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The effect of a soft phase core appearance in the center of polytropic star
is analyzed by means of linear response theory. Approximate formulae for
the changes of radius, moment of inertia and mass-energy of non-rotating
configuration with arbitrary adiabatic indices are presented, followed by an
example evaluation of astrophysical observables.
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1. Introduction

In spite of lack of precise Earth-based experimental data involving mat-
ter at densities higher that the nuclear saturation density the astrophysical
observations of compact objects give us an unique chance of understanding
the underlying physics. At present it cannot be excluded that at certain
density phase transition in nuclear matter will produce a state not observed
in laboratories e.g. pion or kaon condensation, or de-confined quarks (see [1]
for review). If the phase transition happens to be of the first order, the con-
sequences from the point of view of observations are extremely interesting.
Namely, in the first order phase transition, the new phase arise only by nu-
cleation. This means that the meta-stable core formed during the compact
star evolution (e.g. accretion, spin-down) nucleates to a stable new-phase
core. The transition is therefore accompanied by star-quake — the radius
change, energy release and possible other violent phenomena.

This work is an extension of the linear response theory developed by
Haensel, Zdunik and Schaeffer [2, 3] and employed to the case of first or-
der phase transition from one pure phase (normal, N-phase) to other pure
phase (super-dense, S-phase). While one demands that the transition should
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conserve locally electric charge and the number of particles, it occurs at con-
stant pressure, technically by so-called “Maxwell construction” [4]. In the
presence of the gravitational field it is accompanied by a density jump at
the boundary of phases.

Due to the works of Glendenning [5, 6] it became clear that relaxing
the condition of local electrical neutrality permits for a coexistence of both

phases within a range of pressures — a structural mixed-phase transition.
The volume fraction occupied by the higher-density phase increases from
zero at the lower pressure boundary to one at the upper pressure boundary.
In realistic matter, if the surface tension and Coulomb contribution to the
energy is not to large, the mixed-phase is preferred over a pure phases state.

Here we derive the formulae suitable for description of the change of
the parameters (radius, moment of inertia, mass-energy) of a compact star
under the transition from a meta-stable core to stable core composed of
the “structural mixed-phase”. These changes are proportional to the specific
powers of the newly-born core. We will neglect the rotation of the star.
For simplicity, the equation of state (EOS) of matter in both N- and the
mixed-phases will be approximated by polytropes. The methods used here
are similar to those used in a somewhat more complicated case of realistic
N-phase EOSs presented in [7].

The article is arranged as follows: Sect. 2 provides brief description of
the theoretical background and methods used, Sect. 3 contains results of
numerical calculations, and Sect. 4 includes conclusion and final remarks.

2. Linear response theory

We will describe theoretical background of star linear response to the
appearance of the soft “mixed-phase” core. The calculation is based on ex-
pressing the change in the density profile, due to the presence to a small
core, as the combination of two independent solutions of the linearly per-
turbed equations of stellar structure [2, 3]. The presence of a denser phase
in the core changes the boundary condition at the phase transition pressure
P0 (Fig. 1) and allows to determine the numerical coefficients in the expres-
sion for the density profile change. The leading term in the perturbation of
the boundary condition at the edge of the new phase results from the mass
excess due to the lower stiffness, and higher density of the new phase as
compared to those of the (normal, less-dense) N-phase.

We assume that at a central pressure Pc = Pcrit the nucleation of the
S-phase in a super-compressed core of radius rN, of configuration C, initiates
the phase transition and formation of the “mixed-phase” core of radius rm

in a new configuration C∗, as shown on Fig. 1. Transition to a mixed-phase
occurring at rm is associated with a substantial drop in the adiabatic index
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Fig. 1. Schematic plot of central pressure Pc versus central matter density ρc for

configurations based on a pure N-phase EOS and an EOS with a mixed-phase seg-

ment. The solid line denotes stable states, the dashed line — the states which are

meta-stable with respect to the transition to a mixed-phase state. For a critical

central density ρcrit the S-phase nucleates in the super-compressed core of con-

figuration C, which results in the transition into a stable configuration C* with a

mixed-phase core and a central density ρ∗
c
. Configurations C and C* have the same

baryon number A.

of matter, defined as γ ≡ (nb/P )dP/dnb, from γN to γm. In realistic EOSs,
mixed-phase is softer than the pure one, because the increase of mean density
is reached partly via conversion of a less dense N-phase into denser S-phase,
and therefore requires less pressure than for a pure-phase. This remains
true for any fraction of the S-phase, and leads to a discontinuity of γ at the
phases boundary, ρ0. Realistic examples of such transitions are given by
[8–10] and [11] (Table 9.1). In all those cases, near the boundary logarithm
of pressure depends linearly on the logarithm of baryon density; it clearly
indicates that the polytropic approximation of mixed-phase is valid in the
small mixed-phase core regime. We will henceforth benefit from expansion
in powers of the (tiny) core radius rm.

As far as global properties of stars are concerned, the hydrostatic stars’
equilibria corresponding to EOSs with and without the phase transition
must be compared. The models are non-rotating, spherically symmetric so-
lutions of Einstein’s equations, usually called Tolman–Oppenheimer–Volkoff
(TOV) equations [12, 13]. The moment of inertia was calculated using the
slow-rotation approximation [14]. Hydrostatic solutions are labeled by their
central density ρc. The configurations based on the two EOSs are identical
up to ρc = ρ0; the configuration with such central density will be denoted
by C0 and will be called a “reference configuration”.
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As was demonstrated by [7], the leading changes due to a phase transition
are proportional to the fifth power of rm in the case of stellar radius R and
the moment of inertia I and seventh power in the case of the gravitational
mass-energy E = Mc2. During calculations, we assume constant γm in the
“mixed-phase” — in principle, the inclusion of rm-dependent γm contributes
to the higher order terms, but this contribution is negligible in the case of
realistic EOSs (see [7] for details).

When the central density exceeds ρ0, the models begin to differ due to the
appearance of a softer “mixed-phase” core in configurations corresponding
to the mixed-phase segment in the EOS. For two stars composed of equal
number of baryons A, greater than a baryon number A0 of the reference
configuration C0, we compare the global parameters — mass-energy, radius,
and moment of inertia. Their difference corresponds to the changes in these
parameters implied by the phase transition in the stellar core.

The new phase influences the boundary conditions by the presence of the
prefactor (γN/γm − 1), which is qualitatively the same as (ρS/ρN − 1) in the
case of a density jump from pure N-phase to pure S-phase [2, 3]. Moreover,
the results obtained by [7] indicate that linear response effects should be
proportional to the core radius power greater by two than in the case of the
transition between pure-phases. One would expect that the relative change
of the stellar parameter Q = R, I, E takes the following form:

δQ̄ ≡
Q∗ − Q

Q0
≃ −βQ

(

γN

γm

− 1

)

(r̄m)l, (1)

where r̄m ≡ rm/R0, the power l = 5 corresponds to the radius R and moment
of inertia I, and l = 7 for the mass-energy E = Mc2. The coefficients βQ

are then the functionals of a reference configuration, i.e. βQ = βQ(C0). The
validity of the above statements will be confirmed in the next section by
means of numerical calculations.

3. Results

In order to obtain quantitative results the polytropic EOSs for the N-
and mixed-phases will be used. The main reason why we have chosen the
polytropic EOSs are precision of numerical calculation and simplicity dur-
ing the exploration of the parameter space. Discussion of the polytropic
EOSs and their application to relativistic stellar structure calculations was
presented by [15]. Details needed for the calculations are given in the Ap-
pendix. Section 2 described the form of the expressions for the changes
of stellar parameters obtained in the linear approximation. According to
Eq. (1), the coefficients split into two factors, first one depending on the
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mixed-phase via γS, and the second one βQ being a functional of the ref-
erence configuration C0. As it is a complicated task to write an analytical
form of the functional βQ(C0) we will restrict ourselves to the derivation of
approximate, but accurate fitting formulae, based on the results of precise
numerical calculations.

The βI , βR and βE coefficients obtained in the limit of vanishing mixed-
phase core rm −→ 0 as a function of the mass of the sample reference config-
uration M(C0) are plotted in Fig. 2. Whole range of masses of the reference
configuration is presented on account of our ignorance about the density at
which the phase transition takes place. Results were obtained for specific
choices of γN and γm. The values of γN and KN were chosen in such a way,
that the EOS of the N-phase produced massive (M & M⊙) neutron-star
models similar to those obtained for realistic stiff EOS of dense matter. In
particular, this EOS yields Mmax = 2.37 M⊙ and RMmax

= 12.52 km. Let
us stress, however, that while this EOS is a reasonable representation of
the EOS of matter with ρ > 2ρ0, it is completely unrealistic at sub-nuclear
densities and for masses much smaller than one solar mass.

One notices a characteristic behavior of βR and βI . Despite the fact
that we do not know the precise density of onset of the new phase, this
information is not substantial to predict stars response. The coefficients are
almost constant for a wide range of masses for βI and βR. The behavior of
βE is different: for M . 0.8Mmax this coefficient is proportional to M(C0).

Fig. 2. The response coefficients βI , βR, βE (dashed, solid and dotted line, the

value of βE was multiplied by a factor of 10) plotted against the stellar mass for

a sample polytropic EOS, γN = 2.5, γm = 1.5, KN = 0.025 (see the Appendix for

details). The vertical dotted line denotes the maximal mass of the star, 2.37 M⊙.
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The “plateau” values of the coefficients βI and βR do not depend on
the pressure coefficient KN, but on γN only. The formulae which describe
accurately those response parameters read

βR(C0) ≃
0.015 × γN

9.4

(γN
1.13 − 1)8.2

, βI(C0) ≃
0.12 × γN

9.1

(γN
1.22 − 1)7.5

, (2)

for βR and βI , respectively.
The case of the mass-energy parameter βE is different, as it can be seen

in Fig. 2. As we mentioned before, sufficiently far from the maximal mass,
it is proportional to M(C0). We can approximate the value of βE(C0) as
follows:

βE(C0) ≃
0.085

γN
2.56KN

0.5(γN−1)
×

(

M

M⊙

)

. (3)

It has to be mentioned that the fitting formulae from Eqs. (2), (3) have
been checked against the adiabatic indices in the range 5/3 to 3.5. The fit-
ted expressions are fairly accurate within a wide range of masses, to within
few per-cent compared to the exact numerical calculations. The response
coefficients underestimate the magnitude of the linear response for config-
urations near the maximum allowable mass, Mmax. The increase of βQ for
M(C0) −→ Mmax is due to a “softening” of the reference configuration by the
effects of General Relativity (similar to the case presented in [2, 3]). Thus
the linear approximation and, what follows, the approximate expressions
presented above cease to be valid in this region.

It should be also expected, as far as the realistic EOS of the crust
is concerned, that the assumption of constant γ in the crust is an over-
simplification of the problem. Therefore, the region of small masses (smaller
than 0.5 M⊙) is affected by this unrealistic type of crust. In the case of
realistic NSs, the behavior of the βQ coefficients near the star’s minimum
mass should, due to the softening of matter, be generally similar to those
near the maximal mass (such calculations for the case of realistic EOSs are
presented in [7]).

The fitting formulae for βQ in the region of validity of the linear-response
approximation allow us to compute the change of the interesting stellar
parameters for every pair of the parameters γN and γm. For example, the
1.4 M⊙ C0 configuration from Fig. 2 has radius R0 = 15.18 km and moment
of inertia I0 = 2.27 × 1045 g · cm2. The response coefficients are then equal
βR = 0.62, βI = 2.23 and βE = 0.03. The appearance of rm = 1 km core
with γm = 1.5 adiabatic index inside the γN = 2.5 polytrope star changes
the radius by ∼ 1 cm, a number which can be related to the change of
radius during macro-glitches in pulsar timing. A relative change of the
moment of inertia (∆I/I = −∆Ω/Ω) implies speed-up of the order of 10−6,
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again a value common to pulsar macro-glitches. The released energy equals
3 × 1044 erg. If the core radius is 4 km (still well described by the linear
response theory) the change in radius is 8 m, an impressive number even
in view of the size of terrestrial earthquakes. The value of ∆Ω/Ω will be
equal approximately 10−3, three orders of magnitude larger than in biggest
macro-glitches. Finally, the creation of a 4 km “mixed-phase” core produces
∼ 5 × 1048 erg of energy.

4. Conclusions

The appearance of soft core was studied by means of the linear response
theory to the star parameters. Simple model of a polytropic star with the
“mixed-phase” core provides a set of well-approximated formulae, usable for
estimation of the change of stellar parameters (radius, moment of inertia,
emitted energy) for a given “stiffness” i.e. the adiabatic index γ of a star,
the newly-born core, and its a priori unknown radius. The fitted formulae
are precise to within a few per-cent. Resulting parameter changes are of
the order of observed astrophysical phenomena, which gives hope for future
observations of phase transitions inside real neutron stars. Inclusion of a
varying adiabatic index certainly modifies the values of the response coef-
ficients, presented in [7], but the comparison with the results shown here
proves that the difference is not dramatic.

I warmly thank prof. P. Haensel and dr L. Zdunik for reading a prelim-
inary version of the manuscript and for valuable comments. This work was
partially supported by the Polish State Committee for Scientific Research
(KBN) grant No. 1P03D-008-27 and by the Astrophysics Poland–France
(Astro-PF) program.

Appendix

Relativistic polytropes

The relativistic polytrope is defined as the power-law dependence be-
tween pressure P and baryon number density nb (see, e.g. [15]):

P (nb) = Knγ
b , (4)

where γ is often called adiabatic index, and K is the pressure coefficient1.
Assume that matter is strongly degenerate, so that T = 0 approximation

is valid. For simplicity, we consider one type of baryons in the outer N-phase,

1 The coefficient K is expressed in ρ̂c2/n̂γ units, where ρ̂ := 1.66 × 1014 g/cm3, and

n̂ := 0.1 fm−3.
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with the rest mass mN = 1.66 × 10−24 g. The total mass-energy density E

of particles of rest mass mN in N-phase is related to their baryon number
density nb by the First Law of Thermodynamics

E(nb) =
KN

γN − 1
nγN

b + mNc2nb . (5)

Baryon chemical potential match to the change of the energy of matter,
at constant P and T = 0, due to an increase of the baryon number by one.
This implies

µ(nb) =
dE

dnb

=
P + E

nb

=
KNγN

γN − 1
nγN−1

b + mNc2. (6)

At zero pressure (the surface of the star) the chemical potential µ is equiv-
alent to particle rest energy.

The connection between two polytropes (the one corresponding to the
core being softer than the outer part, γm < γN, see Fig. 1 and discussion)
aims for approximating the transition to the mixed-phase, known from many
realistic calculations [8–11]. Thermodynamic equilibrium implies that the
choice of parameters Km, γm, and the mean mass mm should assure the
continuity of pressure and baryon chemical potential are continuous along
the transition point n0, that is

Km = KNnγN−γm

0
, mm = mN −

(γN − γm)P (n0)

(γN − 1)(γm − 1)n0c2
. (7)
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