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1. Introduction

To write on the occasion of the 65th birthday of Professor Andrzej
Staruszkiewicz is a great honor. When I think of all the years I have known
him I realize that it is at the same time precisely 30 years ago that I at-
tended, as a first year student, his lectures in linear algebra and geometry.
To many of us then he was, and remained for all the years of our physics
studies, the most impressive and original teacher. One of the pictures many
of us cherish in our minds is the scene in which he tries to demonstrate to
us that a circle is nothing else than an interval which has been closed up,
using for the purpose, not quite successfully one must say, the pointing stick
he happened to have in his hand. Anyway, from that moment on I know the
difference between the topology of a line and that of a circle.

This difference, as it happens, becomes prominent in Staruszkiewicz’s
quantum theory of the infrared degrees of freedom of electrodynamics (more
on that below). The theory itself is perhaps the most evident testimony to
what some of us had the opportunity to discover later on: that Staruszkie-
wicz’s appeal as a teacher reflected the inherent originality of his thinking
on physics, and beyond. The author of these words counts among those
whose style of physics-making was greatly influenced, albeit sometimes in
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polemics, by Professor Staruszkiewicz. More than that, Staruszkiewicz’s
ideas on the long-range properties of quantum electrodynamics were among
those, which aroused my own steady interest in the field. This encourages
me to use this opportunity to sketch a pedagogically oriented review of the
Staruszkiewicz’s model, as I see it, and to follow this by my own view of
the asymptotic algebraic structure of quantum electrodynamics. It should
be acknowledged, I hope that Professor Staruszkiewicz will agree, that the
issues of infrared structure of electrodynamics remain to be controversial.
Thus it is only natural that in addition to important common points in our
views there will be other on which we differ.

The problem we want to address is the following:

What are the consequences of the long-range character of the electro-
magnetic interaction for the algebraic structure of the quantum theory of
radiation and charged particles? What is the algebraic formulation of Gauss’
law, and can it implement the charge quantization?

The approaches to this question summarized here start from concrete
structures rather than from general assumptions on the desirable properties
of the electromagnetic theory. To place this work in a wider context we start
with some general remarks.

Quantum electrodynamics shares many properties (and difficulties) with
other quantum field-theoretical models. However, its most interesting ingre-
dients are those, that in our opinion (apparently shared by Staruszkiewicz)
are specific to this theory — its long range structure being especially promi-
nent. By this term we mean the group of properties connected with the
masslessness of the photon, existence and quantization of electric charge
and Gauss’ law (see e.g. [1,2]). The lack of complete, mathematically sound
formulation of quantum electrodynamics is, of course, an obstacle to con-
clusive understanding of the long range structure. This structure, however,
needs only low energies and asymptotic spacetime regions to manifest itself.
Therefore, it only very weakly involves the dynamics of the system, which
lends some support to the hope that understanding this structure does not
presuppose the complete understanding in detail of the dynamics. This be-
lief lies at the base of the investigation of the long range structure from the
“axiomatical” point of view. The main result of this study may be briefly for-
mulated as follows: the flux of the electromagnetic field at spacelike infinity
is superselected in irreducible representations of local observables [3]. More
precisely, if the leading term of the electromagnetic field is well defined and
decays as the Coulomb field in spacelike directions, then its distribution in
spacelike infinity is fixed in such representations. One can say, therefore, that
this long-range electromagnetic field has a classical spectrum, and elements
of this spectrum (functions of the angles) label different sectors. Represen-
tations of local observables from different sectors are unitarily inequivalent.
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In particular, states differing in total charge value are inequivalent in con-
sequence of Gauss’ law. There are also two other important consequences
of this superselection structure: (i) in charged sectors the Lorentz group is
spontaneously broken [4,5]; and (ii) the contribution of a charged particle to
the spectrum of squared four-momentum (the mass spectrum squared) is not
point-like. The former means, that although the Lorentz transformations of
the observables are defined, they cannot be obtained by the action of a uni-
tary representation of the Lorentz group in the representation space of the
charged state. The consequence of the latter is that a charged particle, be-
ing accompanied by its electromagnetic field, is an object far more complex
then a “bare”, neutral particle. This fact is referred to as “the infraparticle
problem” [5, 6]. The concept of an elementary particle has to be revised, in
consequence, to be applicable to an electron. Several suggestions for such
revisions has been formulated, among them the proposal by Buchholz [7] to
use weights on the C∗-algebra of observables for the generalization of the
particle concept seems to be the most far-reaching.

The great value of the axiomatic approach to the quantum field the-
ory problems lies in discovering strict logical connections between the ex-
pected fundamental features of the underlying structure on the one hand,
and the interpretational (physical) properties of a theory (model) based on
it. Among the basic postulates is the locality of observables: that each
observable quantity may be measured locally in a compact subset of space-
time, or be derived as a limit of such local quantities (see [8]). However,
physics deals with idealizations, and one could ponder whether in the case
of electrodynamics, which includes constraints with nonlocal consequences
(the Gauss law), we would not learn something by enlarging the scope of
the admitted observables by some “variables at infinity”.

In the two models summarized here such variables appear in a natural
way. Also, both models include one variable of the phase type (circle topol-
ogy), whose presence leads to the charge quantization. In other respects
they differ. Staruszkiewicz considers the spacelike limit of classical electro-
magnetic fields and quantizes the resulting structure. The model has the
advantage of (relative) simplicity, and in fact is probably a minimal field
theoretical structure containing the Coulomb field among its variables. This
is sufficient for Staruszkiewicz’s main objective, which is to look for the jus-
tification of the actual value of elementary charge (or rather, one should
say, the dimensionless fine structure constant). Formulation of the model is
given in [9], additional discussion of the motivation may be found in [10].

My own aim is different, and the intention is to stay closer to the stan-
dard analysis. The object sought is the algebra of the asymptotic fields, in
the causal, “in” or “out” sense. If we had a complete quantum theory at our
disposal, we could try to obtain the algebra in the respective limits. Lacking
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this one tries to make a guess based on intuitions formed by simpler quan-
tum models. Perturbational quantum electrodynamics treats the asymptotic
fields as uncoupled. This, however, is a wrong idealization, not respecting
Gauss’ law. Our method is to quantize the causal limits of the classical fields:
timelike for matter and lightlike for electromagnetic fields. For separate free
fields this reproduces the usual quantization (for the electromagnetic case:
as considered at null infinity by Bramson and Ashtekar [11]). For interacting
fields, however, a remnant of interaction survives, which correctly incorpo-
rates the consequences of Gauss law, and which is truly nonlocal. This may
be interpreted as some form of “dressing” of a charged particle, and thus
has relations with earlier works by Kulish and Fadeev [12], Fröhlich [13],
Zwanziger [14], and others. However, here we are able to obtain a closed
algebra which may be expected to have fairly universal features adequately
incorporating the long range structure. A formulation and discussion of the
model is to be found in [15].

We use physical units in which ℏ = 1, c = 1.

2. Asymptotic fields at spacelike infinity

We start with a discussion of the spacelike limit of classical fields. Sup-
pose that A(x) is a classical field satisfying the wave equation. Its Fourier
representation is then given by

A(x) =
1

π

∫

a(k)δ(k2)ε(k0)e−ix·k d4k , (1)

where δ is the Dirac delta function and ε is the sign function. If Ab(x) is an
electromagnetic vector potential in Lorentz gauge of a free electromagnetic
field, then ab(k) is a vector function satisfying k ·a(k) = 0 on the light-cone,
and the reality of Ab(x) is equivalent to

ab(k) = −ab(−k) . (2)

If ab(k) is a smooth function then Ab(x) decreases rapidly in spacelike direc-
tions. However, as is well-known, the spacelike decay of the actual radiation
fields produced in real processes is determined by the rate of decrease of the
Coulomb fields of the sources. Thus one considers a wider class of potentials,
those with well-defined spacelike scaling limit:

Aas
b (x) := lim

λ→∞
λAb(λx) , x2 < 0 , (3)

which is expressed in terms of the Fourier transform as the existence of the
limit

aas
b (k) = lim

µց0
µab(µk) . (4)
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Note that both Aas
b (x) and aas

b (k) are homogeneous functions of degree −1.
Before proceeding further let us remind the reader that if f(l) is a func-

tion of a future-pointing null vector l, homogeneous of degree −2, written

as f(l) = f(l0,~l) in a given Minkowski basis, then the following integral

∫

f(l) d2l :=

∫

f(1, l̂) dΩ (l̂) (5)

is Lorentz invariant, i.e. independent of the basis (here l̂ is a unit vector in

3-space and dΩ(l̂) is the solid angle measure). We also note for later use
that the differentiations of functions on the cone in tangent directions may
be conveniently expressed by the application of the operators

Lab := la∂b − lb∂a , where ∂a :=
∂

∂la
, (6)

and that
∫

Labf(l) d2l = 0 . (7)

Note that also the operator l · ∂ is intrinsically defined on the cone, as
la l ·∂ = lcLac. Furthermore, if h(l) is a regular function on the cone (except,
possibly, its tip) and for the sake of differentiation one extends it in a regular,
but otherwise arbitrary way to a neighborhood of the cone (outside the tip),
then one shows that on the cone itself one has

[LabLc
b + Lac]h = [lalc∂

2 − (la∂c + lc∂a + gac)l · ∂]h . (8)

As the operator on the l.h. side is intrinsically defined on the cone, the
same must be true for the r.h. side. In particular, if h(l) is homogeneous of
degree 0, then on the cone one has

[∗Lcb
∗La

b + Lac]h = [LabLc
b + Lac]h = lalc∂

2h , (9)

where star denotes the dual of an antisymmetric tensor. This shows that
in this case the expression ∂2h(l) determines a homogeneous function of
degree −2 intrinsically on the cone, which in each Minkowski basis may be
represented by

∂2h = (l0)−2∗L0b
∗L0

bh . (10)

In a similar way one shows that for two functions h1(l) and h2(l) homoge-
neous of degree 0 one has

∗Lcbh1
∗La

bh2 = Labh1Lc
bh2 = lalc ∂h1 · ∂h2 . (11)
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Thus ∂h1 · ∂h2 is intrinsically defined on the cone, and in each Minkowski
basis there is

∂h1 · ∂h2 = (l0)−2∗L0bh1
∗L0

bh2 . (12)

Taking into account that ∗L0bl
0 = 0 and integrating by parts with the use

of (7) one has now
∫

∂2h1 h2 d
2l = −

∫

∂h1 · ∂h2 d
2l =

∫

h1∂
2h2 d

2l . (13)

We can now return to the discussion of the asymptotic field. Calculating
the asymptotic spacelike limit for the Fourier representation one shows that
it becomes in this limit

Aas
b (x) =

−i
2π

∫

aas
b (l)

x · l − i0
d2l + compl. conj. , (14)

which yields the asymptotic electromagnetic field

F as
bc (x) =

i

2π

∫

lba
as
c (l) − lca

as
b (l)

(x · l − i0)2
d2l + compl. conj. (15)

(both (x · l− i0)−1 and (x · l− i0)−2 are well-defined homogeneous distribu-
tions). We stress that here, and throughout the paper, l always denotes a
future-pointing null vector. Now, one can show that there exist unique up
to additive constants, homogeneous of degree 0 complex functions a(l) and
b(l) such that

lba
as
c (l) − lca

as
b (l) = Lbca(l) − ∗Lbcb(l) (16)

— this follows from homogeneity of degree −1 of aas
b (l) and its orthogonality

to lb, and can be shown most easily with the use of spinor formalism. We
can thus separate F as

ab into two parts:

F as
ab = FE

ab + FM
ab , (17)

where

FE
ab(x) =

i

2π

∫

Laba(l)

(x · l − i0)2
d2l + compl. conj. , (18)

∗FM
ab (x) =

i

2π

∫

Labb(l)

(x · l − i0)2
d2l + compl. conj. (19)

Using this form one finds that FE
[abxc] = ∗FM

[abxc] = 0. This follows from the

identity xc(x · l− i0)−2 = −∂c(x · l− i0)−1 and the following transformations
of the integral
∫

L[ab a ∂c]
1

x · l − i0
d2l =

∫

∂[baLac]
1

x · l − i0
d2l = −

∫

L[ac∂b]a

x · l − i0
d2l = 0 ,
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and similarly for b(l). In consequence

FE
ab(x) = xaK

E
b (x) − xbK

E
a (x) , ∗FM

ab (x) = xaK
M
b (x) − xbK

M
a (x) , (20)

where

KE
a (x) =

1

x2
xcFE

ca , KM
a (x) =

1

x2
xc∗FM

ca . (21)

This form shows that FE
ab and FM

ab are fields of electric and magnetic type
respectively: one can check directly that the long range tail produced by
scattered electric charges is of type FE

ab; by duality, FM
ab would appear in

scattering of magnetic monopoles.
Thus, being interested in the actual electrodynamics, we do not need to

include long-range fields of the magnetic type in the theory, and from now
on we assume that

FM
ab = 0 , that is b = 0 . (22)

In that case we have

lba
as
c (l) − lca

as
b (l) = Lbca(l) , (23)

so

aas
b (l) = ∂ba(l) + lbα(l) , (24)

where a(l) has been extended for the sake of differentiation to a homogeneous
function in a neighborhood of the lightcone, and α(l) is a homogeneous
function of degree −2. The second term does not contribute to the field F as

ab ,
so it must yield a gauge term in the potential, and indeed:

−i
2π

∫

lbα(l)

x · l − i0
d2l = ∇b

−i
2π

∫

α(l) log
[x · l − i0

t · l
]

d2l , (25)

where t is any future-pointing unit timelike vector and ∇b := ∂/∂xb. How-
ever, we note that the omission of this term does not leave an unambiguously
defined gauge invariant expression for the asymptotic potential. Although a
and ∂2a are intrinsically defined on the cone, the expression ∂ba is not, and
depends on the choice of homogeneous extension of a to the neighborhood of
the cone: two different homogeneous extensions yield two ∂ba(l)’s differing
by a term of the form lbβ(l).1 This corresponds to a change of gauge in Aas

b ,
therefore not all information on the potential Aas

b may be encoded in the
light-cone function a(l).

1 For instance, for the homogeneous function f(l) = l2/(t · l)2 we have on the cone:
f = 0, but ∂af(l) = 2la/(t · l)2.
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The electromagnetic field F as
ab is most compactly expressed with the use

of Eqs. (20) and (21). We can now identify F as
ab = FE

ab and write Ka = KE
a ,

so by the homogeneity properties we have

x2Ka(x) = xcF as
ca (x) = ∇a[−x · Aas(x)] =

1

e
∇aS(x) , (26)

where e is the elementary charge, and following Staruszkiewicz we have
denoted

S(x) = −e x ·Aas(x) . (27)

For any future-pointing unit timelike vector t there is

x · aas(l)

x · l − i0
= ∂a(l) · ∂ log

[x · l − i0

t · l
]

+
t · aas(l)

t · l , (28)

so using (14) one finds that

S(x) =
e

2

∫

∂2Re a(l) ε(x · l) d2l +
e

π

∫

∂2Im a(l) log

[ |x · l|
t · l

]

d2l + St ,

(29)

St ≡ − e

π

∫

t · Im aas(l)

t · l d2l . (30)

This scalar function, homogeneous of degree zero, contains the whole infor-
mation on the field F as

ab (x), and in addition has an additive constant St not
contributing to this field. This constant is both gauge- and t-dependent:

if ãas
b (l) = aas

b (l) + lbβ(l) , then S̃t = St −
e

π

∫

β(l) d2l , (31)

and if t′ is another future-pointing unit timelike vector, then

St′ = St +
e

π

∫

∂2Ima(l) log

[

t′ · l
t · l

]

d2l . (32)

The last transformation property confirms that the t-dependence of the for-
mula (29) is spurious. On the other hand, the whole function S(x) also
undergoes the gauge transformation:2

S̃(x) = S(x) − e

π

∫

β(l) d2l . (33)

2 We should acknowledge here that Staruszkiewicz regards S(x) as gauge-independent.
This is a consequence of his apparent treating ∂ba(l) as an unambiguously defined
quantity. Note also, that in general the contraction of the gauge term (25) with xb

does not vanish.
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We stated above that not the whole information on aas
b (l) is contained

in a(l). However, as it turns out, the freedom of adding a constant to a(l)
may be used to choose this function so as to contain the whole information
on S(x). Namely, given aas

b (l), a special solution of Eq. (23) for a(l) may be
shown to be

a(l) =
1

4π

∫

l · aas(l′)

l · l′ d2l′ . (34)

This solution has the following remarkable property: for each unit timelike
vector t there is

∫

a(l)

(t · l)2 d
2l =

∫

t · aas(l)

t · l d2l , (35)

so with this choice, which will always be assumed from now on, we have

St = − e

π

∫

Im a(l)

(t · l)2 d2l . (36)

The function S(x) is now seen to be determined completely and uniquely by
∂2Re a(l) and Im a(l).

3. Staruszkiewicz’s model

At this point one observes that S(x) satisfies the wave equation

2S(x) = 0 , (37)

and that Eq. (29) almost gives the most general function homogeneous of
degree zero satisfying this equation.3 The reservation “almost” is due to
the fact that in place of ∂2Re a(l) one can have an arbitrary function c(l)
homogeneous of degree −2. This makes a difference of only one degree of
freedom. Namely, if t is any timelike, unit, future-pointing vector, and one
denotes

ct(l) = c(l) −
∫

c(l′) d2l′

4π(t · l)2 , then

∫

ct(l) d
2l = 0 . (38)

But each function satisfying the last equation may be represented as a result
of applying ∂2 to a homogeneous function of degree 0, so the only quantity
lacking from (29) is

∫

c(l)d2l. Following Staruszkiewicz we now add this
degree of freedom. Thus we:

replace ∂2Re a(l) → − 1

2π
c(l) , and denote Im a(l) ≡ −1

4
D(l) , (39)

3 Eq. (37) together with the homogeneity are equivalent to the wave equation on the
hyperboloid x2 = −1.
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where the choice of constants is a mere convention. Our function S(x)
becomes now

S(x) = − e

4π

∫

c(l) ε(x · l) d2l − e

4π

∫

∂2D(l) log

[ |x · l|
t · l

]

d2l + St , (40)

St =
e

4π

∫

D(l)

(t · l)2 d
2l . (41)

If thus extended function S(x) is now used in (26) to determine the asymp-
totic field F as

ab (x), then the new degree of freedom added to S(x) produces
a charged field, with charge given by

Q =
1

4π

∫

c(l) d2l (42)

— this is shown by integrating the flux of electric field over a sphere.
Staruszkiewicz’s model now rests upon two main suppositions: that one

can base a model of the long-range structure on the field S(x) alone, and
that St should be interpreted as a phase variable. For the motivation we
refer the reader to the original papers by Staruszkiewicz. Consider the first
supposition. One looks for a quantization condition for Ŝ(x) of the form

[Ŝ(x), Ŝ(y)] ∝ id, where “hats” indicate the quantum versions of these vari-

ables. This should be expressible as [ĉ(l), D̂(l′)] ∝ id. Let D(l) and c(l) be
now classical test functions, homogeneous of degree 0 and −2, respectively,
and denote

ĉ(D) =
1

4π

∫

ĉ(l)D(l) d2l , D̂(c) =
1

4π

∫

D̂(l)c(l) d2l . (43)

Then the only Lorentz-covariant quantization condition, up to a multiplica-
tive constant on the r.h. side, is

[ĉ(D), D̂(c)] =
i

4π

∫

D(l)c(l) d2l id (44)

— the choice of the particular constant will be justified in a moment.
A straightforward calculation with the use of (40) yields now

[Ŝ(x), Ŝ(y)] = i2e2ε

(

x0

√
−x2

− y0

√

−y2

)

×θ
(

[ x√
−x2

− y
√

−y2

]2
)

x · y
√

(x · y)2 − x2y2
id , (45)
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which is the relation obtained by another method by Staruszkiewicz.4 This
commutation relation guarantees causality when restricted to the unit hy-
perboloid x2 = −1.

Consider now the second supposition, that Ŝt is a phase variable. Using
(41), (42) and (43) one finds that

Ŝt = D̂
( e

(t · l)2
)

, Q̂ = ĉ(1) , (46)

so by (44) one has

[Q̂, Ŝt] = ie id . (47)

The supposition means that in this relation Ŝt should be used, in fact, in the
form exp[−iŜt], and the above commutation relation should be understood
as

Q̂e−iŜt = e−iŜt(Q̂+ e id) . (48)

The precise formulation of the commutation relations thus obtained has
the following Weyl form derived by the heuristic substitution

W (D) = exp
[

iĉ(D)
]

, R(c) = exp
[

− iD̂(c)
]

, (49)

and by admitting in R(c) only those test functions c for which there is

nc :=
1

4πe

∫

c(l) d2l ∈ Z . (50)

The algebraic relations are

W (D)W (D′) = W (D +D′) , R(c)R(c′) = R(c+ c′) ,

W (D)R(c) = exp
{ i

4π

∫

D(l)c(l) d2l
}

R(c)W (D) ,

W ∗(D) = W (−D) , R∗(c) = R(−c) , W (0) = R(0) = id , (51)

which defines an abstract Weyl algebra. To consider a physical realization
of the system one needs a *-representation of this algebra by operators in a
Hilbert space.5 Before choosing a particular representation we make some
comments on the structure of the algebra.

First of all, one should observe that the algebra could be formulated in
terms more directly connected with the spacetime relations. Namely, for
any two homogeneous solutions of the wave equation (37) the formula

{S1, S2} :=
√

(x0)2 + 1

∫

[

S1∇0S2 − S2∇0S1

]

(x0,
√

(x0)2 + 1 x̂)dΩ(x̂) ,

(52)

4 There is a misprint of a sign on the r.h. side of this relation in [9].
5 Not to burden notation we shall keep the same symbol for the operator, as for the

abstract element itself.
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where x̂ is a vector on a unit sphere in 3-space and dΩ(x̂) is the solid
angle measure, defines a symplectic form conserved under the evolution and
independent of the reference system.6 On the other hand one can show that

{S1, S2} = e2
∫

[

c1D2 − c2D1

]

(l) d2l , (53)

if Si(x) are represented as in (40). Thus the initial values S(0, x̂), ∇0S(0, x̂)
could be used instead of c(l), D(l) as test fields of the algebra elements. This
leads to relativistic locality of the commutation relations on the hyperboloid
x2 = −1, but we do not go in any further details.

Next, we note two important symmetries of the algebra. For λ ∈ R we
have a group of automorphisms of the algebra defined by

γλ(A) = W (λ)AW (−λ) , γλγλ′ = γλ+λ′ . (54)

By the basic commutation relations we have

γλ

(

W (D)
)

= W (D) , γλ

(

R(c)
)

= eiλnceR(c) . (55)

In representations in which W (λ) is regular we have W (λ) = exp[iλQ̂],

where Q̂ has the interpretation of the charge operator. Therefore the au-
tomorphism γλ should be regarded as a (global) gauge transformation. Ac-
cordingly, the algebra of observables is the subalgebra of (51) consisting of
elements invariant under γλ, which is generated by the elements of the form
W (D)R(∂2F ) with F (l) homogeneous of degree 0 (recall that if nc = 0 then
there exists such F that c = ∂2F ). Elements R(c) with nc 6= 0 are field vari-
ables interpolating between superselection sectors and creating the charge
nce. This confirms our earlier statement that St is a gauge dependent quan-
tity, which should not be regarded as an observable. Note, however, that
R(c)∗R(c′) = R(c′ − c) is an observable if nc = nc′ , so sectors are labelled
only by charge value. Note, moreover, that γ(2π/e) = id. Thus if the rep-

resentation of (51) is irreducible then exp[i2πQ̂/e] ∝ id. If in addition 0 is

in the spectrum of Q̂, then the spectrum is equal to eZ. This leads to the
quantization of charge and justifies the choice of the multiplicative constant
in the quantization condition (44).

Another symmetry group of the algebra (51) is the Lorentz group, which
acts on the algebra by the automorphisms (Λ is a Lorentz transformation):

αΛ

[

W (D)
]

= W (TΛD) , αΛ

[

R(c)
]

= R(TΛc) ,

where

[TΛD](l) = D(Λ−1l) , [TΛc](l) = c(Λ−1l) . (56)

6 This is the symplectic form for solutions of the wave equation on the hyperboloid
x2 = −1, cf. footnote 3.
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There is no nontrivial translation symmetry in the algebra.
One looks for representations which have a cyclic vector Ω (that is the

closure of the linear span of all vectors W (D)R(c)Ω is the whole represen-
tation space), in which the Lorentz symmetry is implementable, i.e. there
exists a unitary representation of the Lorentz group U(Λ) such that for each
operator A in the representation of the algebra there is

αΛ(A) = U(Λ)AU∗(Λ) , (57)

and in which Ω is Lorentz-invariant:

U(Λ)Ω = Ω . (58)

A class of such representations may be obtained by the Fock method (we are
not aware of a proof that this exhausts the set of covariant representations).
Assume that the operators of the observable elements W (D) and R(∂2F )

are regular, that is there exist selfadjoint ĉ(D) and D̂(∂2F ) such that for

λ ∈ R there is W (λD) = exp[iλĉ(D)] and R(λ∂2F ) = exp[−iλD̂(∂2F )]. Let
κ be any real positive number. Suppose that in the representation space
there exists a vector Ωκ which is cyclic and for each F (l) homogeneous of
degree 0 satisfies

[√
κ ĉ(F ) +

i√
κ
D̂(∂2F )

]

Ωκ = 0 . (59)

One shows that these conditions determine a unique (up to a unitary equiv-
alence) representation. We sketch the proof. Suppose first that such Ωκ

exists. From the condition (59) for F = 1 we have in particular Q̂Ωκ = 0.
Moreover, from the commutation relations we get

Q̂W (D)R(c)Ωκ = nceW (D)R(c)Ωκ . (60)

Therefore the representation space is

H =
⊕

n∈Z

Hn , where Q̂Hn = neHn , (61)

and Hn is the closure of the linear span of vectors W (D)R(c)Ωκ with nc = n.
It is now easy to see that all matrix elements of operators W (D)R(c) between
arbitrary vectors from the set W (D′)R(c′)Ωκ are reduced with the use of
commutation relations either to zero, or to a matrix element in the space H0.
It is thus sufficient to show the existence and uniqueness of representation of
observable elements W (D)R(∂2F ) in H0. For that purpose for each complex
function F (l) homogeneous of degree 0 let us denote by [F ] its equivalence
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class with respect to the addition of a constant. Let K be the Hilbert space
of such classes with the scalar product

([F ], [G])K =
1

4π

∫

(−∂F · ∂G) d2l , (62)

and let H0 be the Fock space based on the “one-excitation” space K. Denote
by Ω the “Fock vacuum” vector and by d([F ]) the annihilation operator in
that Fock space:

d([F ])Ω = 0 ,
[

d([F ]), d∗([G])
]

= ([F ], [G])K id . (63)

We set Ωκ = Ω and for real F

ĉ(F )|H0
=

1√
2κ

{

d([F ]) + d∗([F ])
}

,

D̂(∂2F )|H0
= −i

√

κ

2

{

d([F ]) − d∗([F ])
}

. (64)

It is easy to show that this ensures the correct commutation relations and
that Eq. (59) is now satisfied, so the existence of the representation is proved.
Furthermore, it follows from (59) alone that

(Ωκ,W (D)R(∂2F )Ωκ) = exp
1

4

[

− κ−1‖[D]‖2
K − κ‖[F ]‖2

K + i2([D], [F ])K

]

.

(65)
As by the GNS construction these expectation values determine the repre-
sentation up to a unitary equivalence (see e.g. [16]), the uniqueness follows.
The unitary representation of the Lorentz group with the desired properties
(57) and (58) is now obtained by

U(Λ)W (D)R(c)Ωκ = W (TΛD)R(TΛc)Ωκ . (66)

One can easily show that the generators Mab of these transformations, de-
fined by U(δa

b + ωa
b) ≈ exp[− i

2ω
abMab] for small antisymmetric ωab, may

be expressed as

Mab = − 1

4π

∫

: ĉ(l)LabD̂(l) : d2l , (67)

where normal ordering is determined by point splitting as

: ĉ(l)LabD̂(l) := lim
l′→l

{

ĉ(l′)LabD̂(l) − (Ωκ, ĉ(l
′)LabD̂(l)Ωκ) id

}

, (68)

and the limit goes over l′ linearly independent from l.
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The above construction leaves us with the freedom of one real param-
eter κ in the choice of representation. In the usual situation for quantum
fields the selection criterion which often leaves only one representation is the
demand that the vacuum state be translation invariant and the total energy
be a positive operator. We do not have this criterion for our disposal in the
case of present model. However, Staruszkiewicz thinks that the asymptotic
field (18) should “remember” that its first term (the one explicitly written
in (18)) is obtained from the positive frequency field, which in usual elec-
trodynamics annihilates the vacuum. Thus he demands that the quantum
version of the first term in (18) annihilates Ωκ. Looking at (18), (39) and
(59) it is easy to convince oneself that this condition is satisfied if, and only
if,

κ =
2

π
. (69)

In this way one arrives at an interesting and elegant model, which explicitly
depends on the value of elementary charge e and has a charged field among
its variables. Staruszkiewicz believes, and in fact this is his main motivation,
that some mathematical and physical consistency restrictions will squeeze
out of this model an information on the size of the fine structure constant
e2/ℏc. That this hope may, in fact, be justified, is suggested by the structure
of the Lorentz group representation U(Λ). As it turns out, the breakup of
this representation into irreducibles must depend nontrivially on the value
of e2/~c [17].

We hope that the formulation of the Staruszkiewicz model we have dis-
cussed here helps to clarify its structure at least for some readers. But it
should also help to simplify calculations. We give as an example the cal-
culation of the scalar product of states R(e/(v · l)2)Ωκ (in Staruszkiewicz’s
notation e−iS0 |0〉 with S0 the spherically symmetric part of S(x) in the ref-
erence system with time axis v). Denote Fv,u(l) = e log[v · l/u · l]. Then by
(51) and (65) we have

(R(e(v · l)−2)Ωκ, R(e(u · l)−2)Ωκ) = (Ωκ, R(∂2Fv,u)Ωκ)

= exp
[

− (κ/4)‖[Fv,u]‖2
K

]

= exp
[

− (e2κ/2)
(

χv,u cothχv,u − 1
)]

, (70)

where v · u = coshχv,u. For κ = 2/π this reproduces the result obtained in
a much more involved way in [9]. We have used in the calculation:

‖[Fv,u]‖2
K = − 1

4π

∫

[∂Fv,u(l)]2 d2l

=
e2

4π

∫
[

2 v · u
(v · l)(u · l) − 1

(v · l)2 − 1

(u · l)2
]

d2l

= 2e2
{

v · u
√

(v · u)2 − 1
log
[

v · u+
√

(v · u)2 − 1
]

− 1

}

. (71)
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4. Asymptotic causal algebra

Let us now return again to the discussion of the asymptotic fields con-
sidered in Section 2. Recall that the assumption of their behavior as defined
in (3) was dictated by the fall-off of Coulomb fields of charges. However,
it later turned out that one half of the resulting asymptotic fields, these of
magnetic type (19), did not actually appear in real processes, so they could
be omitted. This left us with the long-range characteristics of the electric
type only. But now we can ask further: do all of these characteristics have
a role to play in real processes? Our answer is: no, and as we shall see, this
is precisely what allows us to construct an algebra which unites both the
usual local and the long-range degrees of freedom.

The selection criterion for free electromagnetic fields we want to use is
this: we admit only those fields which may be produced as radiation fields
in processes involving scattering charged particles or fields, asymptotically
moving freely for early and late times. Recall that radiation field is the
difference between the retarded and advanced field produced by the cur-
rent. Take the simplest instant of such field, the radiation field produced
by a charge scattered instantaneously at x = 0. In this case the radiation
potential in spacelike directions is the difference of two Coulomb fields

Arad
b (x) = Q

(

vb
√

(v · x)2 − x2
− ub
√

(u · x)2 − x2

)

, x2 < 0 , (72)

where Q is the charge of the particle, and v and u its initial and final velocity
respectively. Note that this potential is homogeneous of degree −1, so its
spacelike asymptotic limit (3) is given by the same function. More generally,
if the motion of the particle is modified but v and u remain its asymptotic
velocities, then the above formula still gives the spacelike asymptotic Aas(x)
of the potential. A striking feature of this potential is its evenness:

Aas(−x) = Aas(x) , x2 < 0 . (73)

Now, this property is conserved under the superposition principle, so it re-
mains true for a general field produced by particles. One can show that
the same property holds for electromagnetic potential radiated by scattered
charged fields. Thus we take (73) as our selection criterion. Compare this
with the general asymptotic potential (14). Our condition is then equiva-
lently expressed as

Im aas
b (k) = 0 . (74)

We want to view our selection criterion from yet another viewpoint. For
a general Lorentz gauge potential of the form (1) let us denote for a future-
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pointing null vector l and s ∈ R:

V̇b(s, l) = −
∫

ωab(ωl)e
−iωs dω , (75)

where dot denotes differentiation with respect to s. It is easy to see that
V̇b(s, l) is a real function, orthogonal to lb and homogeneous of degree −2 in
all its variables:

l · V̇ (s, l) = 0 , V̇a(µs, µl) = µ−2V̇a(s, l) , µ > 0 , (76)

A straightforward calculation then shows that the Fourier representation (1)
may be written as

Ab(x) = − 1

2π

∫

V̇b(x · l, l) d2l . (77)

If ab(k) has a scaling limit (4) then taking into account the reality condition
(2) one finds that ωRe ab(ωl) is continuous in ω = 0, while ωImab(ωl) has
a jump of magnitude 2Im aas

b (l). This leads to the estimate

V̇b(s, l) = −2

s
Im aas

b (l) +O(|s|−1−ǫ) for |s| → ∞ (78)

for some ǫ > 0. Now, consider the null asymptotics of the potential, more
precisely, take an arbitrary point in spacetime x and consider the asymp-
totics of A(x + Rl) for R → ∞. One shows that if the leading term
in (78) does not vanish, then the dominating term of this asymptotics is
2Im aas

b (l) logR/R. As it turns out, in that case the leading term for the
angular momentum density at x+Rl is of order logR/R2. This means that
even the differential flux of angular momentum radiated into infinity cannot
be defined, which is our second reason to reject those fields.

We want now to consider an interacting theory, and we take for def-
initeness the classical theory of the electron–positron Dirac field coupled
by local gauge principle to the electromagnetic field, with the intention of
later “quantization”. In perturbative calculations one uses an approximation
in which the fields are free at very early and very late times, (matter is
completely decoupled from radiation). This procedure is assisted by some
preliminary regularization, such as restricting the interaction to some subset
of spacetime, which may be an effective tool to do practical calculations, but
is unable to satisfactorily clarify the infrared structure. We want to improve
on that approximation so as to take into account the infrared degrees of
freedom and the Gauss law.

The selection criterion for the electromagnetic fields may still be taken
over to the interacting case in the following sense. If Ab is the Lorentz
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potential of the total field, then one defines in standard way the incoming
and outgoing free fields by Ab = Aret

b + Ain
b = Aadv

b + Aout
b , where Aret

b and

Aadv
b are the retarded and the advanced potential of the sources, respectively.

Then it may be consistently assumed that both Ain
b and Aout

b satisfy the
selection criterion.

Our aim is to consider fields at causally remote regions, “in” or “out”, and
we restrict attention to the “out” case. This is usually taken to mean: on
a spacelike hyperplane, which is taken to the limit of time tending to +∞.
However, due to the different propagation speeds of matter and radiation one
can exchange this for: matter field far away in the future timelike directions,
and electromagnetic field far away in the future null directions. Consider
the electromagnetic field first. With our assumptions one shows that there
is a function Vb(s, l) homogeneous of degree −1 such that

lim
R→∞

RAb(x+Rl) = Vb(x · l, l) . (79)

This function is homogeneous of degree −1, satisfies

l · V (s, l) = Q , (80)

where Q is the charge of the field, and is bounded by

|V̇b(s, l)| ≤
const

(t · l)2
(

1 +
|s|
t · l

)−1−ǫ

(81)

(only the constant depends on t). The “out” field may be recovered from this
asymptotics by (77), and its null asymptotics is given by (79) with Vb(s, l)
replaced by V out

b (s, l) = Vb(s, l) − Vb(+∞, l). The limit value Vb(+∞, l)
is completely determined by the outgoing currents, and determines accord-
ing to (79) the null asymptotics of the advanced potential. The spacelike
asymptotics of the “out” field is governed by

aas
b (l) = − 1

2π

∫

V̇b(s, l) ds =
1

2π
V out

b (−∞, l) , (82)

but the spacelike asymptotics of the total field is determined by Vb(−∞, l),
and for any point x and spacelike vector y one has

lim
R→∞

R2Fab(x+Ry) =
1

2π

∫

(

laVb(−∞, l) − lbVa(−∞, l)
)

δ′(y · l) d2l . (83)

Note also, that the second and the third terms in the function S(x) as
given by (29) now vanish, so here one could not construct an analogy of the
Staruszkiewicz model — function D(l) in (39) is identically zero. There is
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no need nor space for the extension given by the first replacement in (39)
either. On the other hand, the constant in Re a(l) will appear in our model,
and will be related to a phase variable. We denote

Φ(l) =
1

4π

∫

l · V out(−∞, l′)

l · l′ d2l . (84)

Consider now the timelike asymptotics of the Dirac field ψ(x). One
shows that with an appropriate choice of a local gauge (locally related to
the Lorentz gauge) one has for v2 = 1, v future-pointing:

ψ(λv) ∼ −iλ−3/2e−i(mλ+π/4)γ·vf(v) for λ→ ∞ , (85)

where γa are the Dirac matrices. Define, provisionally, the free outgoing
Dirac field by

ψout
f (x) =

(m

2π

)3/2
∫

e−imx·vγ·vγ · v f(v)dµ(v) , (86)

where dµ(v) is the invariant measure d3v/v0 on the hyperboloid v2 = 1,
v0 > 0, and the formula is a concise form of the Fourier representation
of ψout

f (x), reproducing in the free field case the original field ψ(x). The

outgoing current of the Dirac field is determined by f(v), and one shows
that the lacking component Vb(+∞, l) of the total electromagnetic potential
is given by

Va(+∞, l) =

∫

n(v)V e
a (v, l) dµ(v) , (87)

where n(v) = f(v)γ · vf(v) is the asymptotic density of particles moving
with velocity v and

V e
a (v, l) =

eva

v · l (88)

is the null asymptotics (79) of the Lorentz potential of the Coulomb field
surrounding a particle with charge e moving with constant velocity v. There-
fore, the above relation is the implementation of the Gauss constraint on the
space of classical asymptotic variables.

The question now arises: do the fields Aout and ψout
f separate com-

pletely in the “out” region? We interpret this question as: can the total
energy momentum and angular momentum of the system be separated into
contributions from Aout and ψout

f ? The answer is ‘yes’ in the case of energy
momentum, but ‘no’ in the case of angular momentum — in this case there
is a term which couples the infrared degrees of freedom V out

b (−∞, l) with
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f(v). However, as it turns out, the full separation may be achieved if one
introduces a new variable g(v) by

g(v) = exp
( ie

4π

∫

Φ(l)

(v · l)2 d
2l
)

f(v) , (89)

and defines the “dressed” free Dirac field by

ψout(x) =
(m

2π

)3/2
∫

e−imx·vγ·vγ · v g(v)dµ(v) . (90)

We draw attention of the reader to the following circumstances. First, the
transformation (89) is a very nonlocal one. The asymptotics of the local
Dirac field in the timelike direction of v is multiplied by a factor containing
information on the spacelike asymptotics of the outgoing electromagnetic
field Aout

b . Next, as the conserved quantities have been completely separated,
the field ψout should be regarded as describing the charged particles together
with their Coulomb fields. Finally, as announced earlier, the constant in
Φ(l) does appear in the model. However, this constant appears only in the
exponentiated form given by (89). Thus we put forward the interpretation

e

4π

∫

Φ(l)

(v · l)2 d
2l = phase variable . (91)

Note that this definition involves only the free electromagnetic characteris-
tics, and is independent of particular matter field.

This classical asymptotic model has a natural “quantization” based on
the heuristic demand that the total conserved quantities generate Poincaré
transformations. The model is formulated in terms of the quantities which
have direct physical meaning in the asymptotic region, that is the asymp-
totics of the total field V̂b(s, l), and the asymptotics of the Dirac field with
the accompanying Coulomb fields of the particles ĝ(v) (“hats” indicate the
quantum versions). We introduce the following structures on the space of
asymptotic variables: the symplectic form

{V1, V2} =
1

4π

∫

(

V̇1 · V2 − V̇2 · V1

)

(s, l) ds d2l (92)

and the scalar product

(g1, g2) =

∫

g1(v)γ · vg2(v)dµ(v) . (93)

Let g(v) and Vb(s, l) be classical test fields describing asymptotics of free
fields, thus, in particular, Vb(+∞, l) = 0. The basic elements of the quantum
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model are functionals of those test fields: W (V ) and B(g). Loosely, one can
think of them as

W (V ) = e−i{V,V̂ } , B(g) = (g, ĝ) . (94)

Elements W (V ) and W (V ′) are identified if the test potentials Vb(s, l) and
V ′

b (s, l) give the same electromagnetic test field asymptotics and the same
phase variable (91), that is

l[aV
′
b](s, l) = l[aVb](s, l) , Φ

′(l) = Φ(l) + n
2π

e
, (95)

where Φ(l) is related to Vb(s, l) by (84). The algebra is then defined by

W (V1)W (V2) = e−
i

2
{V1,V2}W (V1 + V2) ,

W (V )∗ = W (−V ) , W (0) = id ,

[B(g1), B(g2)]+ = 0 , [B(g1), B(g2)
∗]+ = (g1, g2) id ,

W (V )B(g) = B(SΦg)W (V ) ,

(96)

where
(

SΦg
)

(v) = exp

(

i
e

4π

∫

Φ(l)

(v · l)2 d
2l

)

g(v) . (97)

With a proper technical formulation of conditions on the scope of test func-
tions the above relations generate a C∗-algebra, which I interpret as the
algebra of asymptotic fields in quantum electrodynamics.

The only relation in which the above algebra diverges from the usual
tensor product of independent algebras of the two fields separately is the
last relation in (96), but this is the key to the physics of the model. We note
that for the Coulomb field asymptotics (88) one has

{V e(v, .), V } =
e

4π

∫

Φ(l)

(v · l)2 d
2l . (98)

The commutation relation between the fermionic operator B(g) and the
electromagnetic operator W (V ) may be therefore written in loose terms as

e−i{V,V̂ }ĝ(v) = ĝ(v)e−i{V,V̂ −V e(v,.)} . (99)

This means that the operator ĝ(v), beside its fermionic role which is to
annihilate a particle with charge e or create one with the opposite charge,
also annihilates or creates the particle’s Coulomb field, respectively.
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Within the model formulated here the following results are obtained.

(i) The spectrum of the charge operator is quantized in units of elemen-
tary charge. This is the consequence of the appearance of the quantum
phase. As this phase variable is tied to the free electromagnetic po-
tential, this quantization law is universal.

(ii) In representations of the asymptotic algebra satisfying Borchers’ crite-
rion (spacetime translations implementable by unitary operators with
the energy-momentum spectrum in the future lightcone) the analogue
of the functional form of Gauss’ constraint (87) is satisfied.

(iii) The importance of the regularity of representations with respect to
all Weyl operators is stressed. The vacuum representation is shown
to be non-regular with respect to Coulomb field operators (W (V )
with infrared singular test functions V ), which leads to the loss of
the Coulomb field and to a nonphysical superselection structure.
A class of “infravacuum” representations is constructed, which are
“close to the vacuum” but regular at the same time. Each irreducible
representation of the field algebra in this class leads to the superse-
lection structure of observables characterized by the electric charge.
There is neither a zero-energy vector state nor mass-shell charged vec-
tor states in these representations.

Finally, to make some contact with the Staruszkiewicz model again, one
can consider a kind of adiabatic limit (slowly varying fields) of a Weyl model
based on the symplectic form (92) alone (with no fermionic fields, but with
charged test fields Vb(s, l) admitted instead). That was done in [18]. The
mathematics of the resulting model is identical with that of Staruszkiewicz’s
model, and in fact our formulation of the latter as a kind of Weyl algebra
given in Section 3 was based on that paper. However, the interpretation
of variables is different in the two cases. In particular, the quantity (91)
survives the adiabatic limit as a phase variable, which is different from
Staruszkiewicz’s phase.
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