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In a recent letter by H. Davoudiasl, R. Kitano, T. Li and H. Murayama
“The new Minimal Standard Model” (NMSM) was constructed which in-
corporates new physics beyond the Minimal Standard Model (MSM) of
particle physics. The authors follow the principle of minimal particle con-
tent and therefore adopt the viewpoint of particle physicists. It is shown
that a generalisation of the geometric structure of spacetime can also be
used to explain physics beyond the MSM. It is explicitly shown that for
example inflation, i.e. an exponentially expanding universe, can easily be
explained within the framework of Einstein–Cartan theory.

PACS numbers: 04.50.+h, 98.80.Jk

1. Introduction

There are many ideas how physics beyond the Minimal Standard Model
may be explained, however none of them so far was able to give a consistent
output that could explain consistently all experimental results of particle
physics and cosmology. In contrast to these modern approaches the authors
of [2] adopt a conservative particle physicist’s point of view and include the
minimal number of new degrees of freedom to formulate the NMSM that
can explain Dark Energy, non-baryonic Dark Matter etc.

From a geometrical point of view it may be preferable to allow more
general geometric structures rather than increasing the number of required
particles. Therefore the guiding principle of this note may be called the
principle of minimal geometry content.

The cosmological principle states that the universe is spatially homo-
geneous and isotropic. Mathematically speaking the four-dimensional (4d)
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spacetime (M, g) is foliated by 3d spacelike hypersurfaces of constant time
which are the orbits of a Lie group G acting on M with isometry group
SO(3). All fields are invariant under the action of G. The cosmological
principle implies

Lξmgµν = 0 , and LξmT λ
µν = 0 , (1)

where ξm are the six Killing vectors (labelled by m) generating the spacetime
isometries. gµν denotes the metric tensor and T λ

µν stands for the torsion
tensor, Greek indices label the holonomic components.

By imposing the restrictions (1), the metric tensor is of Robertson–
–Walker type

ds2 = −dt2 +

(

a(t)

1 −
k
4
r2

)2

(dx2 + dy2 + dz2) = ηije
i
⊗ ej , (2)

where r2 = x2 + y2 + z2 and where the 3-space is spherical for k = 1, flat
for k = 0 and hyperbolic for k = −1. The vielbein 1-forms in (2) read

et = dt , ex =
a(t)

1 −
k
4
r2

dx , ey =
a(t)

1 −
k
4
r2

dy , ez =
a(t)

1 −
k
4
r2

dz , (3)

where Latin indices label the anholonomic components.
When the restrictions (1) are imposed on the torsion tensor [8], the (non-

vanishing) allowed components are

Txxt = Tyyt = Tzzt = h(t) , (4)

Txyz = Tzxy = Tyzx = f(t) , (5)

where we closely follow the notation of [5].

2. Einstein–Cartan theory in cosmology

In the following it is shown that inflation can be explained without in-
troducing additional fields but considering a spacetime with torsion. The
simplest theory of this type is Einstein–Cartan theory which is derived from
the Einstein–Hilbert action by varying the vielbein and the spin-connection
independently. Then the field equations are [6]

Ri
j −

1

2
Rδi

j + Λδi
j = 8π tij , (6)

T i
jk − δi

jT
l
lk − δi

kT
l
jl = 8π si

jk , (7)

where tij is the canonical energy-momentum tensor and si
jk is the tensor of

spin.
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By taking the cosmological principle into account the field equations (6)
of Einstein–Cartan theory simplify to

3
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(
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ȧ

a

)2

+
k

a
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1

4
f2

)

−Λ = 8πρ , (8)

−

(

(

h +
ȧ

a

)2

+
k

a
−

1

4
f2

)

− 2

(

(

h +
ȧ

a

)˙

+
ȧ

a

(

h +
ȧ

a

)

)

+Λ = 8πP. (9)

The torsion field equations (7) become

f = 8πs , s(t) = Sxyz = Szxy = Syzx , (10)

−2h = 8πq , q(t) = Sxxt = Syyt = Szzt . (11)

If no torsion source is present s = q = 0, the algebraic equations of motion
imply the vanishing of the torsion tensor f = h = 0. Without torsion, the
field equations (8) and (9) reduce to the standard Friedman equations of
cosmology.

Let us have a closer look at the field equations (8)–(11) in case of
q = h = 0, i.e. only the skew-symmetric part of the torsion tensor, cf. [7].
Then the field equations simplify to

3
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)2

+
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4
f2

)

− Λ = 8πρ , (12)

−

(

(

ȧ
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4
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− 2
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+ Λ = 8πP , (13)

f = 8πs , (14)

which implies the following conservation equation

ρ̇

3
+

ȧ

a
(ρ + P ) +

s

2

(

ḟ +
ȧ

a
f

)

= 0 . (15)

With (14) the two remaining independent field equations can be reformulated
to give

3

(

(

ȧ

a

)2

+
k

a

)

= 8πρeff = 8πρ + Λ +
3

4
(8πs)2 , (16)

−2
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k

a
= 8πPeff = 8πP − Λ −

1

4
(8πs)2 . (17)
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In (16) and (17) the matter dominated era of cosmology is defined by
P = 0 and ρ = ρm where in addition it is assumed that the torsion contri-
bution is sufficiently small, which is indeed very reasonable as shall be seen.
The radiation dominated era is defined by the equation of state P = ρ/3
and ρ = ρr, again with a sufficiently small torsion contribution. For sake of
simplicity we assume the following setup for the torsion dominated era, in
which the universe is exponentially increasing: Assume that torsion in (16)
and (17) is the leading contribution, such that one may neglect the others.
In the early time of the universe the particle density was high and there-
fore the probability of having some non-vanishing macroscopic spin is the
higher the denser the matter distribution is. On the other hand it is reason-
able that the averaged spin density is exponentially decreasing with time,
s ∝ exp(−t/τ), where τ is a characteristic time scale. Putting this into (15)
yields

ṡ

s
= −

1

τ
= −

ȧ

a
, (18)

which simply implies that the scale factor a is an exponentially increas-
ing function of time, a ∝ exp(t/τ) if the torsion function is exponentially
decreasing and if the torsion contribution is the leading one.

Hence a physically intuitive assumption on the behaviour of torsion can
explain the inflation era of cosmology without introducing further particles.
Since the torsion is rapidly decreasing, its contribution to (16) and (17) will
indeed be sufficiently small after the short period of inflation. This implies
that today’s cosmological measurements possibly should detect some small
non-vanishing torsion contribution, (see e.g. [3]). This torsion remnant could
then be used to solve the sign problem of the cosmological constant, as was
shown by the author in [1].

It is neither the author’s aim to criticise the motivation and derivation
of the NMSM nor to criticise the successful way that lead to the MSM. We
try to show that other, equally conservative, approaches may also work. It
should be emphasised that the consideration of torsion is nearly as old as
general relativity itself (see e.g. [4] for a historical review). Thus the guiding
principle of minimal geometry content might be as successful as the minimal
particle content principle. Only the experiment will decide which of these
two principles is the one describing nature correctly.
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