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Assumption that the phase of the Coulomb field is a dynamical de-
gree of freedom, conjugate to the charge operator, leads to the consistent,
Lorentz invariant field theory of photons at spatial infinity, which depends
parametrically on the value of the fine structure constant. We confirm ex-
istence of the normalizable bound state in the spectrum of the first Casimir
operator of the Lorentz group. The state exists only for e2 < π indicating
that e2 = π is the singular point of the theory. We also show that the
theory has an essential singularity at the origin of the complex e2 plane.

PACS numbers: 11.30.Cp, 03.65.Fd, 03.70.+k

1. Introduction

All works of Andrzej Staruszkiewicz are invariably characterized by deep
and unconventional understanding, extreme clarity of arguments and ele-
gant mathematical solutions. Quantum mechanics of the electric charge is
no exception. It emerges from quantum theory of electromagnetic field upon
additional assumption that the phase of the Coulomb field at spatial infin-
ity is a dynamical degree of freedom, which is canonically conjugated to
the charge operator [1, 2]. Since the theory deals with fields at infinity, it
applies literally to the very tip of the light cone in the momentum space.
Hence, the Hamiltonian of this system vanishes and one may wonder how
anything nontrivial can remain in such a situation. But it does (providing
an explicit confirmation of the above introductory remarks). What remains
is the Lorentz invariance. As in any quantum theory all observables are
build from the elementary harmonic oscillators, and this puts the nontrivial
constraints on a construction. Namely the commutation rules required by
the symmetries must be consistent with those following from the canonical
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quantization. In Staruszkiewicz theory they do and moreover, the elemen-
tary electron charge e enters deeply into the algebra of Lorentz generators.
This offers a tantalizing possibility that the actual value of the fine structure
constant may be related to some properties of the Lorentz group.

It is not our goal here to discuss further such fundamental issue. From
the purely pragmatic point of view Staruszkiewicz theory provides an explicit
example of relatively simple, yet nonlinear three-dimensional field theory. It
was not solved until now, however recent developments seem to suggest that
the theory may be exactly solvable.

In the next two sections we define the system and present some early
results obtained with recently developed method of cut Hilbert space. Sec. 4
contains more complete, high precision studies of the spectrum and of the
singularity structure in the complex e2 plane.

2. The system

The system consists of the infinitely many photons with angular momen-

tum l described by the creation and annihilation operators al,m, a†l,m, l ≥ 1,
and a quantum charge, described by the charge operator Q, with the com-
mutation rules [3]1

[al,m, a
†
l′,m′ ] = δll′δm,m′ , [Q, al,m] = [Q, a†l,m] = 0 . (1)

Above photons result from the quantization of the phase of the Coulomb
field at spatial infinity, while the quantum charge is given by the Gauss
law calculated again at spatial infinity. We refer to the original works of
Staruszkiewicz for the details of this quantization procedure, in particular
for the introduction and discussion of the role of the phase of the Coulomb
field [4–7]. For our purpose it is sufficient to know that, as the result of the
canonical commutation relations between the phase and the charge operator,
the charge is quantized in units of the electron charge e

Q = eq , q = 0,±1,±2, . . . . (2)

Because Q commutes with creation and annihilation operators of pho-
tons, the whole Hilbert space splits into sectors of a given charge character-
ized by the integer q.

In contradistinction with the standard quantization of the electromag-
netic field, above procedure is manifestly Lorentz invariant. In particular
the generators of the Lorentz transformations have the form [3]

1 Notice that our creation and annihilation operators have different normalization than
those of Ref. [3].
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M12 =
∑

lm

ma†l,mal,m ,

M23+iM31 =
∑

lm

√

(l −m+ 1)(l +m) a†l,mal,m−1 ,

M03 = i
∑

lm

[

plma
†
l,mal+1,m−rlma†l,mal−1,m

]

−
√

2

3π
Q(a†1,0 + a1,0) ,

M01+iM02 = i
∑

lm

[

slm a†l,mal+1,m−1+tlm a†l,mal−1,m−1

]

+

√

4

3π
Q(a†1,1 − a1,−1) , (3)

with

plm =

√

((l + 1)2 −m2)l(l + 2)

(2l + 1)(2l + 3)
,

rlm =

√

(l2 −m2)(l − 1)(l + 1)

(2l − 1)(2l + 1)
,

slm =

√

(l −m+ 1)(l −m+ 2)l(l + 2)

(2l + 1)(2l + 3)
,

tlm =

√

(l +m− 1)(l +m)(l − 1)(l + 1)

(2l − 1)(2l + 1)
, (4)

and satisfy the standard commutation rules of the Lorentz algebra

[Mµν ,Mσρ] = i(gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ) , (5)

or
[Lk, Ll] = iεklmLm , Lk = 1

2εklmMlm ,

[M0k,M0l] = −iεklmLm , [Lk,M0l] = iεklmM0m . (6)

Since Q = qe, the fine structure constant enters into this algebra in a rather
unconventional way. In fact Staruszkiewicz has shown that the spectrum of
the first Casimir operator

C1 = −1

2
MµνM

µν , (7)

in addition to the usual continuum from the main series of the unitary
representations of the Lorentz group, has also a single discrete state which
belongs to the supplementary series. Its eigenvalue is known analytically [2]
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c1 =
e2

π

(

2 − e2

π

)

. (8)

The state is normalizable only for 0 ≤ z = e2

π
< 1. Above e2 = π it merges

into the continuum.
One of the goals of this work is to study other characteristic of this state,

and ultimately its wave function which is not known up to date. To this end
we shall briefly discuss now the cut Fock space method which turned out to
be quite useful in studying quantum systems of various complexity [8].

3. The cut Fock space and early results

Consider any quantum mechanical system with finite number of degrees
of freedom. Its basic objects like, position or momentum can be written
in terms of the creation and annihilation operators a and a†. Similarly,
more complex observables like Hamiltonian, angular momentum etc., can
also be expressed by these creation and annihilation operators2. It is, there-
fore, natural (and apparently very useful) to use as a basis of the Hilbert

space the eigenbasis of the occupation number operators Nd = a†dad, where
the subscript d labels all degrees of freedom present in the system3. In
principle one needs the infinite number of basis vectors, however it turns
out that in many cases, very accurate results, e.g. the spectrum of lower
and intermediate states, are obtained with finite bases only [10]. Moreover,
monitoring dependence of the results on the size of the basis gives us the
model independent criterion of the convergence of the whole procedure.

It remains to decide how we do cut the basis. It turns out that the very
convenient cutoff consists of limiting the total number of quanta

NQ =
∑

d

Nd < Nmax, (9)

in the system. The reason for this is that the sum in Eq. (9) is usually
invariant under the symmetries present in the problem. If so, the cutoff (9)
respects these symmetries and one can take full advantage of them in the cut
system as well. Moreover, the occupation number basis and the cutoff (9) are
particularly suited for the computer applications since they are characterized
by the discrete, dimensionless numbers. No dimensional scale appears in this
regularization.

2 The method is most efficient for the polynomial interactions, however it can be ex-
tended to arbitrary potentials.

3 Extension for fermions is simple. In fact the original motivation of this approach
came from supersymmetric systems [9].
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The present problem is more challenging since the number of degrees
of freedom is infinite. We have, therefore, introduced the double cutoff
(Nmax, lmax) which limits the total number of quanta (here photons at spatial
infinity) and their angular momentum. Recovering the true “continuum
limit” requires then taking both of these parameters to infinity. This may
seem like a tall order, however, only practical experience with the particular
system can tell whether such a program is feasible.

In practice we use the algebraic program like Mathematica. Any quan-
tum state is written as the superposition of Ns elementary states

|st〉 =

Ns
∑

I

αI

∣

∣

∣~n(I)
〉

, (10)

where I labels all states in the basis and ~n(I) is the vector of the occupa-
tion numbers for the I-th basis state. After fixing lmax the length of ~n is
(lmax + 1)2. In Mathematica above state is represented by a flexible list

|st〉 ↔
{

Ns, {α1, ...., αNs
} ,

{

{

n1
1, ..., n

1
lmax+1

}

, ...,
{

nNs

1 , ..., nNs

lmax+1

}}}

.

(11)
whose length can vary dynamically during the calculations. The first element
of this list gives the number of basis states in the superposition. The second
is the list of complex amplitudes with which the elementary (i.e. basis ) states
appear. Finally, the third element is the list of Ns lists specifying occupation
numbers of basis states. The simplest elementary state, the empty state is
given by

|0, 0, ..., 0〉 ↔ {1, {1}, {{0, ..., 0}}} . (12)

One then implements all quantum operations like addition, multiplication
by a number, scalar product on these lists. Next, we define list valued
operations corresponding to the creation and annihilation operators, and
finally implement the action of more complex operators like the Lorentz
generators, Eqs. (3), or the Casimir operators. This approach allows to
calculate analytically matrix elements of various observables as a functions
of e. Final diagonalization is done numerically.

3.1. Identification of the bound state and its eigenvalue

Table I shows the eigenvalues (and their degeneracies) of the two Casimir
operators: C1 given by Eq. (7) and

C2 = −1

8
εµνσρMµν Mσρ , (13)
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TABLE I

Eigenvalues, and their degeneracies, g, of the two Casimir operators (14), (15) in
a cut Hilbert space.

c1 g c2 g

−24.00 13

19.20 1

16.47 3

14.09 5

13.06 1

−11.20 11

9.97 3

9.60 5

9.59 1

8.00 3 −7.06 7

−8.00 9 −5.29 9

7.20 9 −3.47 5

−6.89 7 −3.34 5

6.82 7 −2.63 7

6.41 5 −2.19 3

6.40 3 0.00 93

−6.40 9 2.19 3

5.86 7 2.63 7

4.80 5 3.34 5

2.94 1 3.46 5

−2.82 7 5.29 9

−2.40 5 7.06 7

2.36 3

1.91 5

1.83 7

−1.60 7

0.80 5

−0.80 9

0.00067 5

0.00037 3

0.00030 1



Quantum Mechanics of the Electric Charge in a Cut Fock Space 137

for Nmax = 3 and lmax = 2. Even with such a dramatic cutoffs the basis
has 165 vectors, since the cut system already has 9 degrees of freedom. It
is interesting, however, that even in such a severely restricted Hilbert space
we can recognize signs of the Lorentz symmetry and in particular identify
the Staruszkiewicz state from the supplementary series.

First, the cut system is also rotationally symmetric. The Casimir oper-
ators, when written explicitly in terms of the generators4

C1 = M2
01 +M2

02 +M2
03 −M2

12 −M2
23 −M2

31, (14)

C2 = −M01M23 −M02M31 −M03M12, (15)

are clearly rotationally invariant. Since our cutoffs respect SO(3) rotations,
we expect to see rotationally invariant spectrum. And indeed this is the case:
all eigenvalues in Table I group into familiar 2l+1 multiplets. Therefore, the
spherically symmetric states, i.e. the SO(3) singlets, can be easily identified.

It is known that the spectrum of C1 has the form

c1 = 1 + ν2 − n2, (16)

for any real ν and integer n [11]. It is also known that the spectrum of
C2 is proportional to n. On the other hand, it follows from Eq. (15) that
C2 annihilates SO(3) singlets. Therefore, spherically symmetric states must
have n = 0 and due to Eq. (16) have positive eigenvalues. This is readily
confirmed by Table I.

This is not the end. According to (16) all eigenvalues of the singlet states
should be greater than 1. In Table I all but one singlet eigenvalues of C1

are bigger than 1. Is something wrong? No, Eq. (16) applies only to the
principal series of the unitary representations of the Lorentz group. For the
supplementary series one has [11]

c1 = 1 − σ2 , 0 < σ < 1 . (17)

Hence the last singlet state in the table can be readily identified as the
one from the supplementary series. We conclude that our cutoff is very gentle
indeed and allows to see many nontrivial signatures of the Lorentz algebra.
In particular we can unambiguously locate the state from the supplementary
series which in the infinite cutoff limit tends to the bound state found by
Staruszkiewicz.

The spectrum in Table I was obtained for very small z = 0.00015. For
other values of 0 < z the pattern is the same: all spherically symmetric
states have positive eigenvalue of C1 and for 0 < z < 0.8 only one of them

4 We use ε
0123

= 1.
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has c1 < 1. The last range of z depends on how accurately can we predict
the actual value of the eigenvalue with presently available cutoffs.

Fig. 1 compares the z dependence of the above eigenvalue obtained for
the two lowest cutoffs with the exact result, Eq. (8). Clearly there is a room
to improve — this is not a surprise. On the other hand, even for z ∼ 0.4
this, very rough, approximation gives already reasonable results. Second,
the proper trend with increasing lmax is observed — things seem to converge
monotonously from the very beginning. Finally, because of the poor approx-
imation for larger z, obtained eigenvalue is not smaller than 1 which seems
to hamper identification with the state from the supplementary series. How-
ever, continuity in z implies that this is indeed the “supplementary” state
which is just badly approximated with present cutoffs.

0.2 0.4 0.6 0.8 1 1.2 1.4
� !!!
z

0.5

1

1.5

2

2.5

c
1

lmax=1

lmax=2

exact

 c1

z1/2

Fig. 1. Dependence of the lowest singlet eigenvalue of C1 on z for two cutoffs lmax.

Exact result, Eq. (8) is also shown.

3.2. Other observables

Obviously the cut Fock space method is not restricted solely to the eigen-
values. One easily obtains eigenvectors — a task which cannot be realized
within the original analytic approach. In fact any other observable, or quan-
tum average, can be readily calculated at finite cutoffs. As one example we
quote the multiplicity distribution of photons in an eigenstate of C1. Given
the previous eigenstate |ψ〉 in terms of our Fock basis (10), we have the com-
plete information of its wave function. In particular, one can easily obtain
the multiplicity distribution of photons dressing the bare Coulomb field
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Pk(e
2) =

∑

I

| 〈{nlm} = k|ψ〉 |2, (18)

and study its dependence on e2. Similarly, one can explore the average values
of the “magnetic field” which couples to the charge operator in Eqs. (3), etc.

3.3. First elements of the Jacobi matrix of C1

Interestingly, there exists a class of averages which can be calculated
exactly even with present, relatively small, cutoffs. These are the lower
matrix elements of the first Casimir operator in the Jacobi basis — a basis
generated by iterative action of the C1 itself onto the pure Coulomb state
|0〉. This basis will be discussed in details shortly in connection with more
advanced methods. Here we only point out that the Hilbert space cut to
Nmax = 6 and lmax = 3 is sufficient to calculate first nine matrix elements
of C1 exactly. We obtain

C =















2z
√

8
3z 0

√

8
3z

14
3 z + 4 4

3
√

5

√

(5z + 3)(5z + 9)

0 4
3
√

5

√

(5z + 3)(5z + 9) 2
3

275z3+1200z2+1485z+486
(5z+3)(5z+9)















. (19)

This result confirms analytic calculations of leading in z terms performed
some time ago with entirely different method [12], and serves as the bench-
mark for the high order calculations described in the next section.

4. High precision study

In spite of its obvious limitations the previous approach, has provided
some results which were not available with the direct analytic methods. Most
important, however, is the new formulation of the problem, namely as the
“infinite volume” limit of the simple quantum mechanics in the finite, cut
Hilbert space. To move further one has to attack the question of the rapidly
growing number of degrees of freedom.

Fortunately there exists another cutoff leading to much more quantitative
results. Consider acting with the Casimir operator C1 on the bare state of
the Coulomb field |q, 0〉 in any sector of the normalized charge q. For simplic-
ity we will work with q = 1, omit the q eigenvalue and rename |q, 0〉 → |0〉.
The state C1|0〉 contains finite number of photons with their angular mo-
menta limited as follows from Eqs. (3). The next state, (C1)

2|0〉, will contain
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correspondingly more quanta within larger range of l’s and so on. Let us
then define the cut Hilbert space as the one spanned by N states

(C1)
n|0〉 with n = 0, . . . N − 1 . (20)

The cutoff N has three advantages: (a) it is given in terms of a single
parameter, (b) it is Lorentz invariant, and (c) it can be pushed quite high
(into the range of N ∼ 100) due to the recent analytical developments.
All results described below are obtained with this method referred to as
the Jacobi matrix approach. It splits into two steps: (i) constructing an
orthonormal basis (Jacobi basis) from states (20) together with the matrix
representation Cmn of C1 in this basis, and (ii) calculating the vacuum
averages of powers of C1

〈0|(C1)
n|0〉 , (21)

referred to as the moments of C1. The two steps are independent and will
be discussed separately.

4.1. Recursive scheme for the Jacobi matrix of any observable

Except for the eigenbasis, the matrix representation of any observable
H is in general not sparse. However, there exists a basis in which H is
tridiagonal. To construct such a basis take any state |0〉, act on it with H
and then orhonormalize resulting set of vectors. This can be cast into the
following recursive procedure

|a0〉 = |0〉, |b0〉 = |a0〉, |e0〉 = |b0〉,

|an〉 = H|an−1〉 , |bn〉 =
n−1
∏

k=0

Pk|an〉, |en〉 =
1√
Zn

|bn〉, n > 0, (22)

where

Pk = 1 − |ek〉〈ek|, and Zk = 〈bk|bk〉 , k = 0, 1, . . . , n . (23)

It is easy to see that the matrix representation 〈em|H|en〉 ≡ Hmn is tridiag-
onal (hence the term: Jacobi matrix of H). Indeed, it follows from the con-
struction that |em〉 has non-zero components only in the space Vm spanned
by the first m powers of H: {|0〉,H|0〉, . . . ,Hm|0〉}. In fact |em〉 is the
orthogonal complement of Vm−1 to Vm. Consequently H|em〉 is entirely con-
tained in Vm+1 and, therefore, it is orthogonal to |en〉 for m + 1 < n. It
follows from the hermiticity that Hmn is tridiagonal, QED.

Since the starting point of the recursion (22) consists of a pair (H, |0〉), all
numbers which result from this procedure, e.g. the matrix elements of H, its
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eigenvalues or eigenvectors (in |en〉 representation), are universal functions
of moments of H defined as

〈0|Hn|0〉 ≡ Hn . (24)

Universal, meaning that they are the same functions of Hn independently
of the nature of H and |0〉.

To derive these relations define the sequence of An operators such that

|bn〉 = An|0〉 . (25)

Since |en〉’s are orthonormal, the product of projectors in Eq. (22) can be
rewritten as the sum, and consequently An satisfy

An = Hn −
n−1
∑

k=0

Ak

Zk

〈0|AkH
n|0〉 . (26)

Using (22), (23), (26) one obtains the following expression for the normal-
ization constants

Zn = H2n −
n−1
∑

k=0

〈0|AkH
n|0〉 〈0|AkH

n|0〉
Zk

, n > 0 , (27)

in terms of the “vacuum” averages 〈0|AkH
n|0〉. In fact they turn out to

be a part of a more general structure. To see this, define the off-diagonal
Z factors

Zmn ≡ 〈0|AmH
n|0〉 . (28)

It follows from (26) that they satisfy recursive relations in the first index

Zmn = Hm+n −
m−1
∑

k=0

ZkmZkn

Zkk

, m > 0, (29)

Z0n = Hn .

For m = n it reduces to (27), hence the diagonal elements

Znn = Zn, (30)

coincide with the normalization factors defined in Eq. (22).
Using (26) and (29) one derives recursive relations for the matrix ele-

ments of H in the Jacobi basis5

〈en−1|H|en〉 = 〈en|H|en−1〉 =
1√

Zn−1Zn

(Znn −Hn−1Zn1),

〈en|H|en〉 =
1

Zn

(

Zn n+1−HnZn1−
Zn−1 n

Zn−1
(Zn−Hn−1Zn1)

)

. (31)

5 We need to consider only symmetric matrices here. Generalization to hermitian
observables is evident.
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Together with the initial conditions

〈e0|H|e0〉 = H1 , and 〈e0|H|e1〉 = 〈e1|H|e0〉 =
√

Z1 , (32)

these relations determine all elements of the Jacobi matrix of H in terms of
the moments Hn.

4.2. Moments of the first Casimir operator

In order to calculate Jacobi matrix of size N one needs all moments of H
up to 2N+1 order. In the case of C1 this is now possible for very high N , due
to the recent result of Staruszkiewicz who has derived a series of interesting
representations for various Green functions of his theory [2,12]. One of them
reads

〈0|eiτC1 |0〉 =
1

π
eiτ

∞
∫

0

dννeiτν2

∞
∫

−∞

dλ sinh (λ) sin (νλ)e−z(λ coth (λ)−1), (33)

and can be turned into an explicit expression for the generating function of
moments

〈0|etC1 |0〉 =

(

d

dλ
exp

[

t(1 − d2

dλ2
)

]

F (λ, z)

)

λ=0

,

F (λ, z) = sinh (λ) exp [−z(λ coth (λ) − 1)] . (34)

With this formula one can calculate the moments and consequently the Ja-
cobi matrix and its spectrum up to N ∼ 100. Even more effective algorithms
became recently available [13].

4.3. The eigenvalue of the bound state

Above recursive scheme for the Jacobi matrix, Cmn = 〈em|C1|en〉, of C1,
together with the result (34), lead to calculations of the whole spectrum of
C1 with much higher precision. To begin with, we have constructed Cmn

up to the size N = 18. This is roughly equivalent to the same value of the
invariant cutoff (20) and requires 37 moments (21).

Fig. 2 shows the lowest eigenvalue of the cut Jacobi matrix Cmn, as
the function of z = e2/π for all 1 < N < 19, together with the exact
result (8). Since the basis created with the procedure (22) spans only the
singlet sector, the eigenvalues of Cmn are necessarily those of the spherically
symmetric states. Therefore, the lowest one should correspond to the bound
state discussed in Sec. 2. Indeed we observe nice convergence to the exact
solution. Compared to Fig. 1 the evidence is now much more compelling.
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Fig. 2. The lowest eigenvalue of C1, for first eighteen values of the cutoff, compared

with the exact result, Eq. (8) (the lowest curve).

However, at first glance one might worry that there is no convergence at
all for higher z. We have checked this more carefully by fitting the N
dependence of the lowest eigenvalue for couple of z’s. Assuming that c(N, z)
is regular at N = ∞, one can expand it in the power series in 1/N

c(N, z) =

K
∑

k=0

γk(z)

Nk
. (35)

Indeed the fits nicely confirm this ansatz. They are stable with increasing
the number of terms in the asymptotic expansion. The asymptotic value
of c(∞, z) = γ0(z) is also stable, and converges to the exact solution with
increasing K. However, this convergence is fast at small z and is progres-
sively slower when we approach z = 1. For example, at z = 0.41 we needed
only two terms in Eq. (35) to get γ0 within 1% of the exact result, while at
z = 0.91 more than 12 terms are required, cf. Table II.

TABLE II

Asymptotic value of the lowest eigenvalue of the first Casimir operator as obtained
from fits with increasing number of the 1/Nk terms. Exact result at this z(z = 0.91)
is 0.9919.

K 1 4 8 12

1.119 1.052 1.035 1.027
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Equivalently, the fits show clear increase of the higher coefficients γk(z)
with z which just tells that the convergence with N becomes slower with z
increasing towards z = 1. This is perfectly consistent with z = 1 being the
critical point of the theory.

To conclude this section, we observed convergence of the discrete eigen-
value with the cutoff in the whole range 0 < z < 1. The asymptotic form of
c(N, z) seems to be regular at N = ∞ showing the critical slowing down in
the neighborhood of z = 1.

4.4. Singularity structure in a complex e2 plane

The eigenvalue (8) is regular at z = 0+. This, however, does not preclude
the nontrivial singularity structure of the whole theory at small z. We have
looked at this question in some details by examining singularities generated
by the recursion (29). It is easy to see that the normalization constants Zn

are rational functions of z

Zn = z2 Wn(z)

Wn−1(z)
. (36)

With the z2 factored out, polynomials Wn(z) do not vanish at z = 0. Singu-
larity structure of the theory is encoded in these polynomials. For example,
singularities of the Jacobi matrix (31) coincide with those of the normaliza-
tion constants.

We have, therefore, examined the zeroes of the polynomials Wn(z) in the
complex z plane looking for some structures around the origin. Figs. 3–5
show maps of these zeroes for n = 6, 8, 10, respectively. Wn(z) is of the
order of n(n−1) hence there are enough zeros to see some regularities already
at these cutoffs. Indeed we see the clustering of zeroes around the negative
real axis, with the tip of the cluster extending, with increasing n, towards
the origin. Since the full theory is well defined on the positive real axis,
this result may only mean two things: (a) either the tip reaches the origin
asymptotically at infinite cutoff, or (b) it converges to some small negative
value z∗.

To decide which case it is, we have done dedicated study of the first zero
of Wn(z) for n’s as high as 90. In doing so the full power of Mathemat-
ica turned out to be very useful. We had to deal with rapidly oscillating
polynomials of the order up to 8000 which were varying over hundreds or-
ders of magnitude. Cancellations were tremendous, nevertheless with the
Mathematica ability to do calculations in arbitrary precision, we were able
to extract stable, hence meaningful, results.

Fig. 6 shows the distance of the first zero from the origin for n ≤ 91.
Nothing indicates any flattening, i.e. the cluster of zeros seen in Figs. 3–5
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Fig. 3. A map of the zeroes of W6(z) on the complex z plane.
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Fig. 4. As Fig. 3 but for W8(z).

seems to extend all the way to the origin at infinite nmax. This means that
the theory has the essential singularity at e2 = 0. To check that more
quantitatively we have extrapolated the data shown in Fig. 6 to infinity by
fitting them to the asymptotic expansion in powers of 1/n.

−z0(n) = ζ0 +
ζ1
n

+
ζ2
n2

+
ζ3
n3

+
ζ4
n4
. (37)
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Fig. 6. The distance of the first zero of Wn(z) from the origin.

Results are shown in Table III. Fits are stable with respect to removing
first 20–40 data points. This supports the choice of the asymptotic form
(37). In addition, when we have fitted the expansion with integer and half-
integer powers, coefficients of half-integer powers were in general smaller
confirming again an ansatz (37). The extrapolated value at infinity, ζ0, is
consistent with zero. Mathematica routine for nonlinear fits was used to
estimate errors, ∆(ζk), of fitted parameters.
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TABLE III

Fits of the n dependence of the distance of the first zero from the origin of the
complex z plane. The last row gives a fit to the faked data with a small term
(= −0.0023) added to z0.

nmin ζ0 ∆(ζ0) ζ1 ∆(ζ1) ζ2 ∆(ζ2)

20 −0.000016 0.000017 1.067 0.004 3.38 0.26

30 −0.000024 0.000053 1.069 0.013 3.31 1.10

40 −0.000087 0.000056 1.085 0.015 1.85 1.47

20 0.00228 0.000018 1.068 0.004 3.38 0.26

The range of the fitted data spans one order of magnitude, that is the
last data point reaches the value 0.012. In the absence of any scale in the
problem it is hard to decide whether this is far or close to zero, consequently
we do not know wether attempted extrapolation “has a short or a long way
to go”. Therefore, we have also fitted the faked data, with the ten times
smaller number 0.0023 added to the original results, in order to see if the
fit is able to resolve such a small term. The last row of Table III shows
that indeed such a contributions can be identified. Apparently amount of
information which is contained in 91 data points is sufficient to resolve such
a small constant if it were there. This confirms our conclusion that the zeros
of Wn polynomials extend all the way to the origin of the complex z plane.

4.5. The spectrum of the first Casimir operator

As mentioned in Sec. 3 the cut Fock space approach can provide not only
the eigenvalues of Casimir operators, but virtually any information about
the quantum system. However, it is hard to construct a basis for larger
cutoffs. The Jacobi matrix method allows to reach high cutoffs, but amount
of information is limited only to the observable used to create the basis. To
make contact with the former approach, one would have to construct the
unitary transformation which relates the two bases.

On the other hand the Jacobi approach opens another interesting pos-
sibility. Namely, given an exact eigenvalue, it allows to construct the exact
expansion of the eigenstate in terms of the Jacobi basis6. This follows sim-
ply from the tri-diagonal nature of C1 in the Jacobi representation (31).
If 〈em|C1|en〉 ≡ Cmn is tri-diagonal, the eigenequation

Cmnψn = cψn , (38)

6 I thank A. Staruszkiewicz for bringing this property to my attention.
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turns over into the recursion relation for ψn providing we know an eigen-
value c. This is precisely the case of the first Casimir operator C1. We
know exactly its all eigenvalues and, therefore, can construct exactly all
eigenstates in the Jacobi basis. It is perhaps worth to emphasize the differ-
ence with the cutoff method used in Sec. 4.3. Diagonalizing the cut Jacobi
matrix, as done previously, results in the approximate eigenvalues and eigen-
states which gradually converge to the exact results. Here, given an exact
eigenvalue we can generate the exact eigenvector. In practice if we know only
the first N2 elements of Cmn we are able to construct the first N components
of the exact eigenvector.

We have turned the problem around and used Eq. (38) to examine the
spectrum of the C1 for a sample of z values. The idea is basically that
of the shooting method well known from the elementary quantum mechanics.
Literally equation (38) is satisfied for any constant c. What determines the
actual spectrum is the normalizability condition of the eigenstate. We have,
therefore, scanned the whole range od c values, for each c we have construc-
ted recursively corresponding solution ψn and checked its dependence on n.
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Fig. 7. Solution ψn of Eq. (38), as a function of n, for various values of the parameter

c and z = 0.34567.
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Results are shown in Figs. 7–8 (bottom to top, left to right). Beginning
with large negative c (Fig. 7(a)) we see that coefficients grow rapidly with
n precluding any normalizability. For larger c (Fig. 7(b)) the growth with
n becomes weaker (note change of the scale on the vertical axes), however,
the states still are not normalizable. There are no negative eigenvalues of C1

in the scalar sector. In fact this situation holds up to c ∼ 0.5. Around this
value the n dependence begins to change (Fig. 7(c)–7(d)) leading to the nor-
malized state at c = 0.572 . . . (Fig. 7(e)) — as predicted by Eq. (8). Moving
on towards higher c we again see non-normalizable solutions (Fig. 7(f))–
8(b)) until we reach the threshold of the continuum spectrum at c = 1 (Fig.
8(c)). Beyond that point the oscillating behavior sets in. This is typical to
the non-localized states. The frequency of the oscillations is not constant
in agreement with the power behavior characteristic for the representations
of the Lorentz group. Similarly to the usual scattering states the frequency
of oscillations increases with the “energy” c. The behavior at the threshold
(Fig. 8(c)) is also very similar to that of the zero momentum plane wave
expanded in the harmonic oscillator basis.
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Fig. 8. Same as Fig. 7 but for yet higher c’s.



150 J. Wosiek

This analysis was done for z = 0.34567. For z > 1, only continuous
spectrum with c > 1 exists, as expected.

To conclude, the Jacobi approach allows to construct exactly all eigenstates
of C1 in the Jacobi basis. The spectrum found in this way agrees with the one
obtained by Staruszkiewicz. In particular, for 0<z< 1, we have confirmed
the existence of a single normalized state with the eigenvalue c=z(2−z).

5. Summary

Quantum mechanics of the electric charge, proposed by Staruszkiewicz
some time ago, is in fact a very interesting and nontrivial field theory of
the quantized Coulomb field and photons at spatial infinity. The number of
degrees of freedom is infinite, but this infinity is countable. In this respect
the theory is simpler than the others, nevertheless it is far from being trivial.
A number of analytic results have accumulated over last years, indicating
that it may be exactly solvable. However, no complete solution exists up to
date. The most intriguing result is the existence of a single bound state —
the state of the Coulomb field dressed with photons at infinity. This state
belongs to the supplementary series of Lorentz group and exists only for
e2 < π. In fact the whole theory reveals a fascinating connection between
the value of the elementary charge and representations of the Lorentz group.

We have studied some old and some new questions with the new tech-
nique of the cut Hilbert space. We have confirmed Staruszkiewicz results on
the spectrum and extended his study of Jacobi matrix of the first Casimir
operator. First 90 components of the exact bound state were constructed in
the Jacobi basis.

The singularity structure around the origin of the complex e2 plane was
studied in details. It was found that the origin is the accumulation point
of poles clustering on the negative real axis. This demonstrates that the
theory has an essential singularity at e2 = 0 in agreement with the Dyson
argument for quantum electrodynamics and other field theories.

I would like to thank A. Staruszkiewicz for numerous, enlightening dis-
cussions. This work is supported by the Polish State Committee for Scientific
Research under grant no. 1 P03B 024 27 (2004–2007).
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