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Formulation of the Penrose inequality becomes ambiguous when the
past and future apparent horizons do cross. We test numerically several
natural possibilities of stating the inequality in punctured and boosted
single- and double-black holes, in a Dain–Friedrich class of initial data and
in conformally flat spheroidal data. The Penrose inequality holds true in
vacuum configurations for the outermost element amongst the set of disjoint
future and past apparent horizons (as expected) and (unexpectedly) for
each of the outermost past and future apparent horizons, whenever these
two bifurcate from an outermost minimal surface, regardless of whether
they intersect or remain disjoint. In systems with matter the conjecture
breaks down only if matter does not obey the dominant energy condition.

PACS numbers: 04.20.Cr, 04.20.Dw, 04.70.Bw

1. Introduction

The Penrose–Hawking [1,2] singularity theorems point at the incomplete-
ness of the classical general relativity. The cosmic censorship hypothesis [4]
can be regarded as an attempt to contain the damage, by demanding that
the genuine singularities are hidden within the black holes. While it is
still not clear whether the cosmic censorship hypothesis holds true, there is
no doubt that it has shaped the research field and led to many important
results concerning evolving systems (for a recent review see [3]). Penrose
invented in 1973 an inequality that can constitute a necessary condition for
the validity of the cosmic censorship [5,6]. The Penrose inequality has been
recently proved, following a scenario suggested in 1973 by Geroch [7] in the
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important Riemannian case [8, 9], that can be roughly described as a mo-
mentarily static data set of Einstein evolution equations. It was known for
a long time to hold in spherically symmetric systems [10]; a later analysis
allowed one to elucidate the problem of the needed energy conditions and
show that it is independent of the foliation conditions [11, 12]. There ex-
ist analytical scenarios for the proof of the general Penrose inequality [13]
and [14] but their validity is not proven, due to the technical complexity.

While numerics cannot per se produce a proof, it may disprove the hy-
pothesis or, more likely, be of help in finding its correct formulations. The
latter is the main goal of this paper — Sec. 3 presents possible wordings of
the Penrose inequality that are checked in later sections in examples repre-
senting several classes of initial data. The obtained results can be described
as bringing some surprises. In the spherically symmetric spacetimes the
future and past apparent horizons are disjoint and it is well known that
the Penrose inequality is valid only for the outermost of all apparent hori-
zons (later on abbreviated as AH) [11], assuming an energy condition. In
nonspherical spacetimes the two AH’s can intersect in most space-time foli-
ations, including the maximal ones. Notable exceptions are the polar gauge
foliations in which the two horizons cannot be separated (although they
can bifurcate), but their existence status is unclear. The apparent ambigu-
ity would be resolved by accepting the proposal of Horowitz [15] that one
should take a surface of a minimal area enclosing all AH’s. It is unexpected
in this context that whenever the outermost past and future apparent hori-
zons bifurcate (in a sense specified in Sec. 5) from an outermost minimal
surface, then the inequality holds true for each of them. This remark applies
to either crossing or disjoint AH’s, in all nonspherical vacuum configurations
tested by us. One can convert this phenomenological observation into a local
analytic proof, as sketched in Sec. 5.

The order of remainder of this paper is following. Next section brings the
initial constraint equations and a brief description of the conformal method
of constructing initial data. Several versions of the Penrose inequality are
given in Sec. 3. Sec. 4 briefly describes the relevant numerical methods.
Obtained results are reported in Secs 5–7. They support the various versions
of the inequality for the vacuum initial data in Secs 5 (punctured Bowen–
York data) and 6 (punctured Dain–Friedrich data). Section 7 deals with non-
vacuum spheroidal initial data; in this case the Penrose inequality can be
broken, if the dominant energy condition is not valid. Last section presents
main conclusions.
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2. Einstein constraint equations

Let Σ be an asymptotically flat Cauchy hypersurface endowed with an
internal metric gij , the scalar curvature R and the extrinsic curvature Kij.
The initial constraint equations read [16]

R = 16πρ + KijK
ij −

(

Ki
i

)2
,

∇i

(

Ki
j − gi

jK
l
l

)

= 8πjj , (1)

where ρ and ~j are the mass density and current density of initial material
fields. In the case of maximal slicing condition, Ki

i = 0, the initial data
can be found by the conformal method [17]. In what follows we analyze
conformally flat classes of solutions, corresponding to vacuum and spheroidal
systems with matter. The metric reads gij = φ4ĝij where ĝij is the Euclidean
metric.

The global energy-momentum can be found from standard formulae

E =
−1

2π

∫

S∞

d2Si∇iφ ,

Pj =
1

8π

∫

S∞

d2SiKij . (2)

The asymptotic mass is given by m =
√

E2 − PiP i.
An apparent horizon will be understood later on as a two-dimensional

surface S lying in Σ with a normal t satisfying one of the two equations

θ± ≡ ∇it
i±Kijt

itj = 0 , (3)

where the signs + and - correspond to the past and the future apparent
horizons, respectively, and θ’s are known as optical scalars.

3. Formulation of the Penrose inequality

The Penrose inequality is expected to hold only for the outermost AH. As
explained in [11], in the case of spherical symmetry: Consider the outermost
future trapped surface, the (future) apparent horizon, call it S. Let us assume
that S is outside the outermost past trapped surface. In other words, we
assume θ+(S) = 0 and that both θ+ and θ

−
are positive outside S. A simple

analytic argument shows the validity of the following inequality

m ≥
√

SH

16π
, (4)
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provided that the dominant energy condition is satisfied by matter located
outside S. SH in this formula is the area of S. As stressed in the quoted pa-
per, of course, an identical argument works if the outermost trapped surface
is a past apparent horizon.

In the spherically symmetric geometries optical scalars have the same
level sets, since both of them are constant on centered spheres. Thus the
spheres surrounding the outermost AH have positive θ

−
and θ+ and (i) pos-

sess larger area than the AH. Obviously (ii) the future and past horizons
do not cross. Therefore there is no ambiguity in defining the Penrose in-
equality and — since the cosmic censorship hypothesis asserts that AH’s are
enclosed by the event horizon that asymptotically evolves to a Schwarzschild
or Reissner–Nordstroem black hole horizon — it can be regarded as the nec-
essary condition for the cosmic censorship [5].

None of the features (i) and (ii) becomes obvious in the general non-
spherical case, even if our liberal definition of AH’s is replaced by the more
stringent one due to Penrose. Let us recall that in [1] future trapped sur-
face are assumed to have — in our terminology — a positive scalar θ

−

and a negative scalar θ+. That is, each of the two beams of null geodesics
emanating orthogonally outward and inward from a trapped surface, is con-
vergent. Consequently, a future apparent horizon (understood as the outer-
most boundary in the set of all future trapped surfaces) has vanishing θ+ but
non-negative θ

−
. The analogous situation (but with optical scalars revers-

ing their roles) takes place for past apparent horizons. Thus the picture of
AH’s that emerges here resembles that of spherically symmetric geometries.
There exist level sets of, say θ+ < 0, such that θ

−
> 0 (and conversely). The

two optical scalars do not possess common level sets, but the sign of one of
them is controlled on the level set of the other. This can happen only if one
matches in a suitable way the choice of both a Cauchy hypersurface and of
the two-dimensional foliation within this slice. (This is inherent also to the
scheme of the proof of the Penrose inequality that is proposed in [14].) One
can find a two-surface S to be such an AH in one particular foliation, but
that may not be true in other space-like slices. Even with this stringent def-
inition, the future and past AH’s can intersect and there may exist surfaces
of a smaller area surrounding them as pointed out by Horowitz [15].

In the rest of this paper by AH’s are understood two-surfaces satisfying
one of the conditions of (3), which might be weaker than the notion employed
in the singularity theorems (but see a discussion following the point (ii)
below). That means that the failure of a particular version (or all of them)
formulated below of the Penrose inequality does not necessarily negate the
cosmic censorship hypothesis (CCH). And conversely, their validity lends
even more credence in CCH. It is not without significance that such AH’s
are easier to find numerically than the standard objects defined by Penrose.



The General Penrose Inequality: Lessons from Numerical Evidence 63

The three versions of the Penrose inequality read as follows, (assuming
the dominant energy condition [2] for nonvacuum initial data):

(i) The minimalistic one (PIM henceforth); it was borrowed from a
proposition first put forward by Horowitz [15]. The surface AM of the small-
est area SM surrounding regions with horizons satisfies the inequality

m ≥
√

SM

16π
. (5)

It appears in many of the numerical cases reported later that AM coincided
with that constructed from apparent horizons (see (ii)), but in a number
of configurations it consisted also of segments of minimal surfaces. The
existence of configurations having portions of minimal surfaces extending
outside AH’s, means that it is not excluded that the actual area of an event
horizon — if there is one — is smaller than that of the AH. In such a case
PIM constitutes the necessary condition for the validity of CCH.

(ii) The standard one (PIS later on). The closed 2-surface AH is either
the outermost apparent horizon (if AH’s do not intersect) or a union of
segments of outermost future and/or past apparent horizons. Then its area
SH satisfies the inequality

m ≥
√

SH

16π
. (6)

AH does not manifestly satisfy the assumptions of the singularity theorems,
but its importance lies in the fact that it may do so in another foliation (say,
the polar gauge one). The heuristic argument is as follows. The product of
two optical scalars is (i) invariant and (ii) vanishes on AH. If there exists
a local boost to a polar gauge foliation (that is, a foliation with θ

−
= θ+;

apparent horizons correspond here to minimal surfaces) of the space–time,
then on a polar gauge slice the two-surface AH would become an apparent
horizon (that is, the outermost minimal surface) in the sense of Penrose, and
then the CCH demands the existence of an event horizon. The area of the
intersection of the event horizon with the actual polar gauge slice would have
to be bigger than of AH. Accepting that, PIS seems to be just right one, as a
necessary condition, from the point of view of CCH. Unfortunately, there is a
gap in the argument. Namely, there is no possibility to rule out the existence
of minimal surfaces that extend outward of the outermost apparent horizon.
There are reasons to expect (basing on the analogy to spherical symmetry)
that the polar gauge slice does not penetrate regions with minimal surfaces
and the surface AH would not be seen on the slice.
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(iii) In the cases with intersecting apparent horizons AA’s we compared

also their area related quantities
√

SA/16π with the asymptotic mass. In-
variably it was found that

m >

√

SA

16π
(7)

for each of the horizons, and with a significant safety margin. There is no
obvious reason why the area SA should be bigger than SH, but this is what
was found to be true in all analyzed examples. That suggests that (iii) is
stronger than PIS and it comes as a surprise that numerics supports the
inequality (7).

Data concerning the two stronger (ii) and (iii)) of the above conjectures
are given in Sections 5 and 6; their validity implies PIM. Only in the first
part of Sec. 5 we report data concerning the version PIM, to show that
the results are close for all three statements. The horizons do not cross in
the case of spheroidal initial data and there is no minimal surface outside
the outermost AH; therefore conjectures PIS and PIM do coincide in the
examples considered in Sec. 7.

4. Description of numerical methods

In the conformal method and for vacuum conformally flat initial data,
one first solves analytically the equation ∇̂iK̂

i
j = 0 (the covariant derivatives

are in the Euclidean metric) and then the Lichnerowicz–York equation

∆φ = −K̂ijK̂
ij

8
φ−7, (8)

with the flat Laplacian ∆. This is an example of a weakly nonlinear elliptic
equation; its leading derivatives are linear (hence the equation is quasilinear)
and the nonlinearity is rather weak (cf. negative powers of the conformal
factor φ). Due to the cylindrical symmetry, we search for φ as a function
of the angle θ and the coordinate radius r. It is necessary to map the
problem into one with finite domain; thus the radius r is replaced by another
independent variable v = r/(1+r). Adopting x = cos θ, one has to solve (8)
in the rectangular −1 ≤ x ≤ 1, 0 ≤ v ≤ 1. It is solved iteratively by the
standard Newton method on the lattice up to 200 × 5000 points. Due to
the weak nonlinearity of the Lichnerowicz–York equation, it was enough to
apply at most 4–5 iterations. We used four different solvers, in particular
the MUMPS [18] and HYPRE [19] ones.

The apparent horizon equation (3) becomes in our context a nonlin-
ear ordinary equation, for the function r(θ). This is a classical two-point
problem (see a discussion in [20] in a similar context) with dr/dθ|θ=0 =
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dr/dθ|θ=π = 0. It is solved by the standard shooting method. We resorted
to two numerical packages, ODEPACK [21] and SUBPLEX [22]. The needed
extrapolation of the formerly found solution φ has been done with the help
of the bilinear interpolation [23]. The bilinear method appeared entirely
satisfactory, due to the high density of our numerical lattice.

5. Boosted punctured data

Assume P̂ to be a constant vector and n̂ — a unit normal to a metric
sphere in the Euclidean geometry. Assume standard spherical coordinates
r, θ and φ. One can easily check that the extrinsic curvature

Kij =
3

2r2φ2

(

P̂in̂j + P̂jn̂i − (ĝij − n̂in̂j) P̂ln̂
l
)

(9)

satisfies the momentum part of Eq. (1) with the vanishing current (that is
the boosting part of the Bowen–York initial extrinsic curvature [24]). The
Hamiltonian constraint (the first equation in (1)) reads now, assuming vac-

uum case (ρ = 0) and aligning the z-axis along P̂ ,

∆φ = −9(P̂ )2

16r4

(

1 + 2 cos2 θ
)

φ−7 , (10)

where ∆ is the flat Laplacian. For these boosted data one obtains the global
momentum Pi = P̂i, the global energy E is given by (2) and the asymptotic

mass reads
√

E2 − P 2.
There are two established ways of solving the resulting (Lichnerowicz–

York) equation.

(i) In the first approach, that takes care about the global topology of the
manifold (the so-called conformal imaging method [24]; that actually
requires the use of a larger set of extrinsic curvature data), Bowen and
York solve Eq. (10) outside r ≥ a, assuming that the sphere r = a is a
minimal surface and that at infinity the conformal factor φ goes to 1.

(ii) In the second approach, the puncture method, one splits φ into two
parts, φ = 1 + m1/(2r) + φ1 and finds a solution φ1 in the whole
Euclidean space, demanding that at infinity φ1 ≈ d1/(2r) [25]; here
m1 and d1 are some constants, that are related to the global energy of
the manifold.

In this paper we use the second approach in order to treat vacuum
configurations with one or two black holes. The data for three exemplary
configurations (chosen from a much bigger sample) with single black holes
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are presented in the first table. The first column is the parameter m1 ap-
pearing in the preceding splitting, the second column is the linear momen-
tum P̂ , and the third, fourth and fifth columns, respectively are the global
mass m and the “horizon” masses mM =

√

SM/16π, mH =
√

SH/16π and

mA =
√

SA/16π. In the case of single boosted black holes the asymmetry
causes the horizons to intersect the minimal surface, and this is why we con-
sider the case PIM with AM. The surfaces in the fourth and fifth columns
do not coincide with apparent horizons, but consist of two (AH) parts (of
an apparent horizon to the future and to the past) or three segments (AM)
(of an apparent horizon to the future, a minimal surface and an apparent
horizon to the past) — as explained in Sect. 3. It happens that the areas SA

of the apparent horizons to the past and to the future are equal; the sixth
column brings corresponding data which (unexpectedly) obey the Penrose
inequality. Each row describes a different configuration.

m1 P̂ m mM mH mA

8 2 8.061855 8.059402 8.059426 8.05948097
4 2 4.122407 4.110666 4.110751 4.11093771
4 5 4.707092 4.499335 4.500002 4.50143757

In this case areas of the past and future AH’s are equal. It is clearly seen
that all versions, the weaker (PIM) and the stronger (PIS) as well the last
one (iii) of the Penrose inequality are satisfied. It is noticeable that the
areas of AM, AH and AA are very close. The fact of interest is the numerical
evidence for the existence of parts of minimal surfaces that extend outward
of outmost apparent horizons.

The corresponding results for two black hole configurations are com-
prised in the next table. Now the puncture method requires that φ =
1+

∑2
i=1 mi/(2|~r −~ri|)+ φ1 (the two black holes are located at ri, i = 1, 2).

The extrinsic curvature reads

Kij =
3

2r2φ2

∑

s=1,2

(

P̂
(s)
i n̂

(s)
j + P̂

(s)
j n̂

(s)
i −

(

ĝij − n̂
(s)
i n̂

(s)
j

)

P̂
(s)
l n̂(s)l

)

, (11)

where P̂ (s) aligned along the z-axis can be interpreted as the linear momen-
tum of the s − th black hole and ~n(s) = (~r − ~Rs)/|~r − ~Rs|. As before, one
finds a solution φ1 of the Lichnerowicz–York equation in the whole Euclidean
space, demanding that at infinity φ1 ≈ d1/(2r) [25]; as before m1 and d1

are some constants, that are related to the global energy of the manifold.
The first and second columns describe parameters (“mass” m1 and “momen-

tum” P̂ (1)) of the first black hole, the third and fourth columns give the
same information about the second black hole. The fifth and sixth columns,
respectively, are the global mass and the areal mass mH =

√

SH/16π. SH
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is the area of AH, the 2-surface constructed according to the recipe (ii) of
Sec. 2. The 2-surface AH surrounds both black holes (located at r = 1 and
θ = 0 or θ = π). In two cases (fifth and ninth) the past and future AH’s do

cross; the seventh column presents relevant values of mA =
√

SA/16π, where
SA is the larger of the two areas in question. They satisfy all formulations
of the inequality.

m1 P̂ (1) m2 P̂ (2) m mH mA

5 –5 5 5 10.040901 10.033511
5 –10 5 10 10.159675 10.132316
5 –10 5 8 10.176694 10.153778
5 –10 5 5 10.379353 10.347249
5 5 5 5 11.146633 10.916395 10.916399
5 –0.25 5 0.25 10.000103 9.999632
5 –2.5 5 2.5 10.010290 10.008087
4 –1 5 1.5 9.006743 9.005594
5 –2.5 5 0.5 10.052687 10.051593 10.051593

In the remaining seven cases the past and future horizons do not cross and
there is a minimal surface in between them. Surprisingly — and in a sharp
contrast with the corresponding case in spherically symmetric configurations
— the Penrose inequality is valid simultaneously for past and future AH’s.
Another interesting observation is that, in all cases, when the parameter P̂
tends to zero then AH’s tend to the minimal surface. In this sense, the AH’s
bifurcate from the minimal surface. This is true, as matter of fact, in all
numerical examples studied in Secs. 5 and 6. It happens that there always
exists at least one minimal surface; those AH’s horizons that bifurcate from
the outermost one do satisfy the inequality. On the other hand, AH’s that
branch from an innermost minimal surfaces (there are several such cases in
our sample of data) do break all aforementioned versions.

We show below an analytic argument that these observations remain
true (with some reservations) for initial data with AH’s that arise from
small perturbations of data with minimal surfaces.

Theorem. Let l be a real parameter, lK̂ij be the Bowen–York or Dain–
Friedrich extrinsic curvature (multi-puncturized) and φl be a solution of the
Lichnerowicz–York equation on R3

∆φl = − l2K̂ijK̂
ij

8
φ−7

l . (12)

Then φl, Kij = K̂ij/φ
2
l constitute initial data of the Einstein equations;

assume that for each l there exist apparent horizons that in the limit l → 0
coincide with a nonspherical outermost minimal surface S0. Then there
exists l0 such that for |l| < l0 the Penrose inequality is satisfied.
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Sketch of the proof. In the case of a nonspherical surface S0 given by
r = r0(θ), one has a strict inequality, ǫ ≡ m0 −

√

A0/(16π) > 0. One can
easily show that: (i) (using arguments of [17]) φl ≥ φ0 and ml = m0 + c1l

2;
(ii) (using the Green function of the flat Laplacian) φl < φ0 +c2l

2. Here and
below ci (i = 1, 2, . . .) are some positive constants. The apparent horizon
equations θ+ = 0 or θ

−
= 0 depend on l through the extrinsic curvature

terms and the conformal factor φ. Since by assumption horizons bifurcate
from S0, they must be located within annulus (r0(θ, φ)− c3l, r0(θ, φ) + c4l).
(This is due to the implicit function theorem.) At an apparent horizon one
should compare ml = m0 + c1l

2 with the area of AH’s, which is bounded
from above by A0 + c5l. It is clear that by choosing l0 small enough one can
ensure that ml ≥

√

AH/16π.
This proof is insensitive on the sign of l and therefore it is valid for

both past and future apparent horizons. Any attempt to convert this local
result into global one would have to be preceded by a careful estimate of the
dependence of the location r(θ) of an AH on the bifurcation parameter l.
Notice that this theorem does not apply to single-puncture initial data, since
in this case the geometry corresponding to l = 0 is spherically symmetric
and ǫ = 0. On the other hand, this result should hold for the two-puncture
solutions. There is also a possibility of generalizing the above onto case with
initial data given in the exterior of a two-surface S1, instead of R3.

6. Dain–Friedrich conformally flat initial data

The main feature of these initial data is that the spatial part of the metric
is conformally flat (as before), the momentum flow density vanishes (again,
as before) and the extrinsic curvature is given, in spherical coordinates, by
(the forthcoming formulae are translated from the language of the Newman–
Penrose formalism, originally used in [26]).

K3
i = 0 , for i = 1, 2

K1
1 =

1

r3φ6
∂2

xW ,

K2
1 =

1

sin θr3φ6
∂r∂xW ,

K2
2 =

1

r2 sin2 θφ6

[

∂r (r∂rW ) +
1

r
(x∂xW − W )

]

. (13)

Here x = cos θ and W is an arbitrary function of r and θ. The K3
3 component

can be found from the maximal slicing condition Ki
i = 0. Let us point

out that this solution generalizes the Bowen–York solution of momentum
constraint; the latter corresponds to a particular choice of W [27]. The
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data of (9), for instance, correspond to W = rP̂
(

x3 − 3x
)

/2. Extrinsic
curvature (13) constitutes a partial case of the general solution found by
Dain and Friedrich in 2001 [26].

The conformal factor φ satisfies the Lichnerowicz–York equation ∆φ =
−1

8KijK
ijφ5. We seek a solution φ, using the puncture method, of the form

φ = 1 + m1/(2r) + φ1.
The numerical calculations have been performed in the following cases:
(i) ∂xW = Pr(−x+x3). It is noticeable that here the global momentum

is nonzero. Numerical results are given in the forthcoming table.

m1 P m mH mA

4 5 5.622456 4.296457 4.296680
4 1 4.078569 4.015156 4.015260

(ii) ∂xW = Pr
2 (1 − x2)(3x2 − 1). In this case the global momentum

vanishes. The table presents the obtained results.

m1 P m mH mA

4 5 6.073919 4.366950 4.372253
4 1 4.109128 4.021109 4.021207

In both cases (i) and (ii) the two stronger versions, PIS and (iii), of the Pen-
rose inequality holds true. The 2-surface AH, whose areal mass is depictured
in the last but one column, is built from many sections of the intersecting
past and future horizons; the number of the intersections seems to depend
(for a given nonzero P ) on the shape of W as a function of θ. There are
more crossings in the case (i) (three ) than in the case (ii) (only two).

7. Spheroidal systems with matter

Assume a foliation of the Euclidean space by oblate spheroids,

x2 + y2

a2 (1 + σ2)
+

z2

a2σ2
= 1 . (14)

The variable σ changes from 0 to ∞, and angle variables are τ (changing
from −1 to 1) and φ (varies as usual from 0 to 2π). Assume that there exists
a normal flow of matter with the only nonzero component

jσ =
1

8π
φ−6 σ

(

τ2 − 1
)

(σ2 + 1) (σ2 + τ2)5/2
. (15)
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Let n̂i denote the unit normal (in the Euclidean metric) to a spheroid. The
related traceless extrinsic curvature reads

Kj
i = −φ−6

(

n̂in̂
j − 1

3
gj
i

)

1

(σ2 + τ2)3/2
; (16)

this pair, Kij and ji, solves the momentum constraint part of Eq. (1).
Let us remark, that one could always add to the extrinsic curvature the

diagonal components Kr
r = C/(φ6r3),Kθ

θ = Kφ
φ = −Kr

r/2 (where C is a

constant and r =
√

x2 + y2 + z2) without changing the momentum flow.
We do not do this, because our primary intention is to study the influence
of the energy conditions onto the validity of the Penrose inequality, and the
aforementioned part of the extrinsic curvature is irrelevant from this point
of view.

The energy density ρ can be chosen in an arbitrary way, but the simplest
possibility — that eases the analysis of the energy conditions — is to assume

ρ = C × φ−8 × 1

8π

σ
(

1 − τ2
)

(σ2 + 1) (σ2 + τ2)5/2
. (17)

Later we shall put either C = 1 — which ensures the dominant energy
condition — or C = 0, which breaks the energy conditions. Notice that

KijK
ij =

2

3
× φ−12 × 1

(σ2 + τ2)3
. (18)

The Lichnerowicz–York equation takes now the form

∆φ = − 1

12

1

(σ2 + τ2)3
φ−7 − C

4

σ
(

1 − τ2
)

(σ2 + 1) (σ2 + τ2)5/2
φ−3. (19)

This equation has been solved with φ tending to 1 at infinity and bearing a
constant value at the inner boundary, that is assumed to be a unit sphere
r = 1 in the background Euclidean geometry. In the examples shown below,
horizons do not intersect and in all cases the outermost apparent horizon
(future or past) has been located outside the minimal surface. (There appear
also initial data with intersecting horizons, but they are not of particular
interest.) Its area SH enters the forthcoming data through the formula

mH =
√

SH/16π.
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We shall present data corresponding to:
(i) C = 1,

φ(r = 1) m mH

2.4 2.801054 2.800734
2.5 3.0009593 3.0006660
3.5 5.0004402 5,0003797834

It is clear that mH < m and that the version PIS holds true.
(ii) C = 0. The energy density vanishes and therefore the dominant

energy condition is broken. One expects that the Penrose inequality (PIS)
may be broken now, and in fact this is what happens, albeit only in the first
two examples.

φ(r = 1) m mH

2.4 2.80004295 2.80011252
2.5 3.00003632 3.000604868
3.5 5.000009651 5.000005477

8. Concluding remarks

The weakest form of the Penrose inequality due to Horowitz is that
m ≥

√

SM/16π, where SM is the smallest area of a two-surface encom-
passing a region with apparent horizons satisfying the assumptions of the
singularity theorems. This paper deals with three other formulations, of
which even the weakest (PIM) is stronger than the Horowitz’s one, because
our notion of the outermost apparent horizon is weaker than that required
by the singularity theorems. Despite this fact, all investigated statements of
the Penrose inequality are confirmed by our numerical analysis for vacuum
initial data and for those systems with matter that satisfy an energy condi-
tion. The only negative examples correspond to data with matter that does
not satisfy an energy condition.

There exist minimal surfaces in all investigated examples with vacuum;
these are mostly singlets but in a number of cases also doublets. It is ob-
served that the two (past and future) AH’s, that bifurcate (with the mo-
mentum being the bifurcation parameter — see the end of Sec. 5) from the
outermost minimal surface, do satisfy — regardless of whether they cross
or do not cross — all versions of the Penrose inequality. An analytic proof
that this is true (with some reservations), at least for initial data with small
extrinsic curvature, is sketched at the end of Sec. 5.

In summary, results of this work show that the Penrose inequality does
not hold only when expected not to hold; that points strongly in favour of
the validity of the Penrose’s conjecture in physically interesting cases.
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This paper bases on a talk given by EM at the ESI Workshop on the
Penrose Inequality held in 2004. EM wishes to thank Szymon Leski for his
help in dealing with tables, and Sergio Dain and Marc Mars for a very useful
discussion. This work was partly supported by the Polish State Committee
for Scientific Research (KBN) grant 2 PO3B 00623.
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