spontaneously broken
chiral symmetry is illustrated through a system of pions, nucleons, and rho
mesons. They incorporate Goldstone pions through the field

U(xy) = &(x,)1é(xy,) = ot (xu)/ fr 1 i (k) / f , (1)

where the pion field, 7(z,) = %F - 7, appears to all orders, 7 is a Pauli
matrix, and fr is the pion-decay constant [1]. An isodoublet nucleon field is
included, represented by

NG = (20 ). o)

n(z,)

The upper (lower) component corresponds to the proton (neutron). To
account for the symmetry energy in nuclear matter, an isovector—vector rho
meson, p,(z,) = 37 p, is also included.
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The following boson fields are also incorporated into this framework, the
first two of which are isoscalar chiral singlets. A scalar field, ¢, is included
to simulate the medium-range nuclear attraction. Next, they incorporate a
vector meson, V), to reproduce the short-range nuclear repulsion. Lastly,
a photon field, A, is added to take into consideration the electromagnetic
structure of nuclei.

As all possible combinations of the fields, consistent with this framework,
are included, this Lagrangian contains an infinite number of terms. To
conduct any meaningful calculation, this Lagrangian needs to be truncated
at some level. FST utilize both NDA and RMFT to accomplish this. NDA
is a framework which identifies all the dimensional factors of a given term.
Once these dimensional factors, and some appropriate counting factors, are
extracted from a term, the remaining dimensionless constant is of O(1) [3,4].
This assumption is known as “naturalness”. RMFT states that when the
baryon density becomes appropriately large, the sources and meson fields
can be replaced by their expectation values; here, the expectation values
of the meson fields are just their classical fields [5]. Then we notice that
while the meson mean fields are large, the ratios of these fields to the chiral
symmetry breaking scale, M, are small. Furthermore, the size of derivatives
is related to kg, which is also small compared to M. These effects are shown
by [5]

o W krp 1
M® M M4
where the scaled meson mean fields are defined as

) = gspo;  WI(T) =gvVo;
) = gpbo; A(Z) = eAy . (4)

3 3)

o(
R(

8

8

The ordering principle developed by FST is
v = g tb+d, (5)

where for a given term v is the order, n is the number of fermion fields, b
is the number of non-Goldstone bosons, and d is the number of derivatives.
Now a controlled expansion is performed in which higher order terms are,
in general, progressively smaller.
Using this ordering principle, they construct an effective Lagrangian in
two parts [1]
Lrsr(zu) = Ln(2p) + Lar(wy) - (6)
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The fermion part to order v = 4 is given by
0 . . .
Ln(z,) = -N o . o + v, —igaysay — igv Vi — igppp

_ EeA‘u (1 —+ T3)j| —+ (M — gsqb)} N + %NUWJQ[WN

fvgv e -
+ 5 Noy Vi N + MNanWN + 177 VA0 Fu N
ie - 0
N NZLF,.

where A = 2 )\, (1 +73) + 3, (1 — 73) and A, = 1.793 (A, = —1.913) is the
anomalous magnetic moment of the proton (neutron). Note that for the
purposes of this work, the conventions of [5] are used. Here we have defined

av, av,
Viw = oz, Oz, (®)

Vv, Puv, and F),, are similarly defined for v, p,, and A, respectively. Notice
that the pions only couple to the fermions through the combinations

0¢ ot

_ _ et S 25 ) =t

U = <§ Oz, & u)_ " ®)
_ i 408 08N _

=3 <§ Oz, 8:@) = (10)

To lowest order, both v, and a, contain derivatives of the pion field; thus
soft pions decouple. The meson Lagrangian to order v =4 is

o6 \? f2 [oU Ut
Ly(zy) = _% (1 +a1%> <—¢> - fTZtr <—UL> - %tr (Prwpyv)

0z, 0z, Oz,
1 gs 22
4 <1 + g — M > VUVVNV - gpnwm—%tr (p,UVUMV)

2 r2 1
+%tr (v+ut-2)- 5 <1+ 1% + 7722 g]fj; >m%/VHVM

1 1 gso
+EC09\2/ (VNVN)2 - ZFNVFHV - (1 + N M > mitr (Pupy)

1 K3gsd kK gid?
2 39s¢ 193
—m%e < torar Ta ) (11)
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Terms such as NN¢? are redundant in this formulation. This stems from
the fact that FST employ meson field redefinitions; since the parameters
are free, they are also just redefined. A detailed description of how this
Lagrangian was constructed is presented in [1].

This still constitutes a system of many-body equations with quantum
fields. FST now employ Hartree theory and RMFT to reduce the many-
body system to a series of single-particle equations with classical fields. This
is equivalent to Kohn—Sham theory in DFT; therefore, DFT provides the
theoretical justification for this methodology. The single-particle Hamiltonian
takes the form [1]

- 1 1 ) -
W) = —ia-V + W+ 5mR+ 5 (14+73) A+ 5 (M — gs®) - ﬁma-m

1

2 (Bs + Byr3) VA,  (12)

T, - 1 =

Since the pion has no mean field in a spherically symmetric system, all of
the pion couplings drop out. The Hartree wave functions are of the form

wal@) = - IGHOTm 6. (13

Here a = {a,m} = {nlsj,m}, (; is a two component spinor, and t, is 1/2
(—1/2) for protons (neutrons). The &, are the spin spherical harmonics.
Substituting this wave function into the Dirac equation,

h(f)%(f) = anoc(f) (14)

one arrives at the following radial Hartree equations

[% + g:| Ga(r) - [Ea - Ul + UQ] Fa(r) - UgGa(T’) = O7 (15)
S| R0+ B - G- GG+ E) =0, (10)
where the single-particle potentials are
Ui(r) = W(r)+t,R(r)+ (ta + %) A(r)+ 2]\142 (Bs+2tafy) VEA(r), (17)
Us(r) = M — 9(r), (18)
Us(r) = ﬁ [fvavgy) +tafp8};§n)}
ﬁagfjﬂ) [(A” —; M) 4t — /\n)} . (19)
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The scalar meson equation is determined by minimizing the variational
derivative of the effective Lagrangian with respect to the scalar meson field.
The other meson equations are constructed in a similar fashion. These me-
son equations are [1]

m2 K3 kg @
V204 mid = gips(z) - <20 (7 fﬂ)
+— <m+n2 ) VW2 [(wp) +2¢V2¢}
04295 =,
Yorigt (vw) +—M (20)
N % oA
VW + mEW = g% [pB(a:) + —V- (p%(x)r)
772 @ @ 1
~(m+ ?M) W - oW
2
% > 5o 2 . € gv —
+22 (W VW + &V W) o Peng(Z) (21)
VR4 m2R — Lg2 (f)+£ﬁ-( S(@)7)| - L 2R
Pt T 9% P8 ong Y\ oM
2
(& s
__ggp Pchg (l’) ) (22)
2l
—V?A = € pepg(T) . (23)

The baryon sources become the densities in the meson equations and are
given here by [1]

psl@) = 35 (Gal) - ) (24)
(@) = 3 S (@0) + F2). (25)
P = 30 26 0E). (26)
m(@) = 3 E 0 (@0) + F2). (27)

4d7r?

@) = 3 2t 0126, (n) Fur) (28)
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The charge density is made up of two components

Peng(Z) = pa(E) + pm(T),
where the first, the direct nucleon charge density, is
— = T\
pa(T) = pp(¥) + mv (pa (D7) + m [BsV?p + By V2 ps]
and the second, the vector meson contribution, is
B 1, 1,
pm (%) = —V R+ ——V°W
9~9p 39,9v
The point proton and nucleon tensor densities in Eq. (30) are
S 2j + 1
pp(T) = —Z o (14 260) (GA(r) + F ()
1
= 5 (PB + P3) )
T (= 2ja + 1
Pa (l‘) = Z 4 2 2)‘GG(T)F¢1(T)7
— Amr
respectively. Finally, the energy functional is given by [1]
E = ZEa —/d?’xUm,
a
where
1 1 1
Un = *§¢Ps+§W (PB+f—VV PB7“> +ZR <P3 Jo g V P37">
1 m2 &3 Ky D n, & m;
A s _dr = P R2
Tahrat M( +24M> 4 M g2
P e\ md o, 1 4
- — | W — —5 (W
aq ® 2 OQ ®
— (Vo A\’
+4g% M (Vo) - 4g M ( )

(29)

(30)

(35)

The radial Hartree equations and the meson equations form a system which
is solved self-consistently until a global convergence is achieved. FST wrote
a program to numerically solve the coupled, local, nonlinear, differential
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equations. Huertas has written an independent program which reproduces
the results of FST [6,7]. The free parameters in this system are listed in
Table 1. These are fit by FST to a series of experimental data along the
valley of stability at various levels of truncation in the underlying effective
Lagrangian [1]. The last three parameters are fit to the electromagnetic
properties of the nucleon. The remaining constants are determined by mini-
mizing a least-squares x? fit where 29 pieces of experimental data were used.
The result of a parameter fit corresponding to their full Lagrangian is shown
in Table I. Note that these parameters do indeed satisfy the naturalness as-
sumption made earlier and as a result, higher order terms are successively
smaller. Also, we mention that increasing the level of truncation beyond
that of the G2 parameter set does not significantly improve the fit [1]. Once
the free parameters are determined, this Lagrangian can be used to predict
other properties of ordinary nuclei [1,6,7].

TABLE 1

The G2 parameter set developed by FST [1]. The first 4 parameters correspond to
v = 2, the next 5 to v = 3, the following 5 to v = 4, and the last 2 to v = 5.

ms/M gs/4m gv /4w gp/Am m K3
G2 | 0.55410 0.83522 1.01560 | 0.75467 | 0.64992 | 3.2467
Mp fv/4 fol4 n2 K4 Co
G2 0.3901 0.1734 0.9619 0.10975 | 0.63152 | 2.6416
55 ﬂV Qaq Qa9
G2 | —0.09328 | —0.45964 | 1.7234 | —1.5798

3. Application to A-hypernuclei

We now consider an extension of this approach to the strangeness sec-
tor. The specific phenomena that we seek to investigate here are GS bind-
ing energies (i.e. chemical potentials), densities, single-particle spectra, and
particle-hole states of single A-hypernuclei. To this end we add a single,
isoscalar A to the theory. Note that the A is also a chiral singlet. Then,
we construct our effective A-Lagrangian as an additional contribution to the
full v = 4 Lagrangian of FST, utilizing their methodology. This Lagrangian
is of the form
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L(zy) = Lrsr(p) + La(zy) - (36)

Here we restrict ourselves to the mesons already incorporated into the theory
by FST; therefore, the A-Lagrangian is confined to the fermion sector. First,
we consider all possible contributions up to order v = 2, consistent with this
approach. Our effective A-Lagrangian now takes the form

_ 0 .
£y =-2 [w <6—x“ - lgVAVu) + (Mg — QSA@] A. (37)

Notice that the coupling constants, gsa and gy, are free parameters and
are different from those used in the nucleon case. Single Yukawa rho and
pion couplings to the A are absent as they do not conserve isospin. Also, no
electromagnetic coupling is retained to this order as @ = 0 for the A. Four
fermion terms are discussed in Appendix A.

However, this Lagrangian, to order v = 2, fails to reproduce the small
experimental spin-orbit splitting of the p-states, as in 12C [50]. It was pro-
posed in the literature that tensor couplings of order v = 3 be introduced
to correct for this limitation [12,13]. We add tensor couplings to the vector
and photon fields, shown by

T gragv — €
' = T Ao Vi At s A0 Fu A (38)
The constant g7, is a free parameter. Here A4 = —0.613 is the anomalous

magnetic moment of the A. Since we want to make a full expansion in our
A-Lagrangian to order v = 3, consistent with this approach, we must also
include three additional terms, shown by the following

N _ mﬁjl/l¢2+#2ﬁ7mv Vi, + ips 220 Gy, AV, (39)
A oM 2M T Mo

where g1, po, and ps3 are three more free parameters. In the nucleon case,
the terms comparable to these last three were regrouped through redefinition
of the meson fields. However, in the A case this is no longer possible unless
additional mesons are added to the theory. A more complete description of
how the terms in the A-Lagrangian are chosen is contained in Appendix A.
Now our A-Lagrangian, complete to order v = 3, is

Ly=LP + 04 (40)
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Note that our Lagrangian in Eq. (36) includes all possible terms up to v = 4
in the nucleon and meson sectors as well®.
In the Hartree formalism, we add a new wave function for each new
baryon, given here for the A by
. 1 iGA(T) P
T) = — . 41
oa@ =7 Gange (a1)
Plugging this wave function into the Dirac equation yields the following new
pair of Hartree equations

[3 + 5] Gar) — [Ea —Us + Us) Falr) = UsGa(r) =0, (42)

or
0 kK
i Fpo(r)+[Ep— Uy — Us]| Ga(r) + UsgFy(r) =0, (43)
where the A single-particle potentials are
U, = MMy - Baw, (44)
gv M
gsa M1 w2 M2 150
Us = My— ==+ —¢°— ——W 45
5 A s + oM M ) ( )

gra OW Xy 0A
= == 4+ = 4

Ys = 9arar T andor (46)
Since all our additional terms are in the fermion Lagrangian, the only change
to the meson equations are added contributions to the source terms. The

new contributions to the source terms arising from the A-Lagrangian are

1 gsa | 1
O0ps = 13 (G4(r) = Fi(r)) (g—s + M@)
s (GAO) + F3 ) B (47)

® Tt is of potential interest to consider coupling additional scalar and vector mesons,
such as the fo and the @, to the strangeness density and conserved strangeness cur-
rent respectively. This allows one to eliminate the terms in E;N) using the equations
of motion and redefinitions of the new fields. However, the number of additional
terms, and their accompanying free parameters, introduced to v = 3 make this ap-
proach more complex than the present framework. Fortunately, the point is relatively
unimportant for the single A-hypernuclei considered here as these new mesons are
self-fields of the A. If they are included, they would appear only in the energy func-
tional and have no effect on the energy eigenvalues; as the last eigenvalue in this
approach is equivalent to the total binding energy per baryon for the GS, they have
no effect on the cases of interest here.
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Spm = g (G4r) + FA() (ggV—VA - %@)

e (@) - Fi) 2w (48)
b = TG Fan L, (19)
Spl = 47:r22AAGA(r)FA(r). (50)

The new energy functional is identical in form to the one used by FST,
with only one additional energy eigenvalue, E,. The numerical solution
to the extended set of coupled, local, nonlinear, differential equations was
obtained by extension of a program developed by Huertas [6,7]. Here we
use the parameter sets of FST for the nucleon and meson sectors. There
are six new parameters in our A-Lagrangian: gsa, gva, 9r4a, p1, M2, and
p3. Least-squares fits to a series of experimentally known A single-particle
levels are conducted at various levels of truncation in our A-Lagrangian,
while maintaining the full Lagrangian of FST to order v = 4. Now this
Lagrangian can be used to predict other properties of single A-hypernuclei.
One application we investigate in the next section is s /o-splittings.

4. s1/2-doublets

Consider nuclei like }160; the GSs of such systems are particle-hole states.
One process by which nuclei of this type are created is the reaction (7%, KT)
on target nuclei with closed proton and neutron shells [47-49|. During the
course of this reaction a neutron is converted into a A. As a result, a neutron
hole is also created which, for the GS, inhabits the outermost neutron shell.
The angular momentum of the A and the neutron hole couple to form a
multiplet. Since the A occupies the 1s; /5 shell in the GS, there are only two
states in these multiplets. It is these configurations that we refer to as sy /o-
doublets. The reaction (e,e’ KT) is another process used to create nuclei of
this type [58,59|. This process differs in that a proton hole is created here
and that greater resolution is possible.

In order to calculate the splitting of these doublets, we first consider
Dirac two-body matrix elements of the forms [54]

((n1ligr)(nalage) JMI|V (r12)|(nalsjs) (nalajs) J M) (51)
and

((n1l11) (nalage) IM|V (r12)6W) - @ |(nalyjs) (nalyja) J M’y , (52)
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where the single-particle wave functions are specified by {nlj}, correspond-
ing to either the upper or lower components in Eq. (13), and V (r12) is some
effective interaction. Next, we expand this effective interaction in terms of
Legendre polynomials [54]

V(Tlg) = Z fk(rl, TQ)Pk (COS 912) (53)
k=0
= Jr(r1,m2)Cr(1) - Ci(2), (54)
k=0
where [57]
A 1/2
Cu=(gir7)  YialOro). (55)
Inverting Eq. (53) yields the expression
2k +1 /
fk (7"1, 7"2) = 2+ / d(COS 912)Pk (COS 912)V(7"12) . (56)

-1

In the case of Eq. (52), the effective interaction is coupled to Pauli matrices.
Therefore, Eq. (53) is modified to

V(rz)e® - 6@ =3~ i, V() A FP@). (67)

kX
Here XE\IZ’I) are C4 coupled to Pauli matrices, shown by
k:
X = D" Crgorg (ka1d K1) (58)
qq’

Now we introduce a specific type of effective interaction. The form we use
here follows directly from the effective Lagrangian in the preceding section
and to lowest order, corresponds to simple Yukawa couplings of both the
scalar and vector fields, given by

—gsgsae "I 1) (2)9vgvae V2
V(rz) = 1078 (@ . (59
(7’12) Y4 V4 A 19 + ’YM /Y,u A 19 ( )

Here 115 = |1 — 72|. This simplistic spatial dependence is possible because
retardation in the meson propagators is neglected, or p, = (p,ps) — (7,0).
Otherwise the full Lorentz structure is maintained [54]. Couplings to the
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rho and pion fields are absent as T' = 0 for the A. In this formalism, we can
now write

Fulri,ma) = AP [f/f(ﬁ,rz) + AR f (r1,m0) | (60)

where

595 A 2mg
f,f(rl,rg) = —g4g (2k+1)

- ik(mST<)kk(mST>) ) (61)

2m
f]}:/(rl, 7"2) gvava (2k + 1)

I Vik(mvr<)kk(mv7">)» (62)

where r~ (rs) is the smaller (larger) of r; and ro. Here ix(mr) and ki (mr)
are modified spherical Bessel functions of order k.

The matrix elements in Egs. (51) and (52) are actually six dimensional
integrals. Treating the ~-matrices as 2 x 2 block matrices operating on
the upper and lower components of the Hartree spinors, these Dirac matrix
elements, for each term in the interaction, are actually the sum of four
separate integrals. The scalar and vector time (u = 4) components of the
effective interaction take the form of Eq. (51); the vector spatial (1 = 1,2, 3)
components take the form of Eq. (52). Thankfully, angular momentum
relations allow one to integrate out the angular dependence [57]. These
integrals, for the scalar and vector time components, become

e}

Zo 12| fi(r1,72)[34) (— )J2+j3+J{ i ;2 ﬁ }5JJ/5MM'
X (1 5) 7 |Ck (D]I(135)73) ((123) 42l |IC (2)]| (L 5) a) (63)

where ¢ = S,V and (51) indicates the quantity in Eq. (51). For the vector
spatial components, these integrals become

= - j2+73 J ' '
= LR -y e R
818 (L 3) S I )d5) (252 xS (@)1 (1 d)da) -
(64)

The 6-j symbols limit the possible allowed values of k& and A. The reduced
matrix elements are evaluated using [57] and further limit & and A. Note
that as the upper and lower Hartree spinors have different [ values, the
reduced matrix elements in Eqs. (63) and (64) must have the corresponding,
appropriate [ values.
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Now consider the remaining two-dimensional radial integrals, where the
numbers are a shorthand for all the quantum numbers needed to uniquely
specify the radial wave functions [54],

(12] f1 (11, 7)|34) ://dmdel(n)UQ(rg)f,g(m,rQ)Ug(rl)U4(r2). (65)

Here R(r) =U(r)/r are the appropriate radial Dirac wave functions, in
terms of G4 (r) and F,(r), and again i = S, V.

Using the Hartree spinor representation, the particle-hole matrix element
is expressed as a sum of Dirac matrix elements of the types shown above [53]

SR
v;{b;lm = Z(QJ’ +1) { jjb :77'1 7 } (IbJ'|V |amJ"y . (66)
J/

No exchange term is required, due to the fact that the A and the nucleon

are distinguishable particles here. For example, the particle-hole matrix
element for the vector spatial component of the effective interaction is

o > o i\
paatvs) = (= ST {2 3 fanar,
E oA

X {Gl(Tl)FS(T’l)ka(TLTQ) 2(r2) Fy(r2)

x ((ad) il Ol Usp 5)ds) (G2a 52l @)1 (las i)
- Gl(rl)F?)(rl)fk (r1,79) Fa(r2)Ga(r2)

x {(LaB)a Y N )ds) (e )2 Y (211 (L d)ia)
— Fi(r1)Gs(r1) fr" (r1,72)Ga(r2) Fa(r2)

%< (L)l W1a )73 ((ea D2l @)1t L))
+ Fi(r1)Gs(r1) fi¥ (r1, r2) Fa(r2)Ga(ra)

X 2B

(L) A (D] 5)a) ((2s 372l 2 (aa)i) } -
(67)

Here l;4 and l;p are the [ values corresponding to the upper and lower
Hartree spinors respectively for the ¢th wave function where ¢ = 1..4. Now
the splitting, for a s p-doublet, is just the difference between the particle—
hole matrix elements of the two available states, or

_ o, J=i1ti2 J |71 —J2]
66_Un/l,n/l ~ UnAna : (68)



2278 J. MCINTIRE

The substitutions used to acquire the appropriate indices for this case are
n = 1,3 and A4 = 2,4. The solution to the Hartree equations yields a
single-particle energy level for the GS, E 4. As previously mentioned, for the
cases under consideration this level is in fact a doublet; however, Eq. (68)
evaluates only the size of the splitting. In order to determine the position
of the doublet relative to E,, one needs the relation

> (27 +1)de=0. (69)

J

We now have a framework with which to calculate the size of the sy /o-
splittings of the single A-hypernuclei of interest here and to determine their
location relative to F4. The problem is reduced to Slater integrals and
some algebra; the 6-j and 9-j symbols are determined using [62,63]. The
Dirac wave functions needed to solve the radial integrals are taken as the
solutions to the Hartree equations from the previous section. Once all the
parameters in the underlying Lagrangian are fixed, the splitting is completely
determined in this approach as there are no additional constants fit to excited
state properties [54]. We also mention that this approach is applicable to
excited states and multiplets for this class of nuclei.

To calibrate this approach, we apply it to ordinary nuclei. Two mod-
ifications to our framework are required here. First, an exchange term is
included because the proton and neutron are indistinguishable particles. As
a result, the particle-hole matrix element becomes the following [53]

J / Jm  Ja I’
Uab;lm - 2(2'] +1){ jb jl J }

J/
x [<ZbJ’yV|amJ’> - (—1)ja+jm+‘]/<le’]V|maJ’>] . (70)

Second, the effective interaction is also modified, requiring additional cou-
plings to the rho and pion fields [54]

_ 2 ,—mgria 2 A—MyTI2
_ W (2| Z9s¢€ (1) (2 9v €
V(riz) = 74 'n [47r - + %V P

(1) )7_—'(1) . 7‘—'(2) gi e MpT12

+ A

T

2 . —mgT12
(1), (2) (1) (2) In € -
4 47 12 +Fy5 75 T T 47 12 '

(71)

These alterations make the ordinary nuclear matter case considerably more
complicated than the case of single A-hypernuclei.
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5. Results
5.1. Parameter fits

The full Lagrangian contains a number of free parameters. Those con-
stants which lie in the nucleon and meson sectors are fixed by the G2 param-
eter set of FST [1], given in Table I. In the A sector of the Lagrangian, a total
of six parameters remain undetermined to order v = 3. Fits are conducted
at various levels of truncation in the underlying A-Lagrangian to fix the
relevant constants. The fits performed here are entirely separate from the
one which determined the G2 parameter set; however, the framework which
FST used to conduct their fits is identical to the one employed here. The
experimental data utilized to constrain the parameters in the A-Lagrangian
is listed in Table IT and consists of three types of observables: GS bind-
ing energies, s—p shell A excitation energies, and spin—orbit splittings of the
p-states. Now we use the framework outlined in Sections 2 and 3 to calcu-
late these same observables for some initial guess of the parameters. The
calculated and experimental values are both substituted into the equation

exp ~x0 2
XN - Z Z W);)Xe)l()p ) (72)

where N is the number of data points and W)((l) are the weights. The param-
eters are varied such that the theoretical and experimental values converge.
The constants are fixed at the values that produce a minimum in x%.

Our underlying A-Lagrangian is truncated at four different levels and sep-
arate parameter fits are conducted at each. First, we consider the simplest
possible case; only terms to order v = 2 are retained in the A-Lagrangian,

which corresponds to ,C(Q). This A-Lagrangian has a total of two free pa-
rameters, gga and gy 4. In this case, the vector coupling is assumed to be
universal, as it is coupled to the conserved baryon current, and the scalar
coupling is fit to reproduce the binding energy of a single A in nuclear mat-
ter, which is about —28 MeV [27]. These assumptions are in keeping with
the previous work in [64]. The parameters determined here are shown in
Table IIT as the M1 set. This set reproduces the GS binding energies fairly
well, but is unable to simulate either the correct spin—orbit splitting in the
p-states or the s—p shell excitation energies in light A-hypernuclei.

In order to obtain a better fit to the data, we increase the level of trun-
cation. Therefore, tensor couplings to both the vector and photon fields are
included, which correspond to the terms in £51T). As a result, a third free
parameter, g4, is introduced. This fit is performed using seven pieces of
experimental data: the six GS binding energies and the spin—orbit splitting
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TABLE 11

The experimental data used in the parameter fits. This includes six GS binding
energies (E//B), one spin-orbit splitting of the p-states (Eso = |E1p, ,, — E1p, . |);
and three s—p shell A excitation energies (Esp = |F1p,,, — Eis, ,|). The calculated
values of these observables, using the M2 set, are also shown. These values are
given in MeV.

Experimental data M2 calculation
GSE/B | 13C —11.69+0.12 | [52] —10.89
%0 | —12.50+0.35 | [47] —12.03
8Si —16.60 £ 0.2 | [49] —17.37
328 —17.504+0.5 | [48] —17.95
WOCa | —18.70+£1.1 | [47] —18.63
28Ph | —26.5+0.5 | [49] —27.81
FEso 13C 0.15+0.09 | [50] 0.150
Esp 13C 10.83+0.03 | [50] 8.849
190 10.6 £ 0.1 [51] 8.314
WCa 770£1.0 | [48] 7.832

TABLE III

Lists of the constants in the five parameter sets constructed here. Note that all the
constants are natural and that these sets represent different levels of sophistication
in the A-Lagrangian.

M1 M2 M3-1 M3-2 M4

gsa/gs | 0.87357 | 0.87697 | 0.87390 | 0.87090 | 0.87697
gva/gv 1.0 0.98623 | 0.97766 | 0.98050 | 0.98623

gra —0.892 | —0.891 | —0.877 | —0.892
" —0.1550 | 0.1500 | 0.0700
112 ~0.2517 | 0.2436 | 0.3111
13 0.0700

given in Table II. In this particular case, the weights in Eq. (72) are all taken
to be equal. The resulting parameters are given in Table III as the M2 set
and all satisfy the assumption of naturalness. Table II also outlines the
numerical results of this 3-parameter fit. The outcome of this fit is shown
graphically in Fig. 1. One can see that both the GS binding energies and the
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Fig. 1. Results of the unweighted 3-parameter fit to a series of experimental data.
The G2 parameter set of FST is used for both the nucleon and meson sectors [1].
The calculated binding energy of a single A in infinite nuclear matter is also shown.

TABLE IV

The x? values for both the unweighted (UW) and weighted (W) fits relative to the
x? of the M1 set. Here x? is determined from Eq. (72) using 10 pieces of data.

M2 | M3-1 | M3-2 | M4
2o(UW) x 100 | 0.105 | 0.0877
X3(W) x 10 | 0.598 0.515 | 0.485
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small spin—orbit splitting in the p-states are reproduced well. The calculated
s—p shell excitation energies fail to duplicate the experimental values for the
lightest A-hypernuclei; however, it is correctly given by the time one gets to
Z}PCa. In Fig. 1, the value of —32.4 MeV is given as the calculated binding
energy of a single A in nuclear matter. This M2 parameter set will be used
in the subsequent calculation of the s /o-splittings.

A plot of the proton, neutron, and A densities for the GS of 4Ca calcu-
lated using this M2 set is shown in Fig. 2. A graph of the Hartree spinors
from the A wave function, G4 (r) and F4(r), for the GS of 4°Ca using the

0.12 T
[ — Proton density
o~ O -- Neutron density ||
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Fig. 2. Top: plot of the proton, neutron, and lambda densities for the GS of 4’Ca.
Bottom: radial wave functions of the A in the (1s1/5) state for the GS of 4’Ca.
Here the M2 parameter set was used.
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M2 set is also given in Fig. 2. Notice that the magnitude of the lower spinor
is very small; this indicates that the A is essentially behaving as a nonrela-
tivistic particle in the nuclear potential.

Next, the two terms nonlinear in the scalar and vector field, shown in

ﬁslN), are retained. This brings the number of unconstrained parameters up
to five. For this 5-parameter fit, ten pieces of experimental data are used;
in addition to the data utilized in the 3-parameter fit, the three s—p shell 4
excitation energies listed in Table II are also included. Two versions of the
5-parameter fit were conducted here: one unweighted and one weighted. In
the former case, all of the weights are equal. For the latter, the weighting

scheme is as follows: W)(;) = 1.0 for GS binding energies; W)(;) = 10.0 for

s—p shell A excitation energies; and W)((i) = 40.0 for the spin—orbit splitting.

The weights were selected using the formula W — Ji(AEexp/Eexp) where
fi is an arbitrary factor chosen to prevent any observable from dominating
the fit [65]. However, not enough similar data was available to constrain
the two new parameters individually. As a result, we initially restrict these
parameters with the relation

2
f2 9sbo

— = =1.624 73
p1 <9VVO) ’ 73)

n.m.

where n.m. denotes the nuclear matter values [2]. The results of both
5-parameter fits are shown in Table III; the M3-1 and M3-2 sets denote
the unweighted and weighted schemes respectively. Again notice the pa-
rameters are all natural. However, the new parameters are not very well
determined and fail to significantly improve the fit in either case, as can be
seen from Table IV. Therefore, we leave the constraint of Eq. (73) intact.
Lastly, to include all possible terms in the A-Lagrangian up to order
v = 3, all three terms in leN) are retained. Again, not enough similar data
was available to individually constrain the new parameters; therefore, we

restrict these parameters with the relation

p1 = pz = 0.225u9 (74)

and fix the remaining constants using the M2 set. These ratios were chosen
because they tend to concentrate the effects of the new contributions in
the surface of the nucleus, 7.e. the additional contributions now vanish for
uniform nuclear matter. This will have a greater effect on the s—p shell
excitations than on the GSs. The weighting scheme described above was
used. The resulting parameters are listed in Table IIT as the M4 set. Again,
as seen in Table IV the improvement in the overall fit is negligible. The
M3-2 and M4 sets both improve the fit to the GSs but do worse with respect
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to the s—p shell excitations; the M3-1 set has the opposite effect. Also we
mention that the parameter sets M3-1, M3-2, and M4 yield very similar
density distributions to those acquired from the M2 set.

5.2. s1/9-splittings

In this section we discuss the calculation of the s;/p-splittings in A-
hypernuclei and the results obtained from these calculations. Following the
methodology established in Section 4, one needs to evaluate de from Eq. (68)
to determine the size of these doublets. It is possible to separate de into
contributions from each portion of the effective interaction, or

de = de(s) + de(vt) 4 de(vs) , (75)

where s, vt, and vs represent the scalar, vector time, and vector spatial com-
ponents respectively. As it turns out, the scalar and vector time components
each cancel in the splitting, shown by

Je(s) = de(vt) = 0. (76)

Therefore, the sy /o-splittings are entirely determined from the vector spatial
term in the effective interaction, or

de = de(vs) . (77)

This is true for any system in which either the A or the nucleon hole has
j = 1/2. Note that this calculation tests a different sector of the underlying
Lagrangian than the mean field analysis and that, as there is no corre-
sponding interpretation in the static limit (M — o0), it is here an entirely
relativistic effect. Now, to determine the splitting we only need to evaluate
the matrix element in Eq. (67) for the two appropriate J values. The inte-
grals are solved using the Hartree spinors, G4(r) and Fg(r), calculated in
the single-particle analysis. Notice that the integrals in the vector spatial
contribution mix the upper and lower components of the Hartree wave func-
tions. Numerically, the integration is performed using Simpson’s method.

The results of this analysis are contained in Table V. The splittings with
a neutron hole listed in Table V all correspond to single-particle levels which
were used in the fits of the preceding discussion, as shown in Fig. 1. The
s1/2-splittings for }160, %1881, 329 and ZfloCa are plotted in Fig. 3; notice that
these four splittings are all within the experimental error bars and that the
appropriate level orderings are shown. It should be mentioned that the three
excited states with neutron holes shown in Table V will overlap with other
states of the same J value. Therefore in these cases one must diagonalize
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TABLE V

s1/2-splittings, and some excited states, are shown with their respective configura-
tions, level orderings, and doublet magnitudes. Here LL denotes lower level and
|0€| is in keV.

Nucleus State Levels | |0€|
2B (Ipsj2); (1s1y2)a | 2gs, 17 | 426
1N (Ip1j2)p(1s1j2)a | 1gg, 07 | 472

(1])3/2);1(151/2)/1 2£L’ 1~ 316
}160 (1p1/2)n(181/2)/1 1(_;8’ (U 480

(1P1/2)n(1p3/2)/1 2&; 1125
(1p1/2)n(Ip1j2)a | 1f7, 07 | 661

Si (1dss2)nt(1s12)a | 3&g, 27 | 293
328 (251/2)n (151/2) 1&g, 0F | 216
40Ca (1dss2)nt(1s12)a | 28, 17 | 308

(d3/2)5 ' (1p1y2)a | 2pp, 17 | 393
208p, (Lirgyo)n '(Is1/2)a | Tég, 67 | 24

the Hamiltonian to determine the correct splitting and level ordering. The
remaining doublets in Table V, those with proton holes, are for predicted A
single-particle levels. These three are shown in Fig. 4; here, in addition to
the GS splittings for both }EB and }FN, the doublet for the first calculated
excited state in N is also given. These splittings will be measured in
an upcoming experiment using the reaction (e,¢/ K™) with much greater
resolution than the (7, K1) reactions [58,59]. As the effective interaction
used here is isoscalar, there is no distinction in this approach between proton
and neutron holes. This is apparent when comparing the GSs of }PN and
}160; the slight difference in their splittings, which is only about 10 keV, arises
from Coulomb effects. Also note that the splittings for configurations with
the holes in the same shell are larger for the smaller j value. For example,
the doublet for the GS of 2B, in the (1p3/2);1(151/2)/1 configuration, is
smaller than that of the GS of I°N, in the (1p1/2)§1(181/2)/1 state. The level
orderings for each calculated doublet are also given in Table V. Notice that
for all of the cases considered here, the state with the higher J value is the
GS or, in the case of excited states, the lower level.

Recent gammar-ray spectroscopy experiments [67] (and the experimental
error bars on the GS binding energy of 12B) suggest that these particle-
hole splittings are in fact much smaller. In addition, the measured GS
spins of 2B and 10 are 1 and 0 respectively [66, 68], whereas the values
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Fig.3. Graph of GS particle-hole splittings and their respective level orderings for
190 and %Si on the top and 32S and %°Ca on the bottom. The single-particle cal-
culations were conducted using the M2 parameter set and are plotted alongside the
experimental values [47—49]. Notice that the splittings lie within the experimental
error bars in all four cases.

predicted here is 0 and 1 respectively. As the tensor coupling was important
in the spin—orbit splittings, it may play an important role in the case of
the sy o-splittings. Higher order terms in the effective interaction, especially
those involving the tensor coupling to the A, may be required to obtain a
quantitative description of the small sy /5-doublet splitting and the correct
level ordering. This is left for future work.
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The present analysis was also extended to the case of ordinary nuclei.
The necessary modifications to the theory were discussed in Section 4. We
apply this approach to the case of $2P;7 in the (251/2)p(1d3)2)n state. As
noted before, this calculation will require direct and exchange contributions
from the scalar, vector, rho, and pion terms in the effective interaction.
Fortunately, the statement of Eq. (76) holds here for the direct term and
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Fig.4. Top: graph of particle-hole splittings for }?B and 1SN and their respective
level orderings. In addition to the GSs, the first calculated excited state in SN
is also included. These calculations were conducted using the M2 parameter set.
The experimental value for the GS of 1B is taken from [66]. Bottom: particle-hole
splitting for the GS of $2P7. The level orderings and splittings are shown for both
theory and experiment. Here the G2 parameter set of FST was used [1].
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can be extended to include the direct rho time component as well. The
result of our calculation is 413 keV; the observed value is 77 keV [60]. This
is shown graphically in Fig. 4; notice that the correct magnitude and level
ordering is obtained. However, it should be noted that this calculation is
considerably more complicated than the A-N case.

In summary, we have successfully extended the hadronic effective field
theory developed by FST to the region of the strangeness sector correspond-
ing to single A-hypernuclei. This framework has the intrinsic strength of
directly incorporating the following: special relativity, quantum mechanics,
the underlying symmetry structure of QCD, and the nonlinear realization
of spontaneously broken chiral symmetry. Furthermore, DFT provides a
theoretical justification for this approach. This Lagrangian can be used
for predictive purposes once all the free parameters are determined. As a
result, it was of interest to make a minimalist extension of this methodol-
ogy in which a single, isoscalar A is added to the theory. An appropriate
A-Lagrangian was constructed as an additional contribution to the full in-
teracting Lagrangian of FST. This system was solved using the Kohn—Sham
analysis. Parameter fits were conducted at various levels of sophistication
in the A-Lagrangian while maintaining the full FST Lagrangian with their
G2 parameter set. The 3-parameter fit reproduces the GS binding energies
and small spin—orbit splittings well, but fails to simulate fully the s—p shell
excitations in the lightest hypernuclei, although by ZfloCa the correct exci-
tation energy is obtained. The inclusion of additional parameters does not
significantly improve the quality of the fit.

Many of the GSs used in the fits were actually particle-hole states; as
a result, it was of interest to calculate their splittings. A methodology for
examining these splittings was developed using Dirac two-body matrix ele-
ments of an effective interaction. This effective interaction followed directly
from the underlying Lagrangian and to lowest order corresponded to simple
scalar and vector exchange*. Note that this Lagrangian was designed to
calculate other phenomena and there is nothing contained in it that guar-
antees the production of small particle-hole splittings. The primary con-
clusion from the present analysis is that all of the results obtained for the
s1/2-doublet splittings used in the fitting procedure lie within the current
experimental error bars. As a partial calibration, a calculation of the GS
particle-hole splitting in i’%PN, a much more complicated case, achieved the
correct level ordering and doublet magnitude. Using this approach predic-
tions were made for nuclei that will be measured in an upcoming (e,e’ K)
experiment at Jefferson Lab [58,59]*.



Hadronic Effective Field Theory Applied to A-Hypernuclei 2289

I would like to thank the following: Dr. J.D. Walecka for his support
and advice; Dr. M. Huertas for the early use of a program he wrote to solve
the Hartree equations [7] and for his help in its modification; and Dr. B.D.
Serot for his careful reading of the manuscript and his helpful comments.
This work was supported in part by DOE grant DE-FG02-97ER41023.

Appendix A

In this appendix, we discuss the selection of the terms in our A-Lagran-
gian to order v = 3. It is straightforward to see which terms are retained
to order v = 2, with the exception of the four fermion terms. Therefore,
the following is a list of all remaining possible combinations of the fields to
order v = 3, consistent with this approach, and a short discussion of each.

e Four fermion terms in the nuclear case, such as NN NN, are eliminated
by substituting the meson equations of motion into the Lagrangian.
Under normal circumstances this is not feasible; however, this is al-
lowed when the system is already in equilibrium. Here we want to ex-
tend the framework of FST to single A-hypernuclei with no additional
mesons. In this case, either NNAA or AAAA can be eliminated using
this method, but not both simultaneously. Fortunately, the second
term involves self-fields of the A and consequently, can be discarded.
This scheme also applies to terms with more than four fermion fields.

e The term ZJWVWA is consistent with this framework.

e The terms AA¢? and 71/1Vu2 are consistent with this framework. In
the nucleon sector, terms of this variety were regrouped using meson
field redefinitions. Here the terms have different constants than in
the nucleon case; therefore, these terms cannot simply be regrouped,
unless additional mesons are included.

e The term flfyMAcqu is also retained. In the nuclear case, it was elimi-
nated via the Dirac equation, but this is not possible here.

e Next, the following term is consistent with this methodology, but can
be rewritten as

A@qb 0

. ~ o
g = o (,40) - {% (AWA)] 6. (A1)

o
The second term is a total derivative, which does not change the action,
and the third term is a four derivative of a conserved current, which
is zero. Therefore this term can be neglected.
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: : A 9 A 0
. (_Jon81der the following three terms: A*yu¢m/1, Ay Vyge-A, and
A'yu'y,,%%/l. The Dirac equation for the A can be substituted into
each of these to convert them into a type of term already considered.

e Lastly, all of the contributions with A, are absorbed into other terms
in the same manner as like terms with V,,. However, the terms Ay, 44,
and AAAI% can be discarded as @ = 0 for the A. Therefore, the only

remaining electromagnetic term is Ao, F,, A.

Note that the parameters have yet to be determined. When the terms are
regrouped, the free parameters can be redefined to suit our purposes.
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