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We study conformal gravity in d = 2 + 1, where the Cotton tensor is
equated to a — necessarily traceless — matter stress tensor, for us that of
the improved scalar field. We first solve this system exactly in the pp wave
regime, then show it to be equivalent to topologically massive gravity.

PACS numbers: 04.20.–q, 04.20.Jb

The gravitational properties of d = 2 + 1 worlds have been studied in-
tensively, both in normal Einstein theory [1] and in its topologically massive
extension [2]. For the latter, the Einstein tensor Gµν is supplemented by the
Cotton conformal curvature tensor Cµν [3]; the usual Weyl tensor vanishes
identically here. Like the latter, Cµν is symmetric, traceless and vanishes if
and only if space is conformally flat. It is also identically conserved.

Our purpose here is to examine the pure Cotton model, in which gravity
is entirely governed by Cµν , with field equations

Cµν = κ Tµν , (1)

(27)
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where the matter stress tensor Tµν must be traceless and

√
g Cµν ≡ 1

2
εµαβ DαR

ν
β + 1

2
εναβ DαR

µ
β

= εµαβ Dα (Rν
β − 1

4
δν
β R) . (2)

That the two expressions for Cµν are equal follows from the Bianchi identity.
[Our conventions are Rµν = +∂α Γ

α
µν + . . ., and signature (1, −1, −1).]

We choose the simplest continuous source1: a conformally coupled scalar
field ψ whose action is

I = 1

2

∫

d3x
√
g (gµν ∂µψ∂νψ + 1

8
Rψ2) (3)

with (improved) energy-momentum tensor [4]

Tµν = ∂µψ∂νψ − 1

2
gµνg

αβ∂αψ∂βψ + 1

8
ψ2Gµν + 1

8
(gµνD

2 −DµDν)ψ
2 , (4)

Tµν is covariantly conserved and traceless on the matter shell,

(

D2 − 1

8
R

)

ψ = 0 . (5)

We shall solve this system in the plane-fronted parallel ray (pp) Ansatz for
the geometry: with u ≡ 1√

2
(t+ x), v = 1√

2
(t− x),

ds2 = F (u, y)du2 + 2dudv − dy2 (6)

so that

gµν =

u v y
u F 1 0
v 1 0 0
y 0 0 −1

gµν =

u v y
u 0 1 0
v 1 −F 0
y 0 0 −1

(7)

Note that vanishing guy, gvy and gvv can be achieved by a coordinate choice,
while guv can be set to unity by a conformal transformation. Thus our
Ansatz consists in the requirement that guu be v-independent and that gyy

be unity. The Ricci and Cotton tensors each possess only one non-vanishing
component

Ruu = 1

2
F ′′ , Cuu = 1

2
F ′′′ (8)

and R vanishes, so that Gµν coincides with Rµν . (We denote derivation with
respect to y by a dash; with respect to u, by an over-dot.)

1 In previous studies of (1), point particle sources were considered [5]; the sourceless
equation, but with a dimensional Kaluza–Klein reduction, was also solved [6].
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As is shown in Appendix A, the field equations require ψ to depend only
on u. We simplify our procedure by using this fact, which implies that all
energy-momentum tensor components but Tuu vanish. Furthermore (5) is
identically satisfied. Thus there is only one equation to solve: Cuu = κTuu

or
1

2
F ′′′ =

κψ2

16

(

F ′′ + 2
σ̈

σ

)

, σ =
1

ψ2
. (9)

The solution is immediate,

F (u, y) = f exp

[

κψ2y

8

]

− σ̈

σ
y2 + αy + β , (10)

where f, α and β are three integration constants — actually functions of u
— arising from solving the third-order equation (9). Evidently the Ricci
(equivalent, in d = 3, to the full) curvature

Ruu =
1

2
F ′′ =

κ2ψ4

128
f exp

[

κψ2y

8

]

− σ̈

σ
(11)

does not depend on (α, β) and in Appendix B we show that a coordinate
transformation removes them.

Thus we have established that a pp wave geometry is supported by the
Cotton tensor with a conformally coupled scalar field source, which also
propagates as a wave:

guu = f(u) exp

[

κψ2y

8

]

− σ̈

σ
y2 , guv = 1, gyy = −1 ,

ψ = ψ(u) . (12)

Note that the scalar field is not further specified beyond depending on re-
tarded time, as is appropriate for a free field; f(u) is arbitrary, but its van-
ishing would imply that of Cµν . Also note that the exponent is proportional
to ψ2, so the curvature always blows up exponentially as κy → ∞.

The equations obeyed by a Killing vector Xµ in our original (u, v, y)
coordinates, where there is no v-dependence, require that Xv = const, Xy =
Xy(u) while Xu obeys

Ẋu − 1

2
F ′Xy − 1

2
ḞXv = 0 , (13)

X ′
u + Ẋy − F ′Xv = 0 . (14)

For generic f and ψ, the geometry supports only one Killing vector: Xα
1

=
(0, 1, 0), corresponding to a constant shift of v, which clearly is an isometry
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of the v-independent metric (12). However, with constant ψ (vanishing σ̈/σ)
and special form for f , f = (A+Bu)nemu, so that

guu = (A+Bu)n exp

[

mu+
κψ2y

8

]

(15)

there is the additional Killing vector

Xα
2 =

(

−κψ
2

8
(A+Bu) ,

(

κψ2
v

8
+my

)

B , m(A+Bu) + (n+ 2)B

)

(16)
whose Lie bracket with Xα

1
closes on Xα

1
. Thus, since Xα

1
is a transla-

tion, Xα
2

is a dilation. This is seen explicitly when the following coordinate
transformation is performed (with B 6= 0)

U = A+Bu ,

V =
1

B

(

v +
m2

2a2
u+

m

a
y − m2A

2a2B
− 2m

a
ln B

)

,

Y = y +
m

a
u− 2

a
ln B . (17)

Here a ≡ κψ2/8. The line element becomes

ds2 = Un eaY dU2 + 2dUdV − dY 2

and the dilation Killing vector reads

Xα = (−aU, aV, n+ 2) . (18)

Finally, we show that an amusing property of our CS + scalar system
is its formal equivalence to the CS + Einstein (=TMG) model of [2]. As
is easily checked, the improved scalar’s action can be represented as the
Einstein action of the rescaled metric g′mn = ψ4gmn,

I[ψ; g] =

∫

d3x
√

g′R(g′) . (19)

This rescaling is purely formal: ψ remains the matter field variable. Consider
now Cotton gravity; since the Cotton tensor is conformally invariant, the
gravitational field equations are simply those of TMG,

Cµν(g′) = κGµν(g′) . (20)
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Furthermore, the scalar’s equation is already included as the trace of (20),
so variation of ψ is unnecessary. Note too that TMG, like the scalar field,
has one degree of freedom, while Cotton gravity has none. [This amusing
correspondence between the two models is no longer valid in presence of
generic matter since traceful Tµν are forbidden here, but permitted in TMG.]
The TMG form also explains why the scalar field was rather secondary in
our pp example: the only part of its stress tensor that contributes is the
improvement term ∼ Rµν , hence the homogeneous nature, F ′′′ ∼ F ′′, of the
field equations. Since improved scalar actions rescale to Einstein’s in any
D, the properties we have just noted also carry over when they are coupled
to the corresponding conformal gravity models, which of course also require
traceless sources. In D = 4, for example, we find that adding Weyl gravity
(
∫

d4x
√−g C2) recovers Weyl plus Einstein gravity [7].

This work was supported by the National Science Foundation under
grant PHY04-01667 and by the US Department of Energy under coopera-
tive research agreements DE-FC02-94-ER40818 and DE-FG02-91-ER40676.
RJ thanks C. Nunez for a discussion.

Appendix A

No v, y dependence of ψ

We record the vanishing components of Tµν in (4). As in (9), it is con-
venient to work in terms of σ = ψ−2.

Tvv =
1

8σ2
∂2

v σ = 0 , (A.1)

Tvy =
1

8σ2
∂v σ

′ = 0 . (A.2)

These have the consequence that

σ = g(u, y) + h(u)v . (A.3)

Next

Tyy =
1

8σ3

(

σσ′′ + σ̇∂vσ − 1

2
F∂vσ∂vσ − 1

2
σ′σ′

)

. (A.4)

Inserting (A.3) and separating terms linear in v and v-independent leaves

h(g′′ + ḣ) = 0 , (A.5)

gg′′ + ġh− 1

2
Fh2 − 1

2
g′g′ = 0 . (A.6)



32 S. Deser, R. Jackiw, S.-Y. Pi

Continuing, we examine the uv component.

Tuv =
1

8σ3

(

σ∂vσ̇ − σ̇∂vσ +
1

2
F∂vσ∂vσ +

1

2
σ′σ′

)

= 0 . (A.7)

With (A.3) and (A.5) this requires

g(g′′ + ḣ) = 0 . (A.8)

Finally, we consider the uu component equation,

Tuu =
1

8σ3

(

σσ̈ − Fσ̇∂vσ +
1

2
F 2∂vσ∂vσ +

1

2
Fσ′σ′ − 1

2
Ḟ σ∂vσ

− 1

2
F ′σσ′ +

1

2
F ′′σ2

)

=
1

2κ
F ′′′ . (A.9)

Upon multiplication by σ3 and decomposition according to powers of v, the
v3 term requires h3F ′′′ = 0 or h = 0, since we assume that the Cotton
tensor is non-vanishing. It then follows from (A.6) and (A.8) that g′ = 0, so
σ and therefore ψ depend only on u. Other components of Tµν , as well as
the matter field equation (5), do not provide independent restrictions.

Appendix B

Removing integration “constants”

In the line element associated with (10)

ds2 =

(

f exp

[

κψ2y

8

]

− σ̈

σ
y2 + αy + β

)

du2 + 2dudv − dy2 , (B.1)

we pass to the new coordinates

u = U , v = V +A(U)Y +B(U) , y = Y + C(U) , (B.2)

so that (B.1) becomes

ds2 =

[

f exp

[

κψ2C

8

]

exp

[

κψ2Y

8

]

− σ̈

σ
Y 2 +

(

α− 2
σ̈

σ
C + 2Ȧ

)

Y

+ β + αC − σ̈

σ
C2 − Ċ2 + 2Ḃ

]

dU2 + 2dUdV

+2 (A− Ċ) dY dU − dY 2 . (B.3)
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The procedure then is: with given σ̈/σ and α, solve the equation

C̈ − σ̈

σ
C = −α

2
, (B.4)

set A = Ċ and determine B by quadrature:

B =
1

2

U
∫

du′
(

σ̈

σ
C2 + Ċ2 − αC − β

)

=
1

2
CĊ − 1

2

U
∫

du′
(α

2
C + β

)

. (B.5)

Upon redefining the arbitrary f to absorb exp[κψ2C/8], the line element
becomes

ds2 =

(

f exp

[

κψ2Y

8

]

− σ̈

σ
Y 2

)

dU2 + 2dUdV − dY 2 (B.6)

in agreement with (12).
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