
Vol. 36 (2005) ACTA PHYSICA POLONICA B No 10

LIE ALGEBRAIC STRUCTURES IN PEGG–BARNETT
QUANTIZATION FORMULATION

Jian Qi Shen†

Zhejiang Institute of Modern Physics and Department of Physics
Zhejiang University

Yuquan Campus, Hangzhou 310027, People’s Republic of China

jqshen@coer.zju.edu.cn

(Received May 11, 2005)

The oscillator algebra of Pegg–Barnett (P–B) oscillator with a finite-
dimensional number-state space is considered. It is found that such a
finite-dimensional oscillator possesses an su(n) Lie algebraic structure. A
so-called supersymmetric P–B oscillator is suggested, and some related top-
ics (such as the algebraic structure and the occupation number operator of
the supersymmetric P–B oscillator) are briefly discussed. In addition, as
one of the applications of the P–B quantization, a potential formula for the
masses of charged leptons, which agrees reasonably well with the experi-
mental values, is constructed based on the concept of supersymmetric P–B
oscillator.

PACS numbers: 03.65.Fd, 02.20.Sv

1. Introduction

It is well known that the usual mathematical model of the monomode
quantized electromagnetic field is the harmonic oscillator with an infinite-
dimensional number-state space, the commuting relation of which is
[a, a†] = I with a and a† being the single-mode photon annihilation and
creation operators, respectively. Due to the permutation invariance for the
trace of the product of two matrices (operators), i.e., tr(aa†) = tr(a†a), it
follows directly that the trace of commutator is vanishing, i.e., tr[a, a†] = 0,
which, however, contradicts the fact that the identity matrix I possesses a
nonvanishing trace, namely, trI 6= 0. This, therefore, means that there exist
no such representations with finite number of generators for the Heisenberg
algebra (non-semisimple Lie algebra). So, we should consider the oscillator
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algebra with finite-dimensional state spaces, which is a semisimple alge-
braic extension of Bosonic oscillator algebra. On the other hand, in an at-
tempt to investigate the number-phase uncertainty relations of the maser and
squeezed state in quantum optics, physicists meet, however, with difficulties
arising from a fact that the classical observable phase of light unexpect-
edly has no corresponding Hermitian operator counterpart (quantum optical
phase) [1–3]. In this subject, several problems we encountered are as follows:

(i) the exponential-form operator exp[iφ̂] (with φ̂ being the phase operator)
is not unitary; (ii) the number-state expectation value of Dirac’s quantum re-

lation [φ̂, N̂ ] = −i (with N̂ being the occupation-number operator of photon

fields) is even zero, i.e., 〈n|[φ̂, N̂ ]|n〉 = 0; (iii) the number-phase uncertainty
relation ∆N∆φ ≥ 1

2 would imply that a well-defined number state would ac-
tually have a phase uncertainty of greater than 2π [4]. In order to overcome
these difficulties, Pegg and Barnett suggested an alternative, and physically
indistinguishable, mathematical model of the single-mode field involving a
finite but arbitrarily large state space [4], in which a phase state was defined
as follows

|θ〉 = lim
s→∞

(s + 1)−
1

2

s
∑

n=0

exp(inθ)|n〉, (1)

where {|n〉} (n = 0, 1, 2, ..., s) are the s + 1 number states, which span an
(s + 1)-dimensional state space. This, therefore, means that the state space
{|n〉} with 0 ≤ n ≤ s has a finitely upper level (|s〉) and the maximum
occupation number of particles is s rather than infinity. In their new quan-
tization formulation, the dimension of number state space is allowed to tend
to infinity after physically measurable results are calculated [4]. Pegg and
Barnett showed that this approach and the conventional infinite state space
are physically indistinguishable. However, this method has the additional
advantage of being able to incorporate a well-behaved Hermitian phase op-
erator within the formalism. The resulting number-phase commutator in
the Pegg–Barnett (P–B) approach does not yet lead to any inconsistencies,
but satisfies the condition for Poisson-bracket-commutator correspondence.
It was shown that such an approach has several advantages over the con-
ventional Susskind–Glogower formulation [2]. For example, the P–B phase
operator is consistent with the vacuum being a state of random phase, while
the Susskind–Glogower phase operator does not demonstrate such a prop-
erty of vacuum [4]. The P–B formulation is useful for treating the problems
of atomic coherent population trapping (CPT) and electromagnetically in-
duced transparency (EIT) [5].

In this paper we will further consider the P–B harmonic oscillator that
involves a finitely large state space, and show that it possesses an su(n)
Lie algebraic structures. Based on this consideration, we will generalize the
P–B oscillator to a supersymmetric case. It will be demonstrated that the
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multiphoton interaction process, which causes the k-photon absorption and
emission in each atomic transition, can model the behavior of the supersym-
metric P–B oscillator.

2. The su(n) Lie algebraic structures in the P–B oscillator

The quantum harmonic oscillator possessing an infinite-dimensional
number-state space (i.e., the maximum occupation number s tends to infin-
ity) can well model the Bosonic fields. Taking account of the P–B harmonic
oscillator means that the non-semisimple Lie algebra should be generalized
to a semisimple case, namely, the quantum commutator [a, a†] = I will be
replaced with a new commuting relation [a, a†] = A (A will be defined in
what follows). For a preliminary consideration, we first take into account the
case s = 1, where the matrix representation of the annihilation (creation)
operators and A of the fields are of the form (in the set of number-state base
vectors)

a =

(

0 1
0 0

)

, a† =

(

0 0
1 0

)

, A =

(

1 0
0 −1

)

. (2)

It is apparently seen that the operators a, a† and A satisfy an sl(2) algebraic
commuting relations. Here one can readily verify that a = (σ1 + iσ2) /2,
a† = (σ1 − iσ2) /2 and A = σ3, where σi’s (i = 1, 2, 3) are Pauli’s matrices.
It follows from (2) that aa† + a†a = I. Clearly, the algebraic generators of
su(2) Lie algebra can be constructed in terms of the matrices in (2). This,
therefore, implies that the P–B harmonic oscillator with s = 1 corresponds
to the fermionic field and possesses an su(2) Lie algebraic structure.

As another illustrative example, we will take into consideration the case
of s = 2, the matrix representation of a, a† and A of which are written

a =





0 1 0

0 0
√

2
0 0 0



 , a† =





0 0 0
1 0 0

0
√

2 0



 , A =





1 0 0
0 1 0
0 0 −2



 .

(3)
Calculation of the commutators among the Lie algebraic generators of the
P–B harmonic oscillator with s = 2 yields

[a,A] = 3
√

2





0 0 0
0 0 −1
0 0 0



 = 3
√

2M,

[a†,A] = −3
√

2





0 0 0
0 0 0
0 −1 0



 = −3
√

2M†,
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[

M,M†
]

= −





0 0 0
0 −1 0
0 0 1



 = −K,

[a,M] = −





0 0 1
0 0 0
0 0 0



 = −F ,
[

a†,M
]

= −
√

2K,

[

a,M†
]

=
√

2K,
[

a†,M†
]

= F†, [K,F ] = −F , [K,F†] = F†.(4)

It is readily verified that the algebraic generators a, a†,A,M,M†,K,F ,F†

form an sl(3) algebra. The eight Gell-Mann matrices can therefore be con-
structed in terms of them, i.e.,

λ1 = a + a† +
√

2(M + M†) , λ2 = i[a† − a +
√

2(M† −M)] ,

λ3 = A + 2K, λ4 = F + F† , λ5 = i(F† −F) ,

λ6 = −(M + M†) , λ7 = −i(M† −M) , λ8 =
1√
3
λ8 . (5)

It is thus demonstrated that the P–B harmonic oscillator with s = 2 pos-
sesses an su(3) Lie algebraic structure.

In what follows, we will study the algebraic structures of P–B harmonic
oscillators with arbitrary occupation numbers. For the P–B oscillator with
a finite but arbitrarily large state space of s + 1 dimensions, the matrix
representation (in the set of number-state base vectors) of the operators a,
a† and A takes the following form

amn =
√

nδm,n−1, a†mn =
√

n + 1δm,n+1, Amn = δmn − (s + 1)δmsδns,
(6)

where the subscript m,n (which run from 0 to s only) denote the matrix
row-column indices. The remaining generators M,M†,K,F ,F†, . . . can be
obtained as follows

[a,A]mn = (s + 1)
√

s(−δm+1,sδns) = (s + 1)
√

sMmn ,
[

a†,A
]

mn
= −(s + 1)

√
s(−δmsδn+1,s) = −(s + 1)

√
sM†

mn ,
[

M,M†
]

mn
= −(δmsδns − δm+1,sδn+1,s) = −Kmn ,

[A,M] = (1 + s)M,
[

A,M†
]

= −(1 + s)M† ,

[a,M]mn = −
√

s − 1δm+1,s−1δns = −
√

s − 1Fmn ,
[

a†,M†
]

mn
=

√
s − 1δmsδn+1,s−1 =

√
s − 1F†

mn ,

[K,F ]=−F ,
[

K,F†
]

=F†, [M,K] = 2M,
[

M†,K
]

=−2M† , . . .(7)
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where 0 ≤ m,n ≤ s. For the case of s = 2, it has been shown above
that Hermitian operators (such as the eight Gell-Mann matrices) can be
constructed in terms of a, a†,A,M,M†,K,F ,F†. Likewise, here the Her-
mitian operators (generators) of Lie algebra can also be obtained via the
linear combination of the above generators (7). If G represents the linear
combination of the Hermitian operators, and consequently G = G†, then the
exponential-form group element operator U = exp(iG) is unitary. Besides,
since a, a† and A are traceless, all the generators derived by the commu-
tators in (7) (and hence G) are also traceless due to the cyclic invariance
for the trace of matrices product. Thus the determinant of the group el-
ement U is unity, i.e., detU = 1, because of detU = exp[tr(iG)]. Since
it is known that such a group element U that satisfies simultaneously the
above two conditions is the group element of the su(n) Lie group, the high-
dimensional Gell-Mann matrices, which closes the corresponding su(n) Lie
algebraic commutation relations among themselves, can also be constructed
in terms of the generators a, a†,A,M,M†,K,F ,F†, ... presented above. It
is thus concluded that the P–B harmonic oscillator with a maximum occupa-
tion number s has an (s + 1)-dimensional number-state space and possesses
an su(s + 1) Lie algebraic structure.

Consideration of the case of s → ∞ is of typical interest. Apparently, it
is seen that when s approaches infinity, A will tend to an identity matrix I,
and all the remaining generators (except a and a†), the off-diagonal matrix
elements of which approach zero, are hence reduced to O. This, therefore,
means that the P–B harmonic oscillator with an infinite-dimensional state
space corresponds just to the oscillator of a Bosonic field.

3. Supersymmetric P–B oscillator and its potential applications

In the preceding section, we extend the non-semisimple algebra of har-
monic oscillator with an infinite-dimensional state space to a semisimple
algebraic case, which can characterize the algebraic structures of the P–B
oscillator. In what follows we will consider a generalization of P–B oscillator,
i.e., the so-called supersymmetric P–B oscillator, which may possess some
physically interesting significance.

3.1. Supersymmetric algebra and its physical realization

For this aim, first we take into account a set of algebraic generators
(N,N

′
, Q,Q†), which possesses a supersymmetric Lie algebraic properties,

i.e.,
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Q2 = (Q†)2 = 0,
[

Q,Q†
]

= N
′

σ3 ,
[

N,N
′
]

= 0 , [N,Q] = −Q ,
[

N,Q†
]

= Q† ,
{

Q,Q†
}

= N
′

, {Q,σ3} =
{

Q†, σ3

}

= 0 ,

[Q,σ3] = −2Q ,
[

Q†, σ3

]

= 2Q† ,
(

Q† − Q
)2

= −N
′

, (8)

where {} denotes the anticommuting bracket. Such a Lie algebra (8) can be
physically realized by a two-level multiphoton Jaynes–Cummings model, the
Hamiltonian of which is of the form (in the rotating wave approximation)
[6–8]

H = ωa†a +
ω0

2
σ3 + g(a†)kσ− + g∗akσ+, (9)

where a† and a stand for the creation and annihilation operators for the
electromagnetic field, respectively, and obey the commutation relation
[

a, a†
]

= 1; σ± and σ3 denote the two-level atomic operators, which sat-
isfy the commutation relation [σ3, σ±] = ±2σ±, [σ+, σ−] = σ3; g (g∗) is the
coupling coefficient and k the total photon number in each atomic transition
process; ω0 and ω represent the atomic transition frequency and the photon
mode frequency, respectively. By the aid of both the commutation relations
(8) and the following expressions (10) [9–11]

N = a†a +
k − 1

2
σ3 +

1

2
=

(

a†a + k
2 0

0 aa† − k
2

)

,

N
′

=

(

ak(a†)k

k! 0

0 (a†)kak

k!

)

,

Q† =
1√
k!

(a†)kσ− =

(

0 0
(a†)k

√
k!

0

)

,

Q =
1√
k!

akσ+ =

(

0 ak

√
k!

0 0

)

. (10)

Hamiltonian (9) of the two-level multiphoton Jaynes–Cummings model can
be rewritten as

H = ωN +
ω − δ

2
σ3 + gQ† + g∗Q − ω

2
(11)

with the frequency detuning δ = kω − ω0. In the following, δ is taken to
be zero. It can be verified that under this condition the interaction in the
multiphoton system can model the supersymmetric P–B oscillator.
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3.2. Modelling the supersymmetric P–B oscillator

With the help of the relations 1
k!a

k(a†)k |m〉 = (m+k)!
m!k! |m〉 and

1
k!(a

†)kak |m + k〉 = (m+k)!
m!k! |m + k〉, one can arrive at

N
′

(

|m〉
|m + k〉

)

= Cm
m+k

(

|m〉
|m + k〉

)

(12)

with the combination coefficient

Cm
m+k =

(m + k)!

m!k!
. (13)

One can, therefore, obtain the following supersymmetric quasialgebra
(N,Q,Q†, σ3) in a sub-Hilbert-space corresponding to the particular eigen-

value Cm
m+k of the Lewis–Riesenfeld invariant operator N

′
[11] by replacing

the generator N
′
with Cm

m+k in the commutation relations in (8), namely,

[

Q,Q†
]

= Cm
m+kσ3 ,

{

Q,Q†
}

= Cm
m+k ,

(

Q† − Q
)2

= −Cm
m+k . (14)

Based on such a quasialgebra in the sub-Hilbert-space, one can propose a
concept of the supersymmetric P–B oscillator. The algebraic generators of
such a generalized P–B oscillator agree with the commuting relation (14),
where Q† and Q can be regarded as the creation and annihilation operators,
respectively, and the eigenvalue Cm

m+k of N
′
may be considered the particle

occupation number of the supersymmetric P–B oscillator in a certain number
state.

In the following, we consider the problem of eigenvalue equation of the

supersymmetric multiphoton system. Since |m〉
(

1
0

)

and |m + k〉
(

0
1

)

form a complete set of base vectors in the sub-Hilbert-space corresponding
to the particular eigenvalue Cm

m+k of the generator N
′
, the eigenstate |Ψm〉

of the Hamiltonian (11) can be written as a liner combination of these base
vectors, i.e.,

|Ψm〉 =

(

c+ |m〉
c− |m + k〉

)

, (15)

where c± denotes the time-independent coefficients. By using the relation
(the eigenvalue equation of the free Hamiltonian)

ω

[(

N − 1

2

)

+
1

2
σ3

](

|m〉
|m + k〉

)

= ω

(

m +
k

2

)(

|m〉
|m + k〉

)

, (16)
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where both N and σ3 are the diagonal matrices, one can obtain the eigen-
value equation of the Hamiltonian (11) as follows

H|Ψm〉 =

[

ω

(

m +
k

2

)

+ ǫg

]

|Ψm〉 . (17)

As the squared of the interaction Hamiltonian gQ†+g∗Q is g∗g
(

QQ† + Q†Q
)

,

where the relation (Q†)2 = Q2 = 0 has been substituted, the eigenvalue
equation (17) can be rewritten as

(

QQ† + Q†Q
)

|Ψm〉 =
ǫ2
g

g∗g
|Ψm〉 , (18)

which can be viewed as an eigenvalue equation for the occupation number
operator of the supersymmetric P–B oscillator. Thus we have shown that
the multiphoton process can model the behavior of the supersymmetric P–B
oscillator. Since the eigenvalue of QQ† + Q†Q is Cm

m+k, the parameter ǫ2
g in

Eq. (18) is
ǫ2
g = g∗gCm

m+k . (19)

3.3. Mass spectrum of charged leptons

The extension of P–B formulation to the supersymmetric case may be
physically interesting. Here, we will consider a potential application of the
supersymmetric P–B oscillator to the mass spectrum of charged leptons.
Based on the experimental values for the masses of charged leptons (i.e.,
electron, µ and τ) and the concept of the above supersymmetric P–B oscil-
lator, we may construct a mass formula for the charged leptons, i.e.,

mn = Cn
3

(

1

2

)n2 (

1

α

)n

me (20)

with me and α being the electron mass and the electromagnetic fine structure
constant, respectively. The integer n in (20) denotes the leptonic generation
label (generation quantum number) standing for the various generations of
charged leptons, i.e., the electron (e), muon (µ) and tau (τ) particles corre-
spond to n = 0, 1, 2, respectively. Note that here we have assumed that the
Hamiltonian of the supersymmetric P–B oscillator may be written in the
form H = 1

2

{

Q,Q†}Ω by analogy with the Hamiltonian (H = 1
2

{

a, a†
}

ω)
of the Bosonic oscillator, and that such a supersymmetric P–B oscillator
might have close relation to the charged lepton mass spectrum, say, the rest
mass of charged leptons may be proportional to the eigenvalues (Cm

m+k) of

the operator
{

Q,Q†}. Thus, by using the experimental data for charged



Lie Algebraic Structures in Pegg–Barnett Quantization Formulation 2855

lepton masses and introducing the generation quantum number n and fine
structure constant α, we can construct the mass formula (20). The present
mass formula for the cases of n = 0, 1, 2 agrees to the experimental results
about one part in 102: specifically, the relative precession of formula (20)
for muon is −0.59% and for tau +1.3% (here, α is taken to be 1/137.036.
The relative precession may be more ideal for the tau particle if the running
coupling coefficient is taken into account). It follows from the charged lep-
tons mass formula (20) that the maximum leptonic generation label n can
be taken to be three and the total generation number of charged leptons
may therefore be four, and hence there might exist a fourth charged lep-
ton, which (should such exist) is, however, unknown both theoretically and
experimentally up to now.

The occurrence of the leptonic fermion chain (e, µ, τ , . . . ) is a novel
phenomenon for which we have so far not any theories to interpret the
origin of the generation of leptons. Regarding this subject (i.e., genera-
tion phenomenon), the fundamental problems may be as follows: why does
the generation phenomenon exist? What causes the generation number of
fermions to be not up to three [12]? Studying the mass formula for lep-
tons may provide clue to the physicists on how the fundamental mechanism
involved works in the above-mentioned problems. For this aim, histori-
cally, several authors probed the lepton and quark mass spectra [13–15].
The previous charged lepton mass formulae may have two disadvantages:
(i) they could not agree with experimental results very well; (ii) the gener-
ation number of fermions in these mass formulae were often infinite or they
could not account for the finite-generation-number phenomenon of fermions.
It is, however, of physical interest that the finite-generation-number phe-
nomenon may be in some sense explained by the charged lepton mass spec-
trum (20) in the present paper.

Although several experimental evidences have shown that the total num-
ber of the generations of fermion chain is three [12], many researchers has
so far tried to explore the possibility of the existence of the fourth genera-
tion [16–26]. For example, since the latest electroweak precision data allows
the existence of additional chiral generations in the standard model [17],
Arik et al. studied the influence of extra generations on the production of
the standard model Higgs boson at hadron colliders [16, 17]. Some authors
considered the exotic interactions involving fourth-generation quarks and
leptons which cannot be confused experimentally with those of the stan-
dard model, or suggested a completely different interaction model for the
extra-generation fermions [22–31]. These studies (extension of the standard
electroweak gauge model to include a fourth generation of fermions) may
provide a possible test of fourth generation and would probably give a sig-
nal of new physics [22–26,30, 31].
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4. Concluding remarks

We considered the su(n) Lie algebraic structures for the P–B quantiza-
tion formulation and generalized the P–B oscillator to the supersymmetric
case. It was shown that the fermionic and bosonic fields are two special cases
of P–B oscillator, the corresponding dimensions of state spaces of which are
two and infinity, respectively. A property that the multiphoton system,
which possesses a supersymmetric Lie algebraic structure, can model the
behavior of the supersymmetric P–B oscillator was demonstrated in the
present paper. The potential application of the supersymmetric P–B oscil-
lator algebra to the mass spectrum of charged leptons was briefly suggested.
As far as the generalized P–B oscillator is concerned, the algebraic com-
mutation relation (14) may clue physicists on the mathematical mechanism
and physical meanings of the above mass spectrum of charged leptons. Even
though at present it is well known that various experimental evidences show
that there are only three generations of fundamental particles, the detection
of potentially new generations of particles is still of physical interest. We
hope that the consideration of algebraic structures of P–B oscillator pre-
sented here may open up new opportunities for investigating the generation
quantum number (and hence the generation structure) of particles as well
as other related topics such as fractional statistics, anyon [32,33] and cyclic
representation of quantum algebra (group) [34].

The work is supported partially by the Zhejiang Provincial Natural Sci-
ence Foundation of China (under Project No. Y404355) and the Wenner–
Gren Foundations (Sweden).
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