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It is shown that the total energy of the static “field + particle” system,
defined in the framework of classical, renormalised electrodynamics of par-
ticles and fields, depends in an unstable way upon the field boundary data.
It is argued that this phenomenon may be also an origin of the unstable
dynamical behaviour of the system (i.e. existence of “runaway solutions”).
It is proved that a suitable polarisation mechanism of the particle restores
the stability, at least on the level of statics. Whether or not it restores also
the full, dynamical stability of the theory is still an open question.
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1. Introduction

Classical electrodynamics in its present form is unable to describe in-
teraction between charged particles intermediated by electromagnetic field.
Indeed, typical well posed problems of the theory are of the contradictory
nature: either we solve partial differential equations for the unknown field,
knowing (a priori !) trajectories of charged particles (and, therefore, know-
ing the field sources), or we solve ordinary differential equations for the
trajectories of test particles, knowing (a priori !) the field (and, therefore,
knowing the forces acting on particles). Combining these two procedures
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into a single theory leads to a contradiction: in case of the point particles,
the Lorentz force due to the self-interaction is infinite.

There were many attempts to overcome these difficulties. One of them
consists in using the Lorentz–Dirac equation (see [1, 3, 10]) where electro-
magnetic field is split into retarded (singular) part and the nonsingular rest.
The retarded field acts on the particle via postulated effective force and the
nonsingular (finite) part enters into equation via the Lorentz force. Unfor-
tunately, this approach leads to the so called runaway solutions which are
unphysical.

Various remedies have been proposed to cure this disease (cf. [17]), most
of them just based on a fine tuning of boundary conditions. Unfortunately,
such a tuning excludes physically interesting problems (i.e. circular mo-
tion) and the question arises if one can construct a theory which does not
contain unphysical solutions at all. The authors believe that to achieve the
above goal we should first gain a deeper understanding of foundations of the
runaway behaviour.

Andrzej Staruszkiewicz got involved in these issues since the beginning
of his academic career (cf. [14] and [15]). His main contribution to the sub-
ject consists in an interesting proposal of a first mathematically consistent
relativistic mechanics of two point particles, where one particle moves in
the retarded field of the second one while the second particle moves in the
advanced field of the first one, see [16].

In the present paper we perform an analysis of the stability properties of
a theory proposed by one of us in papers [4] and [2]. It consists in defining an
“already renormalised” four-momentum of the physical system composed of
both particles and fields. We will refer to it as to “particle(s) + fields” system.
Equations of motion are then derived as a consequence of a conservation law
imposed on the four-momentum. We deeply believe that such an approach
is a correct realization of the Einstein’s programme of “deriving equations of
motion from field equations” and that a similar procedure should be applied
to formulate also the two-body-problem in General Relativity Theory.

In the framework of this theory we show that the physical instability is
inherently contained in the renormalisation method used. More precisely: in
the simplest renormalisation scheme the amount of energy contained “in the
interior of the particle” decreases when the external field surrounding the
particle increases. This contradicts the stability of the model. As a remedy
for this drawback we propose the polarisability of the particle. Numerical
analysis of such an improved model shows validity of our proposal.

For this purpose we derive the theory of polarisability. We show that the
sensitivity of the particle to polarisation must is uniquely determined by the
dependence of the mass of the particle upon its dipole moment. Violating
this law would lead to a non-local theory (see Section 5).
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In this paper we analyse the renormalised energy of the “particle + field”
system on the level of statics only, but the “energetic instability” discovered
here is obviously the reason for the runaway behaviour of the dynamical
system as well. Indeed, the price which we pay for perturbing the particle
at rest is negative and, whence, the system works like a perpetuum mobile.
It is, therefore, very likely that also the price accelerating the particle is
negative. This observation is fundamental, in our opinion, to understand
the physical reasons for the runaway behaviour of the theory and in search
for a remedy for this phenomenon.

The paper is organised as follows. In Section 2 the renormalisation proce-
dure proposed by one of us in [4] (see also [2]) is presented. Then a monopole
particle inside a fixed volume V is considered: we compute renormalised en-
ergy of the system and vary it with respect to particle’s position. Next, we
suppose that the particle assumes position corresponding to minimal value
of the energy. In this way we express the energy of the system as a function
of the field boundary data, imposed on ∂V . Finally, we analyse stability of
the system under small changes of these data. Here, both the Dirichlet-type
and the Neumann-type boundary problems are considered.

The above results are then applied to a case of a monopole particle
closed in spherical box. We prove that such a system is not stable. Then
we consider a polarisable particle. Here, the external field may generate
a non-vanishing dipole momentum, which changes completely the energy
balance. It turns out that for a Heaviside-like relation between the field and
the dipole momentum it generates, the system is stable. This suggests a
possible way to improve in the future our renormalisation method and to
avoid (maybe) also dynamical instabilities, manifesting themselves in the
runaway behaviour.

2. The renormalised four-momentum vector

Full description of the renormalised electrodynamics was proposed in [4]
or [2]. In the present section we review briefly heuristic ideas that stand
behind definition of the renormalised four-momentum of the dynamical “par-
ticle + field” system.

As a starting point of our considerations take an extended particle model.
This means that we consider a fully relativistic, gauge-invariant, interact-
ing “matter + electromagnetism” field theory, which is possibly highly non-
linear, but reduces in vacuum to the linear Maxwell theory if the electromag-
netic field is sufficiently weak. A moving particle is described by a solution of
the theory, such that the “non-linearity-region” (or the “strong-field-region”)
is concentrated in a tiny world tube W around a smooth, time-like trajec-
tory ζ. We assume that outside of this tube the fields describing charged
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matter practically vanish and the electromagnetic field is sufficiently weak
to be well described by the linear Maxwell theory. Let T denotes the energy-
momentum tensor of such a field configuration. The four momentum of the
“matter + electromagnetism” system is then obtained by integration of T

(conserved — due to Noether Theorem) over a space-like hyperplane Σ:

Pλ =

∫

Σ

T
µ
λdσµ . (1)

We assume, moreover, that this fundamental theory admits a static,
stable, soliton-like solution, which will be called a extended particle at rest.
Let Tstatic denote its energy-momentum tensor and let m be the total energy
(mass) of this solution:

m =

∫

Σ

T
static µ

λdσµ . (2)

Due to relativistic invariance, we have also a six parameter family of
solutions obtained by acting with Poincaré transformations on the static so-
lution. Each of these solutions may be called a “uniformly moving extended
particle” because the strong-field region (interior of the particle) is concen-

trated around the straight line ~̇x =const. As we boost the static solution to
the four-velocity uλ, we denote by Tstatic(u) its energy-momentum tensor.
Then the four-momentum of this solution equals muλ and we have:

muλ =

∫

Σ

T
static(u)µλdσµ . (3)

This leads to a trivial identity:

Pλ = muλ +

∫

Σ

(
T

µ
λ − T

static(u)µλ
)
dσµ , (4)

which becomes extremely useful in the following arrangement. Choose the
straight line describing the “trajectory” of the uniformly moving extended
particle in such a way that it is tangent to the approximate trajectory ζ of the
generic extended particle at their intersection point with Σ. If K(R) ⊂ Σ

denotes the ball of radius R, which contains the strong field region of both
solutions, but is small with respect to the characteristic distance of the
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external Maxwell fields, then we have:

Pλ = muλ +

∫

Σ−K(R)

(
T

µ
λ − T

static(u)µλ
)
dσµ

+

∫

K(R)

(
T

µ
λ − T

static(u)µλ
)
dσµ . (5)

Our assumption about stability of the soliton-like solution means that the
last integral is negligible since inside the strong field region both solutions
are very close to each other. But the first integral contains only contributions
from external Maxwell fields accompanying both particles. This way we have
proved that the following formula:

Pλ ≃ muλ +

∫

Σ−K(R)

(
T

µ
λ − T

static(u)µλ
)
dσµ , (6)

containing only external Maxwell field surrounding the particle, provides a
good approximation of the total four-momentum of the “particle + field”
system.

The theory proposed in [4] consists in mimicking the above formula in
the point particle case. Hence, we consider solutions of Maxwell equations
having a “delta-like” current corresponding to a point charge e travelling
over a trajectory ζ. Such a solution is treated as an idealised description of
external properties of the extended particle considered above. Denote by T
the energy momentum tensor of this solution. The uniformly moving parti-
cle, whose four-velocity equals u, is represented in this picture by a boosted
Coulomb field, and its energy-momentum tensor is denoted by T static(u).
If trajectories of both particles are again tangent with each other at their
common point of intersection with Σ, then momentum (6) may be rewritten
as:

Pλ ≃ muλ +

∫

Σ−K(R)

(
T

µ
λ − T static(u)µλ

)
dσµ , (7)

because outside of the strong-field region, T reduces to T and Tstatic(u)
reduces to T static(u). The main observation done in [4] is that, due to can-
cellation of principal singularities of both T and T (u), the above integration
may be extended to the entire Σ. More precisely, the following quantity:

Pλ := muλ + P

∫

Σ

(
T

µ
λ − T static(u)µλ

)
dσµ (8)
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is well defined (“P ” denotes the “principal value” of the integral). Accord-
ing to the discussion above, we interpret this quantity as the total four-
momentum of the interacting system composed of the point particle and the
Maxwell field accompanying the particle. Consequently, we impose conser-
vation of P as an additional condition. This implies equations of motion
of the point particle as a good approximation of equations of motion of the
true, extended particle.

This approach has an obvious generalisation to the system of many par-
ticles (see [4]). Also polarisable particles, carrying magnetic or electric mo-
ment (and — consequently — displaying stronger field singularity than the
Coulomb field) may be treated this way (cf. [8]). Recently, the above ap-
proach was improved by replacing the reference Coulomb field in (8) by
the Born field, matching not only particle’s velocity but also its accelera-
tion. This way the principal-value-sign “P ” may be omitted in the definition
because the corresponding integral converges absolutely (cf. [9]).

In what follows, we are going to apply definition (8) to static “particle +
field” configurations only.

3. Electrostatics of a monopole particle

Consider now electrostatic field D surrounding the particle with charge e,
situated at the point ~r0. Due to Maxwell equations, the Gauss law:

∇D = eδ (~r − ~r0) , (9)

must be satisfied, where by δ we denote Dirac delta distribution (in con-
trast with conventional δ, denoting variation of a function). It is, therefore,
convenient to decompose the field into its singular and regular parts:

D = Dreg + Dsing, (10)

where the singular part Dsing is simply the Coulomb field:

Dsing :=
e (~r − ~r0)

4π‖~r − ~r0‖3
,

whereas the remaining field Dreg := D−Dsing is divergenceless: ∇Dreg = 0.
Moreover, static Maxwell equations imply the existence of the scalar poten-
tial φ: D = −∇φ. Hence, we have: ∆φreg = 0.

According to (8), the complete energy of this “particle + field” system
contained in the entire Σ equals:

H = m +
1

2

∫

Σ

(
D2 − D2

sing

)
dv . (11)
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Consider now a fixed volume V ∋ ~r0 containing the particle. Subtracting
from H the electrostatic energy contained outside of V :

HR3−V =
1

2

∫

R3−V

D2dv , (12)

we obtain the total energy contained in V :

HV = m − 1

2

∫

R3−V

Dsing
2dv +

1

2

∫

V

Dreg
2dv

+

∫

V

DsingDregdv . (13)

Given boundary conditions, we are going to minimise the above quantity
with respect to the particle’s position ~r0 ∈ V . Assuming that the particle
always tries to minimise the energy of the system, we can write both ~r0

and the total “particle+field” energy as functions of the field boundary data.
Stability of the energy with respect to the boundary data on ∂V will then
be studied. Before we pass to the above programme, we must specify which
kind of boundary conditions on ∂V have to be controlled.

3.1. Neumann conditions

Varying the energy integral (13) with respect to the particle’s position
we get:

δHV =

∫

V

{Dreg · (δDreg + δDsing) + Dsing δDreg} dv

−
∫

R3−V

Dsing δDreg dv . (14)

For Neumann conditions we put D = −∇φ for both the regular and the
singular parts of the field, outside of the variation δ. Integrating by parts
and using ∇Dreg = 0 we get:

δHV =

∫

V

φreg δ(∇Dsing)dv −
∫

∂V

{
φ δD⊥

}
dσ . (15)

But the variation of (9) gives us:

δ(∇Dsing) = δ (eδ (~r − ~r0)) = −e∂k (δ (~r − ~r0)) δxk
0 , (16)
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where δxk
0 denotes a virtual displacement of the particle. Imposing Neumann

conditions D⊥|∂V = f , where f is a fixed function, we obtain: δD⊥ ≡ 0 on
∂V . Hence, the surface integral vanishes. Inserting (16) into (15) we derive
the following formula:

δHV = −eD
reg

k (xk
0)δx

k
0 . (17)

We conclude that the extremum of energy condition implies the following
static equilibrium equation:

D
reg

k (xk
0) = 0 . (18)

3.2. Dirichlet conditions

For Dirichlet case we put δD = −∇δφ for both the regular and the
singular parts of the field and then integrate (14) by parts. We obtain:

δHV =

∫

V

(∇Dsing) δφregdv −
∫

∂V

{
D⊥ δφ

}
dσ . (19)

Imposing Dirichlet conditions φ|∂V = f , where f is a fixed function, we
obtain: δφ ≡ 0 on ∂V and, therefore, the surface integral vanishes again.
To derive the equilibrium condition (18) from the variational principle, we
must perform the following Legendre transformation:

∫

V

(∇Dsing) δφregdv =δ

∫

V

(∇Dsing) φregdv

−
∫

V

(δ∇Dsing) φregdv . (20)

Then we use (9) and (16). This way we obtain:

δ (HV − eφreg(~r0)) = D
reg

k (xk
0)δx

k
0 . (21)

Comparing (17) and (21) we observe that the equilibrium condition (18)
may either be obtained from the variational principle δ (HV ) = 0, when the
Neumann boundary data are controlled, or from the variational principle
δ (FV ) = 0, with FV := HV − eφreg(~r0), when the Dirichlet boundary data
are controlled. The quantity HV is the total energy of the “particle + field”
system, whereas FV is an analog of the free energy in thermodynamics. We
conclude that imposing Neumann condition on the boundary corresponds to
the adiabatic insulation of the system, whereas imposing Dirichlet condition
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means that we expose it to a kind of a “thermal bath”. Indeed, imposing
e.g. condition φ|∂V = 0 we must cover the surface ∂V with a metal shell
and ground it electrically. This means that we admit energy exchange of our
system with the earth. Similarly as in thermodynamics, the free energy FV ,
which we optimise, contains not only the system’s energy HV but also the
term “−eφreg(~r0)” which we interpret as energy of the “boundary-condition-
controlling device”. Of course, from the point of view of the particle, both
conditions lead to the same equation: Dreg(xk

0) = 0 because our theory is
local and the particle interacts with its immediate neighbourhood only, no
matter how the boundary data are controlled far away from the particle.

4. An example — monopole particle in a spherical box

In this section we shall analyse stability of a charged, monopole particle
closed in a spherical box with radius R: V = K(0, R) ⊂ R3. Simplicity of
the model allows us to solve explicitly the static Maxwell equations (for both
the Neumann and the Dirichlet cases) and to compute renormalised energy
of the system. Then we will find the extremum of the energy function with
respect to the particle’s position and check that for the Neumann case we
get the minimum and for the Dirichlet case — the maximum of the energy.
Assuming that the particle always minimises the energy, we will express
energy function in terms of the boundary data and show that the system is
unstable under small changes of these data.

The problem consists in solving equation ∆φ = −eδ(~r − ~r0), where ~r0 ∈
K(0, R). In the Neumann case we impose the following condition:

~D · ~n
∣∣
r=R

= ~E · ~n +
e

4πR2
, (22)

where ~E is a fixed three dimensional vector.
In the Dirichlet case we impose the following condition:

φ
∣∣
r=R

= − ~E · ~n R +
e

4πR
. (23)

Because of the axial symmetry of the problem, we may restrict ourselves
to the analysis of the energy functional at points ~r0 which are parallel to
~E: ~r0‖~E. With this simplification, we are able to find an explicit solution
φ = φsing + φreg, where:

φsing =
1

4π

e

|~r − ~r0|
in both Dirichlet and Neumann cases (cf. Appendices A and C). To write
an explicit formula for φreg it is useful to introduce the following variable:

r0 :=
1

‖E‖(~E|~r0) ,
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which runs from −R to R. Under this convention we obtain:

φreg =
e

4π

(
R√

R4 + r0
2r2 − 2r0rR2 cos θ

− 1

R

− 1

R
ln
∣∣∣R2 − r0r cos θ +

√
R4 + r0

2r2 − 2r0rR2 cos θ
∣∣∣
)

− ~E~r +
1

R
ln(2R2) (24)

in the Neumann case, whereas:

φreg =
e

4π

(
1

R
− R√

R4 + r0
2r2 − 2r0rR2 cos θ

)
− ~E~r (25)

in the Dirichlet case.

4.1. Stability

In both cases, the renormalised energy can be computed explicitly. De-
noting E := ‖~E‖ we obtain the following result:

HN = m +
1

2

(
e2

4π

(
R

R2 − r2
0

− 1

R
ln

∣∣∣∣1 − r2
0

R2

∣∣∣∣−
2

R

)

+
4

3
πR3E2 − 2eEr0

)
, (26)

in the Neumann case (cf. Appendix B) and:

HD = m +
1

2

(
4

3
πR3E2 − e2

4π

R

R2 − r2
0

)
, (27)

in the Dirichlet case (cf. Appendix C). Finally, we compute the electric “free
energy” F = H− eφreg(~r0) in the Dirichlet case:

F = m +
1

2

(
e2

4π

R

R2 − r2
0

+ 2eEr0 +
4

3
πR3E2 − e2

4π

2

R

)
. (28)

We see that the equilibrium condition in the Neumann case reads:

Dreg

∣∣
~r=~r0

= 0 ⇔
(

eE − e2

4π

r0

R(R2 − r2
0)

)
= 0 , (29)
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whereas in the Dirichlet case it reads:

eDreg

∣∣
~r=~r0

= 0 ⇐⇒
e2

4π

Rr0

(R2 − r2
0)

2
+ eE =

∂

∂r0
F = 0 . (30)

We express the energy in terms of the following, standardised variables:

x =
r0

R
∈] − 1, 1[, q =

4πR2

e
E . (31)

Denoting:

H′ = (H− m)
8πR

e2
, (32)

we obtain:

H′
N =

1

1 − x2
− ln |1 − x2| − 2qx +

1

3
q2 − 2 , (33)

H′
D =

1

3
q2 − 1

1 − x2
. (34)

Observe that for q = 0 both energies may be expanded as follows (cf. Fig. 1):

H′
N = −1 + 2x2 + O(x4) , (35)

H′
D = −1 − x2 + O(x4) . (36)

This implies that only in the Neumann case the equilibrium point (x = 0)
is also a minimum of the energy. In the Dirichlet case the energy has a local
maximum at the equilibrium point. As may be easily seen, this happens also
for any value of E. Hence, for the Dirichlet case the free energy F should
be used, for which local extremum is also minimum. In what follows we
shall use the true (local) energy and consequently, we restrict ourselves to
the Neumann case only.

4.2. Neumann conditions

In terms of the standardised variables, the equilibrium condition (29)
reads:

q =
x(2 − x2)

(1 − x2)2
. (37)

For small values of q this enables us to express equilibrium position in terms
of the boundary data:

x ≈ q

2
. (38)
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Dirichlet

Neumann
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0.1 0.2 0.3 0.4 0.5
x

Fig. 1. Graph of renormalised energy vs particle’s position and q = 0 for H′
N and

H′
D.

The same result could be obtained from the following expansion:

H′
N (x, q) = −1 +

1

3
q2 − 2qx + 2x2 + O(x4) , (39)

∂xH′
N (x, q) = 0 ⇒ x ≈ q

2
. (40)

Knowing relation between position of the particle and the boundary data
we express the energy in terms of boundary data only :

H′
N (x, q)|x= q

2
= −1 − 1

6
q2 + O(q3) . (41)

Observe that for increasing values of q, the energy of the system decreases

(cf. figure 2)! The system “particle + field” turns out to be unstable —
even small fluctuations of the external field q can decrease its total energy.
This means that the particle behaves like a perpetuum mobile, providing a
source of energy at no costs. In our opinion this unphysical feature of the
model, manifestly seen in its static behaviour, could possibly be a source of
its dynamical instability, i.e. the existence of “runaway” solutions of Dirac
equation. As a remedy, described in the sequel, we propose to equip the
particle with an additional mechanism which, via electric polarisability, will
restore its static stability.
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Fig. 2. Graph of renormalised energy vs boundary field q for H′
N (x(q), q).

5. Polarisable particle

We assume that the particle may get a non-vanishing electric dipole
moment due to interaction with the neighbouring field. We prove in the
sequel that, under a suitable choice of the polarisability properties of the
particle, the resulting “particle + field” system becomes statically stable.

For a polarised particle, formula (13) for the total energy remains valid
but the field singularity is now deeper than in (9), namely:

∇D = ∇Dsing = eδ(~r − ~r0) − pk∂kδ(~r − ~r0) , (42)

where pk is a dipole moment. We assume that pk has been generated by
the surrounding electric field D according to some law p = p(Dreg(~r0)),
describing the sensitivity of the particle. Moreover, we admit the dependence
of the coefficient m in (8) (and, consequently, in (13)) upon polarisation. It
will be shown in the sequel that insisting in having m constant we are not
able to make the model physically consistent. Moreover, it will be shown
that the electric sensitivity is uniquely implied by the dependence m = m(p).

5.1. Variational principle

Variation of the renormalised energy (13) with respect to the particle’s
position contains now the non-vanishing term δm. Similar calculations as
for the scalar particle lead, in case of the Neumann boundary conditions, to
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formula:

δHV = δm +

∫

V

φregδ(∇Dsing)dv −
∫

∂V

{
φ δD⊥

}
dσ , (43)

and, in case of the Dirichlet conditions, to:

δHV = δm +

∫

V

(∇Dsing)δφregdv −
∫

∂V

{
D⊥δφ

}
dσ

= δm+δ

∫

V

(∇Dsing)φregdv−
∫

V

φregδ(∇Dsing)dv−
∫

∂V

{
D⊥δφ

}
dσ .(44)

According to (42), the new version of formula (16) reads:

δ(∇Dsing) = −
(
e∂kδ(~r − ~r0) − pj∂j∂kδ(~r − ~r0)

)
δxk

0

− (∂kδ(~r − ~r0)) δpk . (45)

Plugging (45) into (43) we see that the total energy variation splits into the
sum of two pieces: the work due to virtual displacement of the particle and
the remaining work, due to variation of m and p:

δHV = −
(
eDreg + pk∂kDreg

) ∣∣
~r=~r0︸ ︷︷ ︸

A

δ~r0

+ δm − Dreg

∣∣
~r=~r0

δp
︸ ︷︷ ︸

B

. (46)

The second part B is obviously nonlocal — both the mass m and the moment
p depend upon the value of Dreg(~r0). This quantity must be obtained from
the field equation: ∆φreg = 0, with boundary value depending upon the
particle’s position. The only way to save locality of the model is to force the
term B to vanish identically by imposing the following constraint:

δm = Dreg(~r0)δp . (47)

Denoting by m0 = m(0) the mass of the unpolarised particle and by f(p)
the additional polarisation energy:

m(p) = m0 + f(p) , (48)

formula (47) may be written as:

D
reg
k (~r0) =

∂f(p)

∂pk
. (49)
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We see that the polarisation energy f must play a role of the generating
function for the polarisability relation, otherwise the model would not be
local. Indeed, suppose that B does not vanish and the particle’s equilibrium
condition implies vanishing of the whole right hand side of (46). To decide
whether or not its actual position is acceptable as an equilibrium position,
the particle must know not only the field in its immediate neighbourhood,
but also the shape of V and the field boundary data on ∂V . Such a behaviour
would be physically non-acceptable.

Inverting the generating formula (49), we may find the dependence
p = p(Dreg(~r0)), which is uniquely implied by the “equation of state” (48).
It may be rewritten as follows:

pk = −∂h(D)

∂Dk
, (50)

where
h(D) = f − Dkp

k (51)

describes the Legendre transformation between “canonically conjugate”
quantities p and D and may be interpreted as the “free polarisation energy”,
whereas the “true energy” (48) may be rewritten as:

m(D) = m0 + Dkp
k + h(D) . (52)

Hence, (46) implies:

δHV = −
(
eDreg + pk∂kDreg

) ∣∣
~r=~r0

δ~r0 , (53)

and the equilibrium condition becomes a local equation:
(
eDreg + pk∂kDreg

) ∣∣
~r=~r0

= 0 . (54)

A similar procedure works in the Dirichlet case as well. Applying the
state equation to (44) we obtain:

δFV =
(
eDreg + pk∂kDreg

) ∣∣
~r=~r0

δ~r0 , (55)

where the “free energy” FV is given as:

FV := HV −
∫

V

(∇Dsing)φreg − 2f

:= HV − eφreg(~r0) + Dreg

∣∣
~r=~r0

· p − 2f . (56)

Equilibrium condition δFV = 0 reduces to the same, local equation (54).
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6. An example — polarisable particle in a spherical box

Let us come back to the simple model described in Section 4 on page 83.
For the polarisable particle we must solve the field equation:

∆φ = −eδ(~r − ~r0) + ~p · ∇(δ(~r − ~r0)) , (57)

where ~r0 ∈ K(0, R), with either Neumann (22) or Dirichlet condition (23).
We want to compute renormalised total energy of the “particle + field” sys-
tem and to prove that for a suitable state equation (48) our model becomes
stable.

Splitting the solution φ into two parts:

φ = φmon + φdip , (58)

where by φmon we denote the solution of the monopole problem, found earlier
(cf. Section (4), page 84), we reduce the problem to equation:

∆φdip = ~p · ∇ (δ(~r − ~r0)) , (59)

with homogeneous boundary conditions: ~Ddip · ~n
∣∣
r=R

= 0 in the Neumann

case and φdip
∣∣
r=R

= 0 in the Dirichlet case. Choosing the axis ez parallel to
~E and passing to spherical coordinates (r, θ, ϕ) we obtain for ~r0 = (r0, 0, 0)
and ~p = pez + pxex (see Appendix D on page 101):

φdip = φ
dip
sing + φdip

reg , (60)

where:

φ
dip
sing =

1

4π

~p · (~r − ~r0)

|~r − ~r0|3
, (61)

φdip
reg =

p

4π

(
R3
(
R2 − rr0 cos θ

)

r0 (R4 + (r0r)2 − 2rr0R2 cos θ)
3
2

− 1

r0R

)

+
px

4π

(
rR3 sin θ cos ϕ

(R4 + r0
2r2 − 2r0rR2 cos θ)

3
2

− cos ϕ(R2 cos θ − r0r)

Rr0 sin θ
√

R4 + r0
2r2 − 2r0rR2 cos θ

+
cos θ cos ϕ

Rr0 sin θ

)
. (62)

As we already noticed in the monopole case, axial symmetry of the problem
implies that minimum of the energy is assumed at the point ~r0 which is
parallel to ~E. The same argument implies that we have px = 0 in this
configuration. We are going to limit our analysis to such configurations
only.
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6.1. Stability

We compute the total, renormalised energy of the system as a sum of
two parts:

H = Hmon + Hdip , (63)

where Hmon denotes the energy of the monopole field obtained earlier ((26),
page 84), and Hdip denotes the remaining part, containing energy of the
dipole field and the interaction energy. The latter term is computed in
Appendix E (page 104). The final result for the Neumann case, written in
terms of standardised variables, reads:

HN
′(x, q, p) =

1

1 − x2
− ln |1 − x2| − 2qx +

1

3
q2 − 2

+
2

3

(
p

eR

x(2 − x2)

(1 − x2)2
− p2

e2R2

1

(1 − x2)3
− p

eR
q

)
. (64)

Now, stability of the system depends upon the polarisability of the particle,
i.e. upon the choice of the “function of state” f (cf. (48) on page 88). At
the moment we have no general criterion which would guarantee stability.
However, it is easy to show that for:

f(~p) = −c2

3
‖~p‖3 =⇒ Dreg = −c2‖~p‖~p, c > 0 (65)

our system is stable. Indeed, using (24) and (62) we obtain the following
equation for the value of the dipole moment p:

−c2p2sgn(p) = Dreg

∣∣∣∣
~r=~r0

= −∇
(
φmon

reg + φdip
reg

)

=
1

4π

(
eq

R2
− 2p

R3(1 − x2)3
− ex(2 − x2)

R2(1 − x2)2

)
. (66)

Denoting 4πec2R4 = C and p̃ = p
eR , we get equation for p̃:

−Cp̃ 2sgn(p̃) =

(
q − 2p̃

(1 − x2)3
− x(2 − x2)

(1 − x2)2

)
. (67)

For small x, we use Taylor expansion of the right-hand side. Consequently,
we have:

−Cp̃ 2sgn(p̃) ≈ q − 2p̃ − 2x − 6p̃x2 − 3x3. (68)

For p̃ > 0 there are two solutions of this equation for small x and q:

p̃1 ≈ 1

C

(
1 +

√
1 − qC +

xC√
1 − qC

)
, (69)

p̃2 ≈ 1

C

(
1 −

√
1 − qC − xC√

1 − qC

)
. (70)
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For p̃ < 0 there is only one solution for small x and q:

p̃3 ≈ − 1

C

(
1 +

√
1 + qC − xC√

1 + qC

)
. (71)

Inserting the above solutions into the energy function (64) we define for
i = 1, 2, 3:

H′
i(x, q) = HN

′(x, q, eRp̃i) .

It turns out that H′
2 does not admit any minimum with respect to x (i.e. a

stable “field + particle” configuration). For the remaining two cases we use
Taylor expansion for small x:

H′
1 ≈ −1 +

1

3
q2 − 4

3C2
+

2

3
√

1 − qC

(
− 2

C2
+

q

C
+ q2

)

−2q

(
1 +

1√
1 − qC

)
x + 2

(
1 − 2

C2
+

q

C
− 1

3

1

1 − qC

+
2√

1 − qC

(
1

3
− 1

C2
+

q

C

))
x2. (72)

H′
3 ≈ −1 +

1

3
q2 − 4

3C2
+

2

3
√

1 + qC

(
− 2

C2
− q

C
+ q2

)

−2q

(
1 +

1√
1 + qC

)
x + 2

(
1 − 2

C2
− q

C
− 1

3

1

1 + qC

+
2√

1 + qC

(
1

3
− 1

C2
− q

C

))
x2 . (73)

Minimising both energies with respect to x we obtain:

x1(q) ≈
3C2

32(C2 − 3)

(
8q +

2C(C2 − 9)

C2 − 3
q2

+
C2(2C4 − 15C2 + 45)

(C2 − 3)2
q3

)
, (74)

x3(q) ≈
3C2

32(C2 − 3)

(
8q − 2C(C2 − 9)

C2 − 3
q2

+
C2(2C4 − 15C2 + 45)

(C2 − 3)2
q3

)
. (75)
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Plugging xi(q) into the energy we get for small q:

H′
1(q) ≈ −1 − 8

3C2
+

15 + 4C2

6(3 − C2)
q2

+
(18 + 42C2 − 7C4)C

12(3 − C2)2
q3 , (76)

H′
3(q) ≈ −1 − 8

3C2
+

15 + 4C2

6(3 − C2)
q2

−(18 + 42C2 − 7C4)C

12(3 − C2)2
q3 . (77)

We see that for C ∈]0,
√

3[ the q2 term is positive. This means that the sys-
tem “particle + field” does not behave any longer like a perpetuum mobile:
to deform its original configuration, corresponding to q = 0, the boundary-
condition controlling device must perform a positive work. Hence, the sys-
tem is stable under small changes of q (see figure 3).

–1.666

–1.664

–1.662

–1.66

–1.658

–1.656

–1.654

–1.652

0 0.02 0.04 0.06 0.08 0.1

q~

Fig. 3. Graph of H′(q) — renormalised energy vs boundary field for dipole particle,

C = 1.
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6.2. Conclusions

We have shown that the polarisability of the particle, described by a
suitable “state function” f (e.g. by (65)), may be a good remedy for the static
instability of the renormalised electrodynamics of point particles. Whether
or not this will cure also the dynamical instability, i.e. the existence of
“runaway” solutions, is another question which we would like to study in the
nearest future.

At the moment the bifurcation phenomenon occurring near the ground
state q = 0 is worthwhile to study. Observe that the point ~r0 = 0, corre-
sponding to q = 0 and described by the purely monopole field, is not stable.
This configuration corresponds to a local maximum of the energy and be-
longs to the unstable branch of stationary points, described by the function
H′

2.

Appendix A

Neumann solution for “particle + field system”

We are looking for a solution of the Poisson equation ∆φ = −eδ(~r−~r0) with

boundary condition (22), where ‖~r0‖ < R and ~r0‖~E. Denote:

φ = φsing +

φreg︷ ︸︸ ︷
φ0

reg − ~E~r , (A.1)

where φsing = 1
4π

e
|~r−~r0|

, ∆φ0
reg = 0 and:

~D0
reg · ~n

∣∣
r=R

= ~n · 1

4π
∇
(

e

|~r − ~r0|

) ∣∣∣∣
r=R

+
e

4πR2
. (A.2)

To find φ0
reg, we use the following formula (cf. [11], p. 83):

1√
r2 + r0

2 − 2 rr0 cos θ
− 1

r
=

∞∑

n=1

Pn(cos θ)
r0

n

rn+1
(A.3)

(θ is the angle between ~r and ~E) valid for −r ≤ r0 ≤ r, together with the
following Ansatz:

φ0
reg =

∞∑

n=1

cnrnPn(cos θ) . (A.4)

Write boundary condition as:

∂

∂r
φ0

reg

∣∣∣∣
r=R

=
e

4π

∂

∂r

(
1

r
− 1

|~r − ~r0|

) ∣∣∣∣
r=R

, (A.5)
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and substitute (A.3) and (A.4) to (A.5). This way we get the solution given
as a series:

φ0
reg =

eR

4π

∞∑

n=1

(
1 +

1

n

)
(rr0)

n

(R2)n+1 Pn(cos θ) . (A.6)

Observe that (A.3) gives, after rescaling, the first component of (A.6). The
second one will be obtained from the following:

Lemma A.1 For ‖r0‖ ≥ r we have

∞∑

n=1

1

n

r0
n

rn+1
Pn(cos θ)

= −1

r
ln

∣∣∣∣∣
1

2

(
1 − r0

r
cos θ +

√
1 +

(r0

r

)2
− 2

r0

r
cos θ

)∣∣∣∣∣ .

Proof: Substituting t for r0 in (A.3):

r0∫

0

(
∞∑

n=1

tn−1

rn+1
Pn(cos θ)

)
dt

=

r0∫

0

(
1

t
√

r2 + t2 − 2rt cos θ
− 1

tr

)
dt

⇔
∞∑

n=1

1

n

r0
n

rn+1
Pn(cos θ)

= −1

r

(
ln

∣∣∣∣
r

t
− cos θ +

1

t

√
r2 + t2 − 2rt cos θ

∣∣∣∣+ ln t

) ∣∣∣∣
r0

0

= −1

r
ln

∣∣∣∣∣
1

2

(
1 − r0

r
cos θ +

√
1 +

(r0

r

)2
− 2

r0

r
cos θ

)∣∣∣∣∣ . (A.7)

Plugging R2 instead of r and rr0 instead of r in Lemma (A.1) yields:

φ0
reg =

e

4π

(
R√

R4 + r0
2r2 − 2r0rR2 cos θ

− 1

R
+

1

R
ln(2R2)

− 1

R
ln
∣∣∣R2 − r0r cos θ +

√
R4 + r0

2r2 − 2r0rR2 cos θ
∣∣∣
)

. (A.8)

Figure 4 shows the directions of the field D − E = Dsing + D0
reg + e

4π∇1
r .

Observe that the field is tangent to the boundary of K(0, R).
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Fig. 4. Directions of the field D–E for R = 1, r0 = 0.5.

Appendix B

Renormalised energy for Neumann solutions

To compute integral (14):

H = m − 1

2

∫

R3−V

D2
singdv +

1

2

∫

V

D2
regdv

+

∫

V

DsingDregdv (B.1)

observe that:

−1

2

∫

R3−V

D2
singdv =

1

2

∫

∂R3−∂V

φsingD
⊥

sing dσ , (B.2)

1

2

∫

V

D2
regdv = −1

2

∫

∂V −∂R3

φregD
⊥

reg dσ . (B.3)

Integrals containing products of singular and regular fields are understood
in the sense of distributions (cf. [13], p. 748). Denoting kǫ := K(~r0, ǫ) we
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obtain:
∫

V

DsingDregdv = lim
ǫ→0

∫

V −kǫ

DsingDregdv

= − lim
ǫ→0

1

2

∫

V −kǫ

∇ (φsingDreg + φregDsing) dv

= − lim
ǫ→0

1

2

∫

∂V −∂kǫ

(
φsingD

⊥
reg + φregD

⊥
sing

)
dσ .(B.4)

Hence, for V = KR := K(0, R) we have:

H = m − 1

2

∫

∂KR

φD⊥ dσ

+ lim
ǫ→0

1

2

∫

∂kǫ

(
φregD

⊥
sing + φsingD

⊥
reg

)
dσ . (B.5)

The formula is true for both the monopole and the dipole singularity of
Dsing. Here, we consider the monopole (Coulomb) singularity. In this case
the function φsing multiplied by ǫ2 (coming from the surface measure dσ)
vanishes for ǫ → 0. Hence, we have:

H = m − 1

2

∫

∂KR

φD⊥ dσ + lim
ǫ→0

1

2

∫

∂kǫ

φregD
⊥
sing dσ . (B.6)

To compute the integral over ∂kǫ, we use spherical coordinates (ǫ, β, ϕ) cen-
tred at ~r0. Parameters r and cos θ present in φreg may be expressed as
follows:

r2 = r2
0 + ǫ2 − 2ǫr0 cos β, r cos θ = r0 − ǫ cos β , (B.7)

lim
ǫ→0

r2 = r2
0, lim

ǫ→0
r cos θ = r0 . (B.8)

Then:

lim
ǫ→0

1

2

∫

∂kǫ

φregD
⊥
sing dσ = lim

ǫ→0

e

2

2π

4π

π∫

0

1

ǫ2
φreg(r0, ǫ, β) sin βǫ2 dβ

=
e

4
φreg(r0, r = r0, θ = 0)

π∫

0

sin βdβ =
1

2
eφreg

∣∣
~r=~r0

. (B.9)
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Consequently:

H = m − 1

2

∫

∂KR

φD⊥ dσ +
1

2
eφreg

∣∣
~r=~r0

. (B.10)

Knowing φ we can compute H:

D⊥|r=R =
e

4π

1

R2
+ E cos θ, (B.11)

φ|r=R = −ER cos θ

+
e

4π

(
2√

R2 + r0
2 − 2r0R cos θ

− 1

R
+

1

R
ln(2R)

− 1

R
ln
∣∣∣R − r0 cos θ +

√
R2 + r0

2 − 2r0R cos θ
∣∣∣
)

, (B.12)

eφreg

∣∣
~r=~r0

= −eEr0 +
e2

4π

(
R

R2 − r2
0

− 1

R
− 1

R
ln

∣∣∣∣1 − r2
0

R2

∣∣∣∣
)

. (B.13)

Note that:

∫

KR

1√
R2 + r0

2 − 2r0R cos θ
dσ = 4πR , (B.14)

∫

KR

E cos θdσ = 0 , (B.15)

∫

KR

ln
∣∣∣R − r0 cos θ +

√
R2 + r0

2 − 2r0R cos θ
∣∣∣ dσ

= 4πR2 ln 2R ,

where we used two integrals 2.736 from [12]. Then:

e

4πR2

∫

KR

φdσ =
e2

4πR
. (B.16)
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Moreover:

E2R

∫

KR

cos2 θdσ =
4

3
πR3E2, (B.17)

∫

KR

E cos θ√
R2 + r0

2 − 2r0R cos θ
dσ =

4

3
πEr0, (B.18)

∫

KR

ln
∣∣∣R − r0 cos θ +

√
R2 + r0

2 − 2r0R cos θ
∣∣∣

× E cos θdσ = −4

3
πr0R, (B.19)

where we used four integrals 2.736 from [12]. Then:

E

∫

KR

φ cos θdσ = −4

3
πR3E2 +

eE

4π

(
8

3
πr0 +

4

3
πr0

)

= −4

3
πR3E2 + eEr0 . (B.20)

The final result is the sum of (B.13), (B.16) and (B.20) with coefficient 1
2 :

H = m +
1

2

(
e2

4π

(
R

R2 − r2
0

− 1

R
ln

∣∣∣∣1 − r2
0

R2

∣∣∣∣−
2

R

)

+
4

3
πR3E2 − 2eEr0

)
. (B.21)

Appendix C

Dirichlet solution and the corresponding energy

To find a solution of the Poisson equation ∆φ = −eδ(~r −~r0) with boundary

conditions (23), where ‖~r0‖ < R and ~r0‖~E, we denote: φ = φsing +φ0
reg− ~E~r,

where φsing = 1
4π

e
|~r−~r0|

, ∆φ0
reg = 0 and:

φ0
reg

∣∣
r=R

= − 1

4π

(
e

|~r − ~r0|

) ∣∣∣∣
r=R

+
e

4πR
. (C.1)

Again, we use Ansatz (A.4) as we did in Appendix A, page 94, and expand
also boundary conditions:

φ0
reg

∣∣∣∣
r=R

=
e

4π

(
1

r
− 1

|~r − ~r0|

) ∣∣∣∣
r=R

, (C.2)
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in series of Legendre polynomials. After substituting (A.3) and (A.4) to
(C.2) we obtain:

φ0
reg = −eR

4π

∞∑

n=1

(rr0)
n

(R2)n+1 Pn(cos θ) . (C.3)

After rescaling (A.3) we get:

φ0
reg =

e

4π

(
1

R
− R√

R4 + r0
2r2 − 2r0rR2 cos θ

)
. (C.4)

Singular part of the electric field has the Coulomb singularity at ~r0. Hence,
formula (B.10) is valid. However, we have:

D⊥|r=R =
e

4πR

R2 − r2
0

(R2 + r0
2 − 2r0R cos θ)

3
2

+ E cos θ, (C.5)

φ|r=R = −ER cos θ +
e

4π

1

R
, (C.6)

eφreg

∣∣
~r=~r0

= −eEr0 +
e2

4π

(
1

R
− R

R2 − r2
0

)
. (C.7)

This implies:

2πR2

π∫

0

e2

(4πR)2
(R2 − r2

0) sin θ dθ

(R2 + r0
2 − 2r0R cos θ)

3
2

=
e2

4πR
, (C.8)

− 2πR2

π∫

0

ER cos θ
e

4πR

(R2 − r2
0) sin θ dθ

(R2 + r0
2 − 2r0R cos θ)

3
2

= −eEr0 , (C.9)

− 2πR2

π∫

0

E2R cos2 θ sin θ dθ = −4

3
πR3E2 , (C.10)

π∫

0

cos θ sin θ dθ = 0 . (C.11)

Consequently, we obtain:

H = m +
1

2

(
4

3
πR3E2 − e2

4π

R

R2 − r2
0

)
, (C.12)

or, in standardised variables (31),

H′
D =

1

3
q2 − 1

1 − x2
. (C.13)
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Appendix D

Dipole particle in a spherical box

We must solve equation ∆φdip = ~p · ∇ (δ(~r − ~r0)) with boundary conditions
~Ddip · ~n

∣∣
r=R

= 0. Denoting φ = φ
dip
sing + φ

dip
reg , where

φ
dip
sing =

1

4π

~p · (~r − ~r0)

|~r − ~r0|3
, (D.1)

we get Laplace equation ∆φ
dip
reg = 0 with boundary condition:

~Ddip
reg · ~n

∣∣
r=R

= ~n · 1

4π
∇
(

~p · (~r − ~r0)

|~r − ~r0|3
) ∣∣∣∣

r=R

. (D.2)

For any pair of vectors ~r0 i ~p we choose coordinates in which ~r0 is parallel to
the z-axis ez and polarisation vector assumes the form ~p = pez + pxex. The
final solution will be the sum of two harmonic functions fulfilling boundary
condition (D.2), calculated separately for pez and pxex.

Observe that, for φmon
reg (~r0, ~r) being a solution of Laplace equation, also

the function ~p
e · ∇~r0

φmon
reg is harmonic. Moreover, if φmon

reg fulfils conditions
((A.5) condition from page 94):

∂

∂r
φmon

reg (~r,~r0)

∣∣∣∣
r=R

=
e

4π

∂

∂r

(
1

r
− 1

|~r − ~r0|

) ∣∣∣∣
r=R

, (D.3)

then, after differentiation with respect to ~r0 we obtain:

− ∂

∂r

(
~p

e
· ∇~r0

φmon
reg

) ∣∣∣∣
r=R

=
1

4π

∂

∂r

(
~p · ∇~r0

1

|~r − ~r0|

) ∣∣∣∣
r=R

. (D.4)

Hence, the function ~p
e · ∇~r0

φmon
reg satisfies boundary conditions (D.2). We

conclude that:

φdip
reg =

1

4πe
(~p · ∇~r0

) φmon
reg , (D.5)

(cf. [11], p.14). Applying (D.5) for ~p = pez + pxex allows us to solve the
problem separately for p parallel and orthogonal to ~r0.
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Solution for ~p ‖ ~r0

To obtain the parallel part we differentiate monopole solution ((A.8),
Appendix A) along the ez-axis:

φdip
reg =

p

e

∂

∂r0
φmon

reg

× p

4π

∂

∂r0

(
R√

R4 + r0
2r2 − 2r0rR2 cos θ

− 1

R
+

1

R
ln(2R2)

− 1

R
ln
∣∣∣R2 − r0r cos θ +

√
R4 + r0

2r2 − 2r0rR2 cos θ
∣∣∣
)

=
p

4π

(
− R(r0r

2 − rR2 cos θ)

(R4 + r0
2r2 − 2r0rR2 cos θ)

3
2

− 1

R
√

R4 + r0
2r2 − 2r0rR2 cos θ

× −r cos θ
(√

R4 + r0
2r2 − 2r0rR2 cos θ + R2

)
+ r2r0

R2 − rr0 cos θ +
√

R4 + r0
2r2 − 2r0rR2 cos θ

)
. (D.6)

But: (
R2 − rr0 cos θ +

√
R4 + r0

2r2 − 2r0rR2 cos θ
)

(D.7)

×
(
R2 − rr0 cos θ −

√
R4 + r0

2r2 − 2r0rR2 cos θ
)

= −(r0r)
2 sin2 θ, (D.8)

(
−r cos θ

(√
R4 + r0

2r2 − 2r0rR2 cos θ + R2
)

+ r2r0

)

×
(
R2 − rr0 cos θ −

√
R4 + r0

2r2 − 2r0rR2 cos θ
)

= −r0r
2 sin2 θ

√
R4 + r0

2r2 − 2r0rR2 cos θ

+ r cos θ(−r0rR
2 cos θ) + R2r2r0

= r2r0 sin2 θ
(
R2 −

√
R4 + r0

2r2 − 2r0rR2 cos θ
)

. (D.9)

So:

φdip
reg =

p

4π

(
− R(r0r

2 − rR2 cos θ)

(R4 + r0
2r2 − 2r0rR2 cos θ)

3
2

+
r2r0 sin2 θ (R2 −

√
R4 + r0

2r2 − 2r0rR2 cos θ)

R(rr0)2 sin2 θ
√

R4 + r0
2r2 − 2r0rR2 cos θ

)

=
1

4π

(
p R3

(
R2 − rr0 cos θ

)

r0 (R4 + (r0r)2 − 2rr0R2 cos θ)
3
2

− p

r0R

)
. (D.10)
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Figure 5 shows the directions of the field Ddip. Observe that the field is
tangent to the boundary of K(0, R).

-
1

-
0
.
5 0

0
.
5 1

y

-
1

-
0
.
5

0
.
5

1
x

Fig. 5. Directions of the field D
dip
sing + Ddip

reg , R = 1, r0 = 0.5, p = 1.

Solutions for ~p⊥~r0

For ~p = pxex we get:

φdip
reg = px

ex

e
· ∇~r0

φmon
reg =

px

e

∂

∂x0
φmon

reg . (D.11)

The easiest way to calculate this derivative is to use spherical coordinates
~r0 = (r0, θ0, ϕ0). Then:

x0 = r0 sin θ0 sinϕ0 , y0 = r0 sin θ0 cos ϕ0 , z0 = r0 cos θ0 , (D.12)

and:

∂

∂x0
= sin θ0 cos ϕ0

∂

∂r0
+ cos θ0 cos ϕ0

1

r0

∂

∂θ0
− sin ϕ0

r0 sin θ0

∂

∂ϕ0
. (D.13)

But for ~r0‖ez this procedure is singular because sin θ0 = 0. To overcome
this difficulty we first calculate the result for ~r0 ∦ ez and then pass to the
limit θ0 → 0 and ϕ0 → 0. For this purpose we must be able to differentiate
the function cos γ, where γ is the angle between ~r and ~r0, i.e.:

~r · ~r0 = rr0 cos γ , (D.14)

or, equivalently:

cos γ = cos θ cos θ0 + sin θ sin θ0 cos(ϕ − ϕ0) . (D.15)
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Hence, (D.13) gives us:

∂

∂x0
cos γ =

(
1

r0
cos θ cos ϕ0 (− cos θ sin θ0 + sin θ cos θ0 cos(ϕ − ϕ0))

− 1

r0
sin ϕ0 sin θ sin(ϕ − ϕ0)

)
θ0→0−→
ϕ0→0

1

r0
sin θ cos ϕ . (D.16)

This method allows us to calculate effectively the derivative of the monopole
field from Appendix A (p. 94) along x0. The final result reads:

φdip
reg =

px

4π

(
rR3 sin θ cos ϕ

(R4 + r0
2r2 − 2r0rR2 cos θ)

3
2

− cos ϕ(R2 cos θ − r0r)

Rr0 sin θ
√

R4 + r0
2r2 − 2r0rR2 cos θ

+
cos θ cos ϕ

Rr0 sin θ

)
. (D.17)

We stress that the above function is regular at θ = 0 due to cancellations
between the second and the third term.

Appendix E

Renormalised energy of a dipole particle

To calculate Hdip we use results of Appendix B. It turns out that in formula
(B.5), only the following non-vanishing terms were not taken into account
in Hmon:

Hdip = −1

2

∫

∂KR

φdipD⊥ dσ + lim
ǫ→0

1

2

∫

∂kǫ

(
φdip

regD
⊥mon
sing + φ

dip
singD

⊥
reg

)
dσ , (E.1)

where:

φdip
reg =

1

4π

(
p R3

(
R2 − rr0 cos θ

)

r0 (R4 + (r0r)2 − 2rr0R2 cos θ)
3
2

− p

r0R

)
, (E.2)

φ
dip
sing =

1

4π

p(r cos θ − r0)

(r2 + r2
0 − 2rr0 cos θ)

3
2

, (E.3)

φmon
reg =

e

4π

(
R√

R4 + r0
2r2 − 2r0rR2 cos θ

− 1

R

− 1

R
ln
∣∣∣R2 − r0r cos θ +

√
R4 + r0

2r2 − 2r0rR2 cos θ
∣∣∣
)

−Er cos θ +
1

R
ln(2R2) , (E.4)

φdip = φdip
reg + φ

dip
sing . (E.5)
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Moreover, we have:

D⊥
∣∣
∂KR

=
1

4π

e

R2
+ E cos θ , (E.6)

D⊥
reg

∣∣
∂kǫ

= − ∂

∂ǫ

(
φmon

reg + φdip
reg

)
. (E.7)

To compute the integral over ∂KR we note that:

φdip

∣∣∣∣
r=R

= φdip
reg + φ

dip
sing =

p

4πr0

(
R2 − r2

0

(R2 + r2
0 − 2Rr0 cos θ)

3
2

− 1

R

)
, (E.8)

whereas D⊥ is expressed by (E.6). Moreover:

1

4π

e

R2
2π

π∫

0

φdip sin θ dθ = 0 . (E.9)

So:

−1

2
2π E

π∫

0

φdip cos θ sin θ dθ = −1

2
p E .

To find the limit:

lim
ǫ→0

1

2

∫

∂kǫ

(
φ

dip
singD

⊥
reg + Dmon

sing φdip
reg

)
dσ , (E.10)

we analyse behaviour of fields (E.2)–(E.7) for ǫ → 0. All these terms have at
most the ǫ−2-singularity. Therefore, they are continuous and bounded when
multiplied by ǫ2. Thus, we can interchange the limit and the integration
operations.

We follow our procedure described in Appendix B, page 96. Using (B.7)
and (B.8) we obtain in terms of the standardised variable x = r0

R
:

lim
ǫ→0

(
ǫ2 φ

dip
sing

)
= − p

4π
cos β , (E.11)
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lim
ǫ→0

(
− ∂

∂ǫ
φmon

reg

)

=
e

4π

(
r0R

(R2 − r2
0)

2
+

r0

(R2 − r2
0)

2R

)
cos β − E cos β

=

(
e

4π

1

R2

x(2 − x2)

(1 − x2)2
− E

)
cos β = − cos β Dmon

reg

∣∣∣∣
~r=~r0

, (E.12)

lim
ǫ→0

(
− ∂

∂ǫ
φdip

reg

)
=

1

4π

2pR3

(R2 − r2
0)

3
cos β

=
1

4π

2p

R3(1 − x2)3
cos β = − cos β Ddip

reg

∣∣∣∣
~r=~r0

, (E.13)

lim
ǫ→0

(
ǫ2 Dmon

sing

)
=

e

4π
, (E.14)

lim
ǫ→0

(
φdip

reg

)
=

1

4π

pr0(2R
2 − r2

0)

R(R2 − r2
0)

2

=
p

4π

x(2 − x2)

R2(1 − x2)2
= −p

e
Dmon

reg

∣∣∣∣
~r=~r0

, (E.15)

π∫

0

cos2 β sin β dβ =
2

3
. (E.16)

Then:

1

2

∫

∂kǫ

(
φ

dip
singD

⊥
reg + Dmon

sing φdip
reg

)
dσ =

1

2

(
4π

3

p

4π

(
Dmon

reg

∣∣∣∣
~r=~r0

+ Ddip
reg

∣∣∣∣
~r=~r0

)

− e

4π
4π

p

e
Dmon

reg

∣∣∣∣
~r=~r0

)

=
1

2

(
pe

4π

1

R2

2

3

x(2 − x2)

(1 − x2)2
− 1

4π

1

3

2p2

R3(1 − x2)3
+

1

3
p E

)
. (E.17)

Using q = 4πR2

e
E and (32) we obtain:

H′ dip :=
8πR

e2
Hdip =

2

3

(
p

eR

x(2 − x2)

(1 − x2)2
− p2

e2R2

1

(1 − x2)3
− p

eR
q

)
.

(E.18)
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