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Cracow’s school of theoretical physics, led by Professor Andrzej Staruszkiewicz, has

made deep contributions to our understanding of black holes. It is a pleasure to

dedicate to Professor Staruszkiewicz this contribution to the subject, on the occasion

of his 65th birthday

We show that static metrics solving vacuum Einstein equations (possi-
bly with a cosmological constant) are one-sided analytic at non-degenerate
Killing horizons. We further prove analyticity in a two-sided neighborhood
of “bifurcate horizons”.

PACS numbers: 04.20.Cv

1. Introduction

It is a classical result of Müller zum Hagen [9] that stationary vacuum
metrics are analytic, in appropriate charts, in the region where the Killing
vector is timelike. However, analyticity does sometimes stop at Killing hori-
zons, as can be seen by the Scott–Szekeres extensions of the Curzon met-
ric [12,13]; compare [3] for examples with a cosmological constant. The aim
of this note is to point out that one-sided analyticity always holds at non-

degenerate static Killing horizons. We also prove analyticity in a (two-sided)
neighborhood of “bifurcate horizons”. In addition to their intrinsic interest,
our results have applications to the classification of static solutions1 of the

† Partially supported by the Polish State Committee for Scientific Research grant 2
P03B 073 24.

1 In his proof of Israel’s theorem, Robinson [11] appeals to analyticity up-to-boundary
of the metric, which has not been justified until this work. While Robinson’s proof
has been superseded by more complete results [4,5], it remains the simplest one in the
connected non-degenerate case, and it seems of interest to have a complete argument
along his lines.
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Einstein equations [2, 11], or to discussions of cosmic censorship [8] (com-
pare [7]).

We assume an arbitrary space-time dimension n+1, and vacuum Einstein
equations, perhaps with a cosmological constant. It should be clear that the
argument generalises to certain couplings of matter fields to the geometry
via Einstein equations.

We expect the result to remain valid for stationary, not necessarily static,
Killing horizons, we plan to return to this question in a near future.

2. The method

The proof of the above turns out to be rather simple, and relies on the
“Wick rotation” method. It is well known that a metric g with timelike
Killing vector field X may locally be written in the form

g = −u2(dt+ θidx
i)2 + hijdx

idxj , (2.1)

where θidx
i is a connection 1-form on the space of xi’s, u is the length of

the Killing field X = ∂/∂t, and h is a Riemannian metric. All the fields
above are t-independent. (Since all considerations here are strictly local the
range of the function t, and the associated question of completeness of the
orbits of X, are completely irrelevant for our purposes.) The simplest case
to consider is that of static metrics, where θ can be set to zero, so that (2.1)
becomes

g = −u2dt2 + hijdx
idxj . (2.2)

Suppose that g solves the vacuum Einstein equations (possibly with a cos-
mological constant), it is well known that the Riemannian counterpart of g,

u2dτ2 + hijdx
idxj , (2.3)

also satisfies those equations. A simple way of seeing that is as follows: for
α ∈ C

∗ consider the family of complex valued tensor fields

g(α) = −α2u2dt2 + hijdx
idxj .

Let Ric(α) be the complex valued tensor field obtained by calculating the
Ricci tensor of g(α) using the usual formulae. Since the Ricci tensor is
a rational function of the gµν ’s and their derivatives, all the coordinate
components R(α)µν of Ric(α) are meromorphic functions of α. For α ∈ R

∗

we have R(α)µν = 0, since for those values the metric g(α) can be obtained
by a coordinate transformation t → τ = αt from the metric g = g(1).
Uniqueness of analytic extensions implies that R(α)µν = 0 for all α ∈ C

∗,
setting α = i one obtains the desired result for the Riemannian metric g(i).
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An identical argument applies of course to the family of complex tensor
fields

g(α) = −u2(αdt+ θjdx
j)2 + hjkdx

jdxk , (2.4)

so that if g were an Einstein Lorentzian metric,

Ric(g) = λg (2.5)

for some constant λ, then the complex tensor field g(α) again satisfies the
set of equations

Ric (g(α)) = λg(α) (2.6)

for all values of α ∈ C
∗. In particular if α = i we obtain that the complex

tensor field
g(i) = u2(dτ + iθjdx

j)2 + hjkdx
jdxk , (2.7)

solves the set of complex equations (2.5). In this work we will, however,
concentrate on the static case, so that this fact is irrelevant for the remainder
of this paper.

3. One-sided analyticity near a Killing horizon

From now on we restrict ourselves to the static case, locally θ = df .
Recall that a Killing horizon is a null hypersurface K such that X is tangent
to the generators of K. As is well known (see, e.g., [5, Proposition 3.2]),
a non-degenerate K corresponds to a smooth totally geodesic boundary,
say ∂Σ, for the metric h. Further, if ρ = ρ(p) denotes the distance from
p to ∂Σ in the metric h then, in Gauss coordinates around ∂Σ, all the
functions appearing in the metric are smooth2 functions of ρ2 and of the
remaining coordinates. Moreover, u vanishes on ∂Σ = {ρ = 0}, with non-
zero gradient there. This implies (the well known fact) that the set {ρ = 0}
for the Riemannian metric (2.3) corresponds to a smooth axis3 of rotation
of a Killing vector Y . Now Y is the obvious counterpart of X under the
transition from (2.2) to (2.3), and this transition preserves hypersurface-
orthogonality, hence Y satisfies

Y ♭ ∧ dY ♭ = 0 ,

where Y ♭ := g(i)(Y, ·). Since g(i) is a Riemannian Einstein metric, its coor-
dinate components g(i)ij , with respect to harmonic coordinates, satisfy an

2 Throughout we assume smoothness of the manifold and of the metric. However, there
exists k < ∞ such that if the metric is Ck, then the methods here apply, leading to
analyticity. The exact value of k can be found by chasing losses of differentiability
that arise in the constructions here, as well as in those of [5].

3 By this we mean a submanifold of codimension two invariant under the flow of Y ,
with Y generating rotations in the normal bundle.
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elliptic quasilinear system of PDEs and are, therefore, real analytic. Fur-
ther, the harmonic coordinates are smooth in the original smooth atlas. The
geodesic coordinates around the rotation axis ∂Σ are also analytic because
(1) the axis of rotation is a totally geodesic submanifold (of co-dimension
two) in the Riemannian manifold (M,g(i)), hence analytic; (2) normal co-
ordinates around an analytic submanifold are analytic in an atlas in which
the metric is analytic. (This follows from the analytic impicit function theo-
rem [14].) It should be clear that this provides the desired one-sided analytic
atlas in the Lorentzian solution near the horizon, by running backwards the
calculations of, e.g., [5, Proposition 3.2]. Since there is a major subtlety
here, as

one obtains analytic coordinates only in the region g(X,X) ≤ 0,

we provide the details: Consider a covering of {ρ = 0} by domains of defi-
nition Oi, i = 1, · · · , N , of analytic coordinate systems xa, a = 3, . . . , n+ 1,
and for q ∈Oa let xA, A=1, 2, denote geodesic coordinates on expq{(Tq∂Σ)⊥}.

Set (xµ) = (xA, xa). From what has been said it follows that the xµ–
coordinate components of the Riemannian metric tensor g(i) are analytic
functions of the xµ’s. We have the following local form of the metric

g(i) =

2
∑

i=1

(dxi)2+h+
∑

A,a

O(ρ)dxAdxa+
∑

A,B

O(ρ2)dxAdxB+
∑

a,b

O(ρ2)dxadxb ,

(3.1)
with h — the metric induced by g on ∂Σ. The O(ρ2) character of the
dxAdxB error terms is standard; the O(ρ2) character of the dxadxb error
terms follows from the totally geodesic character of ∂Σ. The Killing vector
field Y takes the form Y = x1∂2 − x

2∂1 = ∂ϕ, where

(x1, x2) = (ρ cosϕ, ρ sinϕ) . (3.2)

When expressed in terms of ρ and ϕ, the functions g(i)µν := g(i)(∂xµ , ∂xν )
are analytic functions of the xµ’s, hence (by composition) of ρ and of ϕ. Let
Rπ denote a rotation by π in the (xA)-planes, Rπ is obtained by flowing
along Y a parameter-time π and is therefore an isometry, leading to

g(i)ab(−x
1,−x2, xa) = g(i)ab(x

1, x2, xa) , (3.3a)

g(i)AB(−x1,−x2, xa) = g(i)AB(x1, x2, xa) , (3.3b)

g(i)Aa(−x1,−x2, xa) = −g(i)Aa(x
1, x2, xa) . (3.3c)

In particular all odd-order derivatives of gab with respect to the xB ’s van-
ish at {xA = 0}, etc. Those symmetry properties together with analytic-
ity imply (using, e.g., Osgood’s lemma) that there exist analytic bab(s, x

a),
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γa(s, x
a), ψ(s, xa), with ψ(0, xa) = 1, such that

g(i)ab(x
1, x2, xa) = bab(ρ

2, xa) ,

(

g(i)AbY
A
)

(x1, x2, xa) = ρ2γb(ρ
2, xa) .

u(x1, x2, xa) :=
√

(g(i)(Y, Y )) (x1, x2, xa) = ρ
(

1 + ρ2ψ(ρ2, xa)
)

.

Similarly, let n = xA∂A, then g(i)ABY
AnB and g(i)ABn

AnB are analytic
functions invariant under the flow of Y , with g(i)ABY

AnB = (g(i)AB −
δAB)Y AnB = O(ρ4), g(i)ABn

AnB = ρ2 + O(ρ4), hence there exist analytic
functions α(s, xa) and β(s, xa) such that

(

g(i)ABY
AnB

)

(x1, x2, xa) = ρ4α(ρ2, xa) ,
(

g(i)ABn
AnB

)

(x1, x2, xa) = ρ2 + ρ4β(ρ2, xa) .

One similarly finds existence of an analytic one-form λa(s, x
b)dxa such that

(

g(i)Aan
A
)

(x1, x2, xb) = ρ2λa(ρ
2, xb) .

In polar coordinates (3.2) one therefore obtains

Y ♭ := g(i)(Y, ·) = ρ2
(

(1 + ρ2ψ)2dϕ+ αρdρ+ γadx
a
)

.

Writing g(i) in the form4

g(i) = u2(dϕ + θjdy
j)2 + hjkdy

jdyk , (3.4)

with yj = (ρ2, xa), one has Y ♭ = u2(dϕ + θjdy
j) leading to

θ := θjdy
j =

α

2(1 + ρ2ψ)2
d(ρ2) + (1 + ρ2ψ)−2γadx

a ,

hjkdy
jdyk = (1 + ρ2β)

(

d(ρ2)

2ρ

)2

+ babdx
adxb + λad(ρ

2)dxa − u2θiθjdy
idyj ,

(3.5)
in particular all the functions hjk are analytic functions of ρ2 and xa, except

for the singular term (2ρ)−2
(

d(ρ2)
)2

.

4 Note that θj here is real, arising from the potential failure of hypersurface orthog-
onality of the polar coordinates associated to the harmonic ones, and not from the
introduction of a complex constant in the metric as in Section 2. The introduction
of the complex constant i there was done only to justify that the Riemannian metric
denoted by g(i) is Einstein; this last fact can be checked by direct calculations in any
case.
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Note that hypersurface-orthogonality has not been used anywhere in the
calculation above (except for the initial justification of analyticity)5 so that
quite generally we have proved:

Proposition 3.1 θ extends smoothly to the rotation axis {Y = 0}, analyt-

ically when the metric is analytic.

Let us return to the static case, the hypersurface-orthogonality condition
Y ♭ ∧ dY ♭ = 0 is equivalent to dθ = 0, hence there exists, locally, a function
τ such that

dτ = dϕ+ θ .

(The function τ is clearly analytic in the yi’s, but this is irrelevant for our
purposes, since all the functions in (3.4) are ϕ-independent.) Writing

hjkdy
jdyk =

(

d(ρ2)

2ρ

)2

+ ĥjkdy
jdyk , (3.6)

where the ĥij ’s are defined by subtracting the first term at the right-hand-
side of (3.6) from (3.5), the Lorentzian equivalent of the metric (3.4) reads
now

g = g(1) = −y1(1 + y1ψ)2dt2 +
(dy1)2

4y1
+ ĥjkdy

jdyk . (3.7)

Introducing a new coordinate u replacing t,

u = t+ 1

2
ln(y1) ,

the undesirable singular term in (3.7) cancels out. This provides the required
analytic atlas in a one-sided neighborhood of the Killing horizon, covering
the {g(X,X) ≤ 0} region, compatible with the initial smooth structure, in
which the metric functions are analytic up-to-boundary on the set where X
is timelike or null.

4. Static initial data: global analyticity

In the previous section the starting point of our considerations was a
static space-time. However, one can start with static initial data and ask
about regularity of those. More precisely, consider a triple (M,γ, φ), where

5 It should be emphasised that, from a space–time point of view, the hypothesis of
non-degeneracy of the horizon has been made. We are not aware of any results about
the behavior of θ near degenerate horizons.
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(M,γ) is a smooth2 n-dimensional Riemannian manifold and φ is a smooth
function on M , satisfying the following set of equations

∆γφ = −λφ , (4.1a)

φ(R(γ)ij − λγij) = DiDjφ . (4.1b)

Here D is the Levi–Civita connection of γ, ∆γ := DkD
k its Laplace–

Beltrami operator, R(γ)ij the Ricci tensor of γ, R(γ) the scalar curvature
of γ, while λ ∈ R is a constant related to the cosmological constant Λ.
The function φ is allowed to change sign. It is well known that the set of
zeros of a non-trivial φ, solution of (4.1), forms a smooth, embedded, totally
geodesic submanifold of M , if not empty. Again, it is well known [9] that
M \ {φ = 0} can be endowed with an analytic atlas, with respect to which
γ and φ are analytic — this is a relatively straightforward consequence of
the underlying elliptic features of the system of equations (4.1) for γ and φ,
in regions where φ does not contain zeros.

We wish to show analyticity up-to and across the set of zeros of φ: Con-
sider, thus, a one-sided local neighborhood of {φ = 0}, replacing φ by −φ
if necessary it suffices to consider the case φ ≥ 0. An appropriate periodic
identification of an angular variable φ shows that the Riemannian metric,
which we shall call g(i),

g(i) = φ2dϕ2 + γ

has a smooth6 axis of rotation at {ϕ = 0} for a Killing vector field Y = ∂ϕ,
and is Einstein. Then the argument leading from (3.1) to (3.6) applies, and
is actually somewhat simpler because in the Riemannian case there is no
need to introduce a new coordinate y1 = ρ2, the coordinate system (ρ, xa)
being the one in which the metric is analytic. Eq. (3.4) shows that h is
the metric on the space of orbits of the Killing vector Y , so is γ, hence h
is isometric to γ. This proves one-sided analyticity of γ in an appropriate
atlas. Similarly considering the region {φ ≤ 0}, one obtains an analytic atlas
on {φ ≤ 0} with respect to which −φ and γ are analytic. Thus, φ and γ
are analytic up-to-boundary both on {φ ≥ 0} and on {φ ≤ 0}. Smoothness
implies that the power series on both sides of {φ = 0} coincide, establishing
analyticity near {φ = 0}, and hence throughout M .

6 This is established by first introducing normal coordinates (x, va) near {φ = 0}, and
using the fact that u = κx + O(x2), for some non-zero constant κ. This provides
continuity of the metric. To obtain smoothness one can prove directly, using (4.1),
the parity properties of g(i) as in (3.3a) with x2 = 0, with a similar equation for φ/x.
Alternatively, it follows from (4.1) that R(γ) = (n−1)λ, therefore the set (M, γ, K :=
0) is a vacuum initial data set (with cosmological constant) for the vacuum Einstein
equations. Letting (M, g) be the maximal globally hyperbolic development of the
data, if {φ = 0} is not empty then on (M, g) there exists a static hypersurface-
orthogonal Killing vector X with a non-degenerate Killing horizon, and (3.3) follows
from the analysis in [5].
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5. Analyticity in a neighborhood of a “bifurcate Killing horizon”

The one-sided analyticity of the metric up-to-and-including the event
horizon suffices for several purposes; that is, e.g., the case for most issues
concerning the properties of static domains of outer communications, which
under the usual conditions coincide with the set g(X,X) < 0. It is, never-
theless, interesting to enquire about extendibility of analyticity across the
horizon. In the current context the following examples should be borne in
mind:

1. Consider any smooth vacuum space-time (M, g) with a non-degenerate
Killing horizon N+

r associated to a Killing vector field X, and suppose
that M contains the “bifurcation surface”

S := {X = 0} ∩ N+
r 6= ∅ . (5.1)

Let N+

l a second Killing horizon associated with S, so that J̇+(S) =

N+

l ∪N
+
r , see figure 1. (In case of unusual global causality properties

of (M, g), the notions of future and past here should be understood
locally near S.) Smoothly perturbing the characteristic initial data
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rN−
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← S ⊂ {X = 0}
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← N+
r

Fig. 1. Four Killing horizons N±
r and N±

l
meeting at a bifurcation surface S. We

have J+(S) = D+(N+

l
∪ N+

r ), at least locally.

on N+

l , without modifying those on N+
r , by evolution one will obtain

a space-time (M′, g′) such that 1) g′ smoothly extends to the previ-
ous metric g across N+

r ; 2) for generic perturbations there will be no
Killing vectors on J+(N+

l ∪N
+
r ). In the new space-time there will still

be a locally defined Killing vector field X in a one-sided (past) neigh-
borhood of N+

r , but X will not extend anymore to a Killing vector
field defined on M′. Thus, even the extendibility of a Killing vector
field across a one-sided Killing horizon might fail in general (compare,
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however, [7]). An example of such behavior, with a metric which is ex-
plicit except for one function, in the category of C557 (but not smooth)
metrics, is provided by the family of Robinson–Trautman extensions
of the Schwarzschild metric of [6, Corollary 3.1].

2. Analyticity alone does not guarantee uniqueness of extensions.

In any case, so far we have only shown one-sided analyticity up-to-
boundary, on a set where X is timelike or null, and it is not completely
clear that this will guarantee analyticity beyond the Killing horizon in gen-
eral: in each coordinate chart on which the set g(X,X) < 0 is given by
{x1 > 0} there exists an analytic extension of the metric to an open sub-
set of the set {x1 < 0}, but this extension could fail to coincide7 with the
original metric there.

Let us show that there exists a setting where analyticity necessarily ex-
tends beyond the event horizon: suppose, for instance, that M contains
a bifurcation surface S as in (5.1) (compare figure 1) contained within a
spacelike achronal hypersurface Σ. Assuming staticity, we can deform Σ
in space-time so that Σ is orthogonal to X. The results in Section 4 show
that the initial data induced on Σ are analytic with respect to an appropri-
ate atlas. By [1] the metric g is analytic in wave coordinates, compatible
with the analytic atlas on Σ, on the domain of dependence D(Σ). This
last set contains a neighborhood of S. Let, now, N+

r and N+

l be as in
figure 1. Section 3 provides analytic characteristic initial data (see, e.g., [10])
there, and we have already established analyticity in a whole space-time
neighborhood of S. But analytic characteristic initial data on N+

r and N+

l ,

compatible at S, lead8 to an analytic solution in D+(N+
r ∪ N

+

l ), providing
the desired result.
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