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“No one has ever touched Zeno without refuting him”. We will not refute
Zeno in this paper. Instead we review some unexpected encounters of Zeno
with modern science. The paper begins with a brief biography of Zeno of
Elea followed by his famous paradoxes of motion. Reflections on continuity
of space and time lead us to Banach and Tarski and to their celebrated
paradox, which is in fact not a paradox at all but a strict mathematical
theorem, although very counterintuitive. Quantum mechanics brings an-
other flavour in Zeno paradoxes. Quantum Zeno and anti-Zeno effects are
really paradoxical but now experimental facts. Then we discuss supertasks
and bifurcated supertasks. The concept of localisation leads us to Newton
and Wigner and to interesting phenomenon of quantum revivals. At last
we note that the paradoxical idea of timeless universe, defended by Zeno
and Parmenides at ancient times, is still alive in quantum gravity. The list
of references that follows is necessarily incomplete but we hope it will assist
interested reader to fill in details.

PACS numbers: 01.70.+w

1. Introduction

Concepts of localisation, motion and change seems so familiar to our
classical intuition: everything happens in some place and everything moves
from one place to another in everyday life. Nevertheless it becomes a rather
thorny issue then subjected to critical analysis as witnessed long ago by
Zeno’s paradoxes of motion. One can superficially think that the resolution
of the paradoxes was provided by calculus centuries ago by pointing out
now the trivial fact that an infinite series can have a finite sum. But on the
second thought we realize that this “resolution” assumes infinite divisibility
of space and time and we still do not know whether the physical reality
still corresponds to the continuous space and time at very small (Plankian)
scales. Even in pure mathematics the infinite divisibility leads to paradoxical
results like Banach–Tarski paradox which are hard to swallow despite their
irrefutable mathematical correctness.

(2887)
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More subtle under the surface truth about Zeno’s paradoxes is that even
if one assumes the infinitely divisible space and time calculus does not really
resolves the paradoxes but instead makes them even more paradoxical and
leads to conclusion that things cannot be localised arbitrarily sharply. Of
course, the latter is just what we expect from basic principles of quantum
mechanics and special relativity. But it is certainly amazing to find roots of
these pillars of the modern physics at Zeno’s times!

2. Zeno of Elea

“No one has ever touched Zeno without refuting him, and every century
thinks it worthwhile to refute him” [1]. Therefore, it seems that refuting
Zeno is eternal and unchanging affair in complete accord with the Eleatic
philosophy. According to this philosophy all appearances of multiplicity,
change, and motion are mere illusions. Interestingly the foundation of the
Eleatic philosophical school was preceded by turbulent events in drastic con-
trast with its teaching of the unique, eternal, and unchanging universe [2].
The school was founded by Xenophanes (born circa 570 BC), a wandering
exile from his native city of Colophone in Ionia. Before finally joining the
colony at Elea, he lived in Sicily and then in Catana. The Elea colony it-
self was founded by a group of Ionian Greeks which seize the site from the
native Oenotrians. Earlier these Ionian Greeks were expelled from their na-
tive city of Phocaea by an invading Persian army. Having lost their homes,
they sailed to the Corsica island and invaded it after a awful sea battle with
the Carthaginians and Etruscans, just to drive once again into the sea as
refugees after ten years later (in 545 BC) their rivals regained the island. We
can just wonder about psychological influence of these events on the Eleatic
school’s belief in permanent and unalterable universe [2].

Zeno himself had experienced all treacherous vicissitudes of life. Diogenes
Laertius describes him [3] as the very courageous man:

“He, wishing to put an end to the power of Nearches, the tyrant (some,
however, call the tyrant Diomedon), was arrested, as we are informed by
Heraclides, in his abridgment of Satyrus. And when he was examined, as to
his accomplices, and as to the arms which he was taking to Lipara, he named
all the friends of the tyrant as his accomplices, wishing to make him feel
himself alone. And then, after he had mentioned some names, he said that
he wished to whisper something privately to the tyrant; and when he came
near him he bit him, and would not leave his hold till he was stabbed. And
the same thing happened to Aristogiton, the tyrant slayer. But Demetrius,
in his treatise on People of the same Name, says that it was his nose that
he bit off.

Moreover, Antisthenes, in his Successions, says that after he had given
him information against his friends, he was asked by the tyrant if there
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was any one else. And he replied, “Yes, you, the destruction of the city”.
And that he also said to the bystanders, “I marvel at your cowardice, if you
submit to be slaves to the tyrant out of fear of such pains as I am now
enduring”. And at last he bit off his tongue and spit it at him; and the
citizens immediately rushed forward, and slew the tyrant with stones. And
this is the account that is given by almost every one”.

Although this account of Zeno’s heroic deeds and torture at the hands of
the tyrant is generally considered as unreliable [4–6], Zeno after all is famous
not for his brevity but for his paradoxes [7–11].

3. Zeno’s paradoxes of motion

Zeno was a disciple of Parmenides, the most illustrious representative
of the Eleatic philosophy. According to Parmenides, many things taken for
granted, such as motion, change, and plurality, are simply illusions and the
reality is in fact an absolute, unchanging oneness. Of course, nothing con-
tradicts more to our common sense experience than this belief. It is not
surprising, therefore, that Parmenides’ views were ridiculed by contempo-
raries (and not only). In his “youthful effort” Zeno elaborated a number of
paradoxes in order to defend the system of Parmenides and attack the com-
mon conceptions of things. The four most famous of these paradoxes deny
the reality of motion. The Dichotomy paradox, for example, states that it
is impossible to cover any distance [2]:

• There is no motion, because that which is moved must arrive at the

middle before it arrives at the end, and so on ad infinitum.

According to Simplicius, Diogenes the Cynic after hearing this argument
from Zeno’s followers silently stood up and walked, so pointing out that it
is a matter of the most common experience that things in fact do move [11].
This answer, very clever and effective perhaps, is unfortunately completely
misleading, because it is not the apparent motion what Zeno questions but
how this motion is logically possible. And the Diogenes’s answer does not
enlighten us at all in this respect [12]:

A bearded sage once said that there’s no motion.
His silent colleague simply strolled before him, —
How could he answer better?! — all adored him!
And praised his wise reply with great devotion.
But men, this is enchanting! — let me interject,
For me, another grand occurrence comes to play:
The sun rotates around us every single day,
And yet, the headstrong Galileo was correct.

But what is paradoxical in Zeno’s arguments? Let us take a closer look.
He says that any movement can be subdivided into infinite number of ever
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decreasing steps. This is not by itself paradoxical, if we assume infinite
divisibility of space and time. What is paradoxical is an ability to perform
infinite number of subtasks in a finite time — to perform a supertask. Any
movement seems to be a supertask according to Zeno and it is by no means
obvious that it is ever possible to perform infinite number of actions in a finite
time. Our intuition tells us just the contrary — that it is a clear impossibility
for finite beings to manage any supertask. In the case of Dichotomy it is
even not clear how the movement can begin at all because there is no first
step to be taken.

Aristotle tried to resolve this situation by distinguishing potential and
actual infinities [13]: “To the question whether it is possible to pass through
an infinite number of units either of time or of distance we must reply that in
a sense it is and in a sense it is not. If the units are actual, it is not possible;
if they are potential, it is possible”. But Aristotle’s answer is not much better
than Diogenes’. It is incomplete. In fact doubly incomplete. According to it
Zeno’s infinite subdivision of a motion is purely mathematical, just an action
of imagination. But even if we accept Aristotle’s position it is desirable to
show that in mathematics we have tools to handle infinities in a logically
coherent way. In fact no such tools were at Aristotle’s disposal and they
were only germinated after two thousand years when the notion of limit
emerged, Calculus was developed and Georg Cantor created his set theory.
We can say that Dichotomy is not mathematically paradoxical today. Either
classical or non-standard [14,15] analysis can supply sufficient machinery to
deal with both the Dichotomy and its more famous counterpart, the Achilles
and the tortoise paradox [2]:

• The slower will never be overtaken by the quicker, for that which is

pursuing must first reach the point from which that which is fleeing

started, so that the slower must always be some distance ahead.

This latter paradox is more impressively formulated in terms of two bodies
but in fact it is a symmetric counterpart of the Dichotomy and has a variant
involving only one moving body [16]: “To reach a given point, a body in mo-
tion must first traverse half of the distance, then half of what remains, half of
this latter, and so on ad infinitum, and again the goal can never be reached”.
Therefore, if the Dichotomy wonders how the motion can begin as there is
no first step, the Achilles makes it equally problematic the end of the motion
because there is no last step. Modern mathematics partly completes Aris-
totle’s argument and provides a coherent mathematical picture of motion.
But all this mathematical developments, although very wonderful, do not
answer the main question implicit in Aristotle’s rebuttal of Zeno: how the
real motion actually takes place and whether its present day mathematical
image still corresponds to reality at the most fundamental level.



Zeno Meets Modern Science 2891

4. Zeno meets Banach and Tarski

Let us take, for example, infinite divisibility of space and time. This infi-
nite divisibility is in fact paradoxical, even though the modern mathematics
have no trouble to deal with this infinite divisibility. Let us explain what
we have in mind.

Zeno’s argument shows that any spatial or temporal interval contains
uncountably many points. Nevertheless a moving body manages to traverse
all these points in a finite time. Let us consider any division of the interval
into non-empty pairwise mutually exclusive subintervals (that is any pair
of them have no common points). Then there exists at least one set N
that contains one and only one point from each of the subintervals. Indeed,
a moving point body enters into a given subinterval sooner or later while
traversing the initial interval and will remain into this subinterval for some
amount of time. We can take any point the moving body occupies during
this time interval as an element of N . All this seems very natural and
self-evident, and so does its natural generalisation, the axiom of choice [17]:

• If M is any collection of pairwise mutually exclusive, non-empty sets P,

there exists at least one set N that contains one and only one element

from each of the sets P of the collection M.

If one may choose an element from each of the sets P of M , the set N can
evidently be formed — hence the name of the axiom.

Now this innocently looking “self-evident” axiom leads to the most para-
doxical result in the mathematics, the Banach–Tarski theorem, which is so
contrary to our intuition that is better known as the Banach–Tarski paradox.
The most artistic presentation of this paradox can be found in the Bible [18]:
“As he went ashore he saw a great throng; and he had compassion on them,
and healed their sick. When it was evening, the disciples came to him and
said: ‘This is a lonely place, and the day is now over; send the crowds away
to go into the villages and buy food for themselves’. Jesus said: ‘They need
not go away; you give them something to eat’. They said to him: ‘We have
only five loaves here and two fish’. And he said: ‘Bring them here to me’.
Then he ordered the crowds to sit down on the grass; and taking the five
loaves and the two fish he looked up to heaven, and blessed, and broke and
gave the loaves to the disciples, and the disciples gave them to the crowds.
And they all ate and were satisfied. And they took up twelve baskets full
of the broken pieces left over. And those who ate were about five thousand
men, besides women and children”.

In the more formal language the Banach–Tarski theorem states that [17]

• in any Euclidean space of dimension n > 2, any two arbitrary bounded

sets are equivalent by finite decomposition provided they contain inte-

rior points.
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This theorem opens, for example, the door to the following mathematical
alchemy [17]: a ball of the size of orange can be divided into a finite number of
pieces which can be reassembled by using merely translations and rotations
to yield a solid ball whose diameter is larger than the size of the solar system.
Of course, a real orange cannot be chopped in such a way because atoms
and molecules constitute a limit of divisibility of any chemical substance and
the pieces required in the Banach–Tarski theorem are so irregular that they
are non-measurable and the concept of volume (Lebesgue measure) does
not make sense for them. But does space–time itself also have a limit of
divisibility? It is yet an open question.

The comprehensive discussion of the Banach–Tarski theorem is given
in [19] and for an elementary approach with a full proof of the theorem
see [20]. One can question whether paradoxical counter-intuitive decom-
positions like the ones implied by the Banach–Tarski theorem are of any
use in physics. Surprisingly, there were several attempts in this direction.
Pitowsky was the first (to our knowledge) to consider a certain extension
of the concept of probability to non-measurable sets in connection with the
Einstein–Podolsky–Rosen paradox and Bell’s inequalities [21, 22]. Another
examples can be traced trough [23,24].

One cannot blame the axiom of choice as the only culprit of such para-
doxical mathematical results. Even without the use of this axiom one can
argue that there is some truth in the proverb that the world is small, be-
cause the results proved in [25] entirely constructively, without the axiom of
choice, imply that there is a finite collection of disjoint open subsets of the
sun that fill the whole sun without holes of positive radius and that never-
theless can be rearranged by rigid motions to fit inside a pea and remain
disjoint.

Maybe the Banach–Tarski theorem and analogous paradoxical decom-
positions will appear a bit less paradoxical if we realize that the Achilles
and the tortoise paradox illustrates that any two intervals contain the same
number of points regardless their length. Indeed, during their race Achilles
and the tortoise cover desperately different intervals. Nevertheless one can
arrange a one-to-one correspondence between points of these intervals be-
cause for every point A from the Achilles’ track there is only one point B on
the track of tortoise which the tortoise occupied at the same instant of time
when Achilles occupied A. In fact, as Cantor proved in 1877, there is a one-
to-one correspondence of points on the interval [0, 1] and points in a square,
or points in any n-dimensional space. Cantor himself was surprised at his
own discovery and wrote to Dedekind [26] “I see it, but I don’t believe it!”
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5. Zeno meets quantum mechanics

Despite some paradoxical flavour, the infinite divisibility of real space–
time, although unwarranted at yet, is mathematically coherent. But Zeno’s
paradoxes contain some other physical premises also that deserve careful
consideration. The Achilles and the tortoise paradox, for example, assumes
some observation procedure:

• check the positions of the contenders in the race;

• check again when Achilles reach the position the tortoise occupied at
previous step;

• repeat the previous instruction until Achilles catch the tortoise (and
this is an infinite loop because he never does).

Calculus teach us that the above observational process covers only finite
interval of time in spite of its infinitely many steps. And during this time
interval the tortoise will be indeed always ahead of Achilles. The obser-
vational procedure Zeno is offering simply does not allow us to check the
contenders positions later when Achilles overtake the tortoise. So the para-
dox is solved? Not at all. Zeno’s procedure implicitly assumes an ability to
perform position measurements. Therefore, two questions remain: whether
it is possible to perform infinitely frequent measurements taken for granted
by Zeno, and how the race will be effected by back-reaction from these mea-
surements. The world is quantum mechanical after all and the measurement
process is rather subtle thing in quantum mechanics.

Simple arguments [27] show that something interesting is going on if the
observational procedure of Zeno is considered from the quantum mechanical
perspective. Let |Φ, 0〉 denote the initial state vector of the system (Achilles
and the tortoise in uniform motions). After a short time t the state vector
will evolve into

|Φ, t〉 = exp

(

− i

~
Ht

)

|Φ, 0〉 ≈
(

1 − i

~
Ht− 1

2~2
H2t2

)

|Φ, 0〉 ,

where H is the Hamiltonian of the system assumed to be time independent.
If now the position measurements of the competitors are performed we find
that the initial state have still not changed with the probability

|〈Φ, 0|Φ, t〉|2 ≈ 1 − (∆E)2

~2
t2 ,

where
(∆E)2 = 〈Φ, 0|H2|Φ, 0〉 − 〈Φ, 0|H|Φ, 0〉2
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is positive (there should be some energy spread in the initial state because
we assume good enough localisations for Achilles and the tortoise). If these
measurements are performed n-times, at intervals t/n, there is a probability

(

1 − (∆E)2

~2

t2

n2

)n

that at all times the system will be found in the initial state. But this
probability tends to unity when n→ ∞, because in this limit

ln

(

1 − (∆E)2

~2

t2

n2

)n

≈ − (∆E)2

~2

t2

n
→ 0 .

Therefore, if the observations are infinitely frequent the initial state does
not change at all. Zeno was right after all: Achilles will never catch the tor-
toise under proposed observational scheme! This scheme implicitly assumes
a continues monitoring of Achilles’ position and, therefore, he will fail even
to start the race.

Matters are not as simple however. Repeated measurement of a system
effects its dynamics much more complex and delicate way than just slow-
ing the evolution [28]. The above described Quantum Zeno Effect became
popular after seminal paper of Misra and Sudarshan [29], although it dates
back to Alan Turing (see [30, 31] and references wherein) and was known
earlier as “Turing’s paradox”. The initial time t2 dependence of quantum
mechanical evolution, from which the Quantum Zeno Effect follows most
simply, is quite general though not universal. The experimental difficulty
resides in the fact that the t2 dependence takes place usually at very short
times for natural unstable systems. For example, the “Zeno” time of the
2P–1S transition of the hydrogen atom is estimated to be approximately
3.6 × 10−15 s [32]. Nevertheless modern experimental techniques enable to
prepare artificial unstable systems with long enough Zeno time. In beautiful
experiment [33] ultra-cold sodium atoms were trapped in a periodic optical
potential created by a accelerated standing wave of light. Classically atoms
can be trapped inside the potential wells but they will escape by quantum
tunnelling. The number that remain is measured as a function of duration
of the tunnelling. The results are shown in the Fig. 1. Hollow squares in
this figure show the probability of survival in the accelerated potential as
a function of duration of the tunnelling acceleration. The solid line repre-
sents what is expected according to quantum mechanics and we see a very
good agreement with the experimental data. The Zeno time for this unsta-
ble system is of the order of about µs and during this short time period the
survival probability exhibits a t2 drop. For longer times we see a gradual
transition from the t2 dependence to linear t dependence, which corresponds
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Fig. 1. Observation of the Quantum Zeno Effect in the experiment [33].

to the usual exponential decay law. Such behaviour can be simply under-
stood in the framework of time-dependent perturbation theory [34]. The
probability of decay of some excited state |i〉 under the influence of time
independent small perturbation V is given by the formula

Q(t) =
1

~2

∞
∫

−∞

|〈i|V |k〉|2ρk sin2

(

(Ek − Ei)t

2~

)(

2~

Ek − Ei

)2

dEk , (1)

where |i〉, |k〉 are eigenstates of unperturbed Hamiltonian and ρk is the
density of states |k〉. For very short times one has clearly a t2 dependence:

Q(t) ≈ 1

~2





∞
∫

−∞

|〈i|V |k〉|2ρkdEk



 t2.

For longer times, when
(Ek − Ei)t

2~

is not small, one cannot replace the sine function by the first term of its
Taylor expansion. However, we can expect that only states with small
|Ek − Ei| contribute significantly in the integral, because if

z =
(Ek − Ei)t

2~
≫ 1
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the integrand oscillates quickly. But then it can be assumed that |〈i|V |k〉|2
and ρk are constant and by using

∞
∫

−∞

sin2 z

z2
dz = π,

one obtains linear t dependence

Q(t) ≈ 2π

~
|〈i|V |k〉|2ρkt .

In the experiment [33] the number of atoms remaining in the potential
well after some time of tunnelling was measured by suddenly interrupting
the tunnelling by a period of reduced acceleration. For the reduced ac-
celeration tunnelling was negligible and the atoms increased their velocity
without being lost out of the well. Therefore, the remaining atoms and the
ones having tunnelled out up to the point of interruption become separated
in velocity space enabling the experimenters to distinguish them. This mea-
surement of the number of remaining atoms projects the system in a new
initial state when the acceleration is switched back and the system returns
to its unstable state. The evolution must, therefore, start again with the
non-exponential initial segment and one expects the Zeno impeding of the
evolution under frequent measurements.

Fig. 1 really shows the Zeno effect in a rather dramatic way. The solid
circles in this figure correspond to the measurement of the survival proba-
bility when after each tunnelling segment of 1 µs an interruption of 50 µs
duration was inserted. One clearly sees a much slower decay trend com-
pared to the measurements without frequent interruptions (hollow squares).
Some disagreement with the theoretical expectation depicted by the solid
line is attributed by the authors of [33] to the under-estimate of the actual
tunnelling time, so that in reality the decay might be slowed down even at
higher degree.

Uninterrupted decay curve shows damped oscillatory transition region
between initial period of slow decay and the exponential decay at longer
times. At that a steep drop in the survival probability is observed immedi-
ately after the Zeno time. It is expected, therefore, that the decay will be
not slowed down but accelerated if frequent interruptions take place during
the steep drop period of evolution forcing the system to repeat the initial
period of fast decay again and again after every measurement. This so called
Quantum Anti-Zeno effect [35–37] is experimentally demonstrated in Fig. 2.
The solid circles in this figure show the evolution of the unstable system
when after every 5 µs of tunnelling the decay was interrupted by a slow
acceleration segment.
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Fig. 2. Observation of the Quantum Anti-Zeno Effect in the experiment [33].

6. Supertasks

The Zeno and Anti-Zeno effects in quantum theory are, of course, very
interesting phenomena and even some practical application of the Zeno effect
in quantum computing is foreseeable [38]. But in the context of Zeno para-
doxes we are more interested in the limit of infinitely frequent measurements
with complete inhibition of evolution. Although such limit leads to inter-
esting mathematics [39], its physical realisability is dubious. The Calculus
argument that it is possible for infinite sum to converge to a finite number is
not sufficient to ensure a possibility to perform a supertask. This becomes
obvious if we somewhat modify Zeno’s arguments to stress the role super-
tasks play in them. The resulting paradox, Zeno Zigzag, goes as follows [2].
A light ray is bouncing between an infinite sequence of mirrors as illustrated
in the Fig. 3. The sizes of mirrors and their separations decrease by a factor
of two on each step. The total length of the photon’s zigzag path is finite
(because the geometric series 1 + 1/2 + 1/4 + . . . converges), as well as the
envelope box size around the mirrors. Therefore, the photon is expected to
perform infinite number of reflections in finite time and emerge on the other
side of our mirror box. But the absence of the last mirror the photon hit is
obviously troublesome now: there is no logical way for the photon to decide
at what direction to emerge from the box.
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Fig. 3. The Zeno Zigzag.

Of course, in reality it is impossible to realize the Zeno Zigzag for a num-
ber of reasons. One cannot make arbitrarily small “mirrors”, for example,
because sharp localisation leads to a significant momentum spread according
to uncertainty relations and then the relativity makes possible a pair pro-
duction which will smear the “mirror” position. The wave-like behaviour of
the photon (or any other particle) will anyway make impossible to maintain
definite direction of the reflected photon if the mirror size is less than the
photon wavelength.

The question, however, naturally arises whether supertasks are logically
impossible irrespective of the nature of physical reality which may restrict
their practical realization. To support the opinion that the very notion of
completing an infinite sequence of acts in a finite time is logically contradic-
tory, Thomson suggested the following supertask [40]. A lamp is switched
ON and OFF more and more rapidly so that at the end of the two minutes
a supertask of infinite switching of the lamp is over. The question now is
whether the lamp is in the ON state or in the OFF state after this two min-
utes. Clearly the lamp must be in one of these states but both seem equally
impossible. The lamp cannot be in the ON state because we never turned it
on without immediately turning it off. But the lamp cannot be in the OFF
state either because we never turned it off without at once turning it on. It
seems impossible to answer the question and avoid a contradiction.

The Thomson lamp argument is seductive but fallacious [41, 42]. Sur-
prisingly there is a coherent answer to the Thomson’s question without any
contradiction. To come to this answer, it is instructive to consider another
supertask [42] which is not paradoxical in any obvious way. A ball bounces
on a hard surface so that on each rebound it loses (1 − k)-fraction of its
velocity prior to the bounce, where 0 < k < 1. The ball will perform in-
finitely many bounces in a finite time because, in classical mechanics, the
time between bounces is directly proportional to the initial velocity of the
ball and the geometric series 1, k, k2, k3, . . . has finite sum 1/(1− k). Now
let us use this bouncing ball as a switching mechanism for the Thomson’s
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lamp. Then it is immediately obvious that depending on the organisation of
the circuit the lamp can be in either state (ON or OFF) after the supertask
is completed, see Fig. 4.

Fig. 4. Alternative switching mechanisms for Thomson’s lamp from [42].

Logic once again demonstrates its flexibility. Note that even such a weird
notion as the lamp being in a superposition of the ON and OFF states
makes perfect sense in quantum mechanics. Although, as was indicated
above, we can make the Thomson’s lamp logically consistent without any
such weirdness. But other surprises with supertasks are lurking ahead.

In [43] Pérez Laraudogoitia constructed a beautifully simple supertask
which demonstrates some weird things even in the context of classical
mechanics. Fig. 5 shows an infinite set of identical particles arranged in
a straight line. The distance between the particles and their sizes decrease
so that the whole system occupies an interval of unit length. Some other
particle of the same mass approaches the system from the right with unit ve-
locity. In elastic collision with identical particles the velocities are exchanged
after the collision. Therefore, a wave of elastic collisions goes through the
system in unit time. And what then? Any particle of the system and the
projectile particle comes to rest after colliding its left closest neighbour.
Therefore, all particles are at rest after the collision supertask is over and
we are left with paradoxical conclusion [43] that the total initial energy (and
momentum) of the system of particles can disappear by means of an in-
finitely denumerable number of elastic collisions, in each one of which the
energy (and momentum) is conserved!
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Fig. 5. Pérez Laraudogoitia’s supertask.

If you fill uneasy about this energy-momentum non-conservation, here is
the same story in more entertaining incarnation [44].

Suppose you have some amount of one dollar bills and the Devil ap-
proaches you in a nefarious underground bar. He says that he has a hobby
of collecting one dollar bills of particular serial numbers and it happened
that you do have one such bill. So he is offering you a bargain: he will give
you ten one dollar bills for this particular one. Should you accept the bar-
gain? Why not, it seems so profitable. You agreed and the bargain is done.
After half an hour the Devil appears again with the similar offer. Then
after a quarter-hour and so on. The time interval between his appearances
decreases by a factor of two each time. The amount of your money increases
quickly. After an hour infinite number of bargains are done and how much
money will you have? You would have a lot if the Devil wanted you to suc-
ceed. But he tries to perish your soul not to save it and during the bargains
is indeed very selective about bill serial numbers: he always takes the bill
with smallest serial number you posses and instead gives the bills with serial
numbers greater than any your bill’s at that moment. Under such arrange-
ment any bill you posses will end its path into Devil’s pocket. Indeed, for
any particular bill at your disposal at some instant you will have only finite
amount of bills with less serial numbers and you never will get additional
bills with smaller serial numbers. Therefore, sooner or later this particular
bill will become the bill with smallest serial number among your bills and
hence subject of the exchange. We come again to the strange conclusion
that in spite of your money’s continuous growth during the transaction you
will have no bill at all left after the infinite transaction is over!

Of course, this example does not enlighten us much about how the ini-
tial energy disappears in the Pérez Laraudogoitia’s supertask. However, it
clearly shows a somewhat infernal flavour the supertasks have. And not
only the energy-momentum conservation is on stake. Classical dynamics is
time reversal invariant. Therefore, the following process, which is the time
reversal of the Pérez Laraudogoitia’s supertask, is also possible [43]: a spon-
taneous self-excitation can propagate through the infinite system of balls at
rest causing the first ball to be ejected with some nonzero velocity. The
system displays not only the energy-momentum non-conservation but also
indeterminism [43,45, 46].

The locus of the difficulty is the same as in the Zeno paradoxes: there
is no last member in a sequence of acts (collisions) and, therefore, there
is no last ball to carry off the velocity [47]. The supertask illustrate the
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indeterminism of classical Newtonian or even relativistic dynamics as far
as infinite localisation of bodies is admissible. In quantum mechanics balls
cannot be simultaneously at rest and infinitely localised thanks to uncer-
tainty relations. Therefore, Pérez Laraudogoitia’s supertask will not persist
in quantum theory. However, it was shown [48] that a (nonrelativistic) quan-
tum mechanical supertask can be envisaged in which the deterministic time
development of the wave function is lost and spontaneous self-excitation of
the ground state is allowed. Yet pathologies disappear if one demands nor-
malizability of the state vector. In this sense quantum mechanical supertasks
are better behaved than their classical counterparts [48].

Surprisingly and contrary to common wisdom, classical Newtonian phy-
sics is more hostile and unfriendly to determinism than either quantum me-
chanics or special relativity [49]. Another example of esoteric behaviour
of seemingly benign Newtonian system was given by Xia [50] while solv-
ing the century-old intriguing problem of non-collisional singularities. Xia’s
construction constitutes in fact a supertask and involves only five bodies
interacting via familiar Newtonian inverse square force law. The essentials
of this supertask can be explained as follows [51]. Imagine a system of two
equal masses M moving in the x−y plane under Newton’s law of attraction
with center of mass at rest, and the third mass m ≪ M (so that it does
not disturb the motion of the first two) on the z-axis which goes through
the center of mass of the planar binary system. It is clear from the sym-
metry that the total force of gravitational attraction acting on the mass m
has only z-component and, therefore, the third mass will experience a one
dimensional motion along the z-axis. When the mass m passes through and
is lightly above the binary plane, we can arrange extremely powerful down-
ward pull on m if the highly elliptical binary has its closest approach at that
moment. In fact, assuming an ideal case of point masses, the downward force
acting on m can be made arbitrarily strong by just adjusting the separating
distances among the bodies. As a result the third mass is jolted down with
high velocity while the binary starts separating and loses significantly its
braking effect on m.

The mirror replica of the binary, see Fig. 6, is placed at large distance
(not to disturb the first binary) further down to prevent the mass m from
being expelled to infinity. In case of proper timing, the second binary will
break m’s downward motion and will thrust it upwards with even higher
velocity.

Xia was able to show that there exists a Cantor set of the initial condi-
tions allowing to repeat this behaviour infinitely often in a finite time. As
a result the four of five bodies from the Xia’s construction will escape to
spatial infinity in a finite time, while the fifth will oscillate back and forth
among the other four with ever increasing speed.
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Fig. 6. Xia’s five body supertask.

Xia’s supertask does not violate energy conservation, the bodies drawing
out their energies from the infinitely deep 1/r potential well. However, it
implies indeterminacy in idealised Newtonian world. The time reverse of
this supertask is an example of “space invaders” [49], particles appearing
from spatial infinity in a surprise attack. Note that [49] “the prospects for
determinism brighten considerably when we leave classical space–times for
Minkowski space–time, the spacetime setting for special relativistic theories”.
Because with no superluminal propagation there are no space invaders.

Leaving aside interesting philosophical questions raised by Xia’s super-
task, it seems otherwise completely artificial and far from reality. Curiously,
some ideas involved in this construction can be used by mankind, admittedly
in the very long run, to transfer orbital energy from Jupiter to the Earth
by a suitable intermediate minor space body, causing the Earth’s orbit to
expand and avoid an excessive heating from enlarging and brightening Sun
at the last stage of its main sequence life [52].

7. Bifurcated supertasks

Let us return to Zeno. Hermann Weyl pointed out [53] another possi-
bility mankind can benefit from Zeno supertask: “if the segment of length 1
really consists of infinitely many subsegments of length 1/2, 1/4, 1/8, . . . , as
of “chopped-off” wholes, then it is incompatible with the character of the in-
finite as the “incompletable” that Achilles should have been able to traverse
them all. If one admits this possibility, then there is no reason why a machine
should not be capable of completing an infinite sequence of distinct acts of
decision within a finite amount of time; say, by supplying the first result
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after 1/2 minute, the second after another 1/4 minute, the third 1/8 minute
later than the second, etc. In this way it would be possible, provided the
receptive power of the brain would function similarly, to achieve a traversal
of all natural numbers and thereby a sure yes-or-no decision regarding any
existential question about natural numbers!”

Relativity brings additional flavour in discussion of Weyl’s infinity ma-
chines. One can imagine, for example, bifurcated supertasks [42, 54]. To
check the Goldbach’s conjecture whether every even number greater than
two can be written as the sum of two primes, the Master organises two
space missions. In one of them a computer, the Servant, is sent with con-
stant acceleration which examines all even numbers one case after the other.
In another space mission the Master himself contrives to accelerate in such
a way to keep the Servant within his causal horizon. It is possible to arrange
Master’s acceleration so that the Servant disappears from his causal shadow
only after spending infinite amount of time on the Goldbach’s conjecture,
while in the Master’s frame the amount of time passed remains finite. If the
Servant finds a counterexample to the Goldbach’s conjecture it sends a mes-
sage to the Master and the latter will know that the conjecture is false. If
no message is received, however, the Master will know in a finite time that
Goldbach was wright.

This looks too good to be true and indeed the realization of such Pitow-
sky [55] infinite machine is suspicious for a number of reasons [42, 54]. The
Servant moves with constant acceleration during infinite proper time. There-
fore, it needs an infinite fuel supply. Moreover, the Master’s acceleration
increases without limit and eventually he would be crushed to death by arti-
ficial gravity. There is a conceptual problem also. At no point on his world
line does the Master have a causal access to all events on the Servant’s world
line. This means there is no Moment of Truth, if the Goldbach’s conjecture
is true, at which the Master attained that knowledge. Emergence of the
knowledge about validity of the Goldbach’s conjecture will be as mysterious
in Pitowsky bifurcated supertask as is the disappearance of energy in Pérez
Laraudogoitia’s supertask.

But general relativity allows to improve the above construction by admit-
ting the so called Malament–Hogarth space–times [54, 56]. In such a space-
time there is a point (the Malament–Hogarth point) at Master’s world line
such that entire infinite history of the Servant’s world line is contained in
this point’s causal shadow. From that event on the Master will be enlight-
ened about validity of that particular number theoretic problem through the
Servant’s infinite labours.

Some Malament–Hogarth space–times seem quite reasonable physically.
Among them are such well known space–times as the anti-de Sitter space-
time, Reissner–Nordström spacetime and Kerr–Newman spacetime [57], the
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latter being the natural outcome of the late-time evolution of a collapsed
rotating star. Therefore, it is not excluded that “if the Creator had a taste
for the bizarre we might find that we are inhabiting one of them” [42]. Even
if this proves to be the case, the practical realization of infinite computation
is not at all guaranteed. Physics beyond the classical general relativity, for
example proton decay and other issues related to the long term fate of the
universe [58], can prohibit the infinite calculations. There is still another
reason that can make a practical realization of bifurcated supertasks dubi-
ous [55]: the Servant might have infinite time to accomplish its labours but
not enough computation space. the argument goes as follows [59, 60].

Any system which performs computation as an irreversible process will
dissipate energy. Many-to-one logical operations such as AND or ERASE
are not reversible and require dissipation of at least kT ln 2 energy per bit
of information lost when performed in a computer at temperature T . While
one-to-one logical operations such as NOT are reversible and in theory can
be performed without dissipation [61].

That erasure of one bit information has an energy cost kT ln 2 (the Lan-
dauer’s principle) can be demonstrated by Maxwell’s demon paradox origi-
nally due to Leo Szilard [62, 63].

A schematic view of the Szilard’s demon engine is shown in the Fig. 7.
Initially the entire volume of a cylinder is available to the one-atom working
gas (step (a)). At step (b) the demon measures the position of the atom and
if it is found in the right half of the cylinder inserts a piston. At step (c)
the one-atom gas expands isothermally by extracting necessary heat from
the reservoir and lifts the load. At step (d) the piston is removed and the
system is returned to its initial state ready to repeat the cycle.

(a) (b)

(d) (c)

Fig. 7. Szilard’s demon engine.
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It seems the Szilard’s demon engine defeats the second law of thermody-
namics: the heat bath, which has transferred energy to the gas, has lowered
its entropy while the engine has not changed its entropy because it returned
to the initial state. But this reasoning is fallacious because it misses an im-
portant point: the demon has not returned to his initial state. He still pos-
sesses one bit information about left–right position of the atom he recorded.
The system truly to return to its initial state it is necessary to erase this
information from the demon’s memory. According to the Landauer’s princi-
ple, one has to pay kT ln 2 energy cost for this erasure. On the other hand
work done during isothermal expansion equals

V
∫

V/2

pdV =

V
∫

V/2

m

µ
RT

dV

V
=
m

µ
RT ln 2 ,

and normalised to one atom this is just (R/NA)T ln 2 = kT ln 2. Therefore,
all extracted work is paid back for erasure of the demon’s memory and the
net effect of the circle is zero. The second law defeats the demon.

In principle all computations could be performed using reversible logical
operations and hence without energy cost [61]. Interestingly enough, some
important stages of biomolecular information processing, such as transcrip-
tion of DNA to RNA, appear to be accomplished by reversible chemical
reactions [64]. Real computers, however, are subject to thermal fluctuations
that cause errors. To perform reliable computations, therefore, some error-
correcting codes must be used to detect inevitable errors and reject them to
the environment at the cost of energy dissipation [61].

The Servant computer from bifurcated supertask needs to consume en-
ergy from surrounding universe to perform its task. Different energy mining
strategies were considered in [59] and it was shown that none of them allows
to gather infinite amount of energy even in infinite time irrespective assumed
cosmological model. To perform infinite number of computations with finite
available energy the Servant should be able to continuously decrease its op-
erating temperature to reduce the energy cost of computations. But the
Servant is not completely free to choose its temperature: the waste heat
produced while performing computations must be radiated away to avoid
overheating. But physical laws place limits on the rate at which the waste
heat can be radiated. Assuming that the electromagnetic dipole radiation by
electrons is the most efficient way to get rid of the heat, Dyson argued [65]
that there is a lower limit on the operating temperature

T >
Q

Ne
10−12K ,
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where Q is a measure of the complexity of the computing device (Q ∼ 1023

for humans) and Ne is the number of electrons in the computer. Since
Q/Ne cannot be made arbitrarily small, it seems infinite computations are
impossible.

But where is a way out [65]: hibernation. The Servant can compute
intermittently while continuing to radiate waste heat into space during its
periods of hibernation. This strategy will allow to operate below the Dyson
limiting temperature. But eventually the wavelength of thermal radiation
will become very large compared to the characteristic size of the computer,
the thermal energies will be small compared to the characteristic quantised
energy levels of the system and radiation will be suppressed by an exponen-
tial factor compared to the estimates of Dyson [59]. Therefore, the Servant
must increase its size as time goes by. It also needs more and more memory
to store digital codes of ever increasing even and prime numbers. This is
another reason it to increase in size. But as was mentioned above there is
only finite amount of energy, and hence material, available. Therefore, it
appears the servant will not be able to accomplish its infinite labours.

8. Zeno meets Newton and Wigner

Our discussion of Zeno’s paradoxes indicates a rather subtle role the
concept of localisation plays in description of motion. It is not surprising,
therefore, that the notion of localisation in relativistic quantum mechanics
was intensively examined. Many concepts of localisation have been proposed
but we focus on the one known as the Newton–Wigner localisation [66, 67].
Initially this concept of localisation and the corresponding position operators
were suggested in the context of the single particle relativistic quantum me-
chanics. But later their result was reformulated in quantum field theory also,
where the concept of local observables is the central concept leading to nu-
merous troubles (infinities) which are swept under carpet with great artistic
skill by renormalisation. Many troubles related to localisation in relativistic
quantum field theory have their formal root in the Reeh–Schlieder theorem
which in the non-formal artistic formulation of Hans Halvorson [68] states
that the vacuum is seething with activity at the local level: any local event
has the nonzero probability to occur in the vacuum state for the standard
localisation scheme. The Newton–Wigner localisation scheme avoids some
consequences of the Reeh–Schlieder theorem and leads to a mathematical
structure which seems more comfortable for our a priori physical intuition
about localisation [69]. But the story is not yet over. The suggested gen-
eralisations of the Newton–Wigner localisation are still not immune against
the full strength of the Reeh–Schlieder theorem and have their own counter-
intuitive features [68, 70].
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Let us sketch the derivation of the Newton–Wigner position operator for
Dirac particles [71]. The Newton–Wigner operator Q̂k can be defined as the
operator whose eigenvalues are the most localised wave-packets formed from
only positive-energy solutions of the Dirac equation. Let ψ(s)

(~y)(~x) be such
a wave-function describing an electron with spin projection s localised at
the point ~y at the time t = 0. Defining the scalar product by

(ψ, φ) =

∫

ψ+(~x)φ(~x) d~x =

∫

ψ+(~p)φ(~p) d~p ,

the natural normalisation condition for these states is
(

ψ
(s)
(~y), ψ

(r)
(~z)

)

= δrsδ(~z − ~y) . (2)

Translational invariance implies

ψ
(s)
(~y)(~x) = ψ

(s)
(~y+~a)(~x+ ~a) ,

or in the momentum space

ψ
(s)
(~y)(~p) = ei~p·~aψ

(s)
(~y+~a)(~p) , (3)

where momentum space wave-functions are defined through

ψ(~p) =
1

(2π)3/2

∫

ψ(~x)e−i~p·~x d~x .

Equations (2) and (3) imply

ψ
(s)+
(~y) (~p) ψ

(r)
(~y)(~p) =

δrs

(2π)3
. (4)

On the other hand
ψ

(s)
(~y)(~p) = f(~y)(~p) u(~p, s) , (5)

where u(~p, 1/2) and u(~p,−1/2) are two independent positive-energy solu-
tions of the Dirac equation, which can be taken in the form

u(~p, s) = Λ+(~p) u(~0, s) ,

where the rest state four-component spinors are

u(~0, 1/2) = (1, 0, 0, 0)T , u(~0,−1/2) = (0, 1, 0, 0)T ,
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and Λ+(~p) is a positive-energy projection operator for a Dirac particle of
mass m:

Λ+(~p) =
1

2

(

1 +
~α · ~p+ βm

p0

)

=
(p̂+m)γ0

2p0
,

p0 =
√

~p2 +m2 .

The normalisation of u(~p, s) is

u+(~p, s)u(~p, s′) = u+(~0, s)Λ+(~p)u(~0, s′) =
p0 +m

2p0
δss′ . (6)

From equations (4)–(6) we get

|f(~y)(~p)|2 = (2π)−3 2p0

p0 +m
.

We fix the phase of f(~y)(~p) by assuming

f∗
(~0)

(~p) = f(~0)(~p) .

Then (3) indicates that the momentum space wave-function for the electron
localised at ~y at the time t = 0 has the form

ψ
(s)
(~y)(~p) =

1

(2π)3/2

√

2p0

p0 +m
e−i~p·~y u(~p, s). (7)

Now we construct the Newton–Wigner position operator Q̂k for which (7)
is the eigenfunction with eigenvalue yk:

Q̂kψ
(s)
(~y)(~p) = ykψ

(s)
(~y)(~p) .

Assuming that ψ
(s)
(~y) eigenfunctions form a complete system for positive-

energy solutions, we get for any positive-energy wave-function ψ(~p)

Q̂kψ(~p) = Q̂k
∑

s

∫

d~y
(

ψ
(s)
(~y), ψ

)

ψ
(s)
(~y)(~p) =

∑

s

∫

d~yyk
(

ψ
(s)
(~y), ψ

)

ψ
(s)
(~y)(~p) .

Substituting (7) and performing y-integration we get

Q̂kψ(~p) =

∫

d~q
2
√
q0p0

(q0 +m)(p0 +m)

∑

s

u(~p, s)u+(~q, s)

(

−i ∂
∂qk

δ(~q − ~p)

)

ψ(~q).
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But

∑

s

u(~p, s)u+(~q, s) = Λ+(~p)

(

∑

s

u(~0, s)u+(~0, s)

)

Λ+(~q)

=
1

2
Λ+(~p)(1 + γ0)Λ+(~q) .

Therefore,

Q̂kψ(~p) = Λ+(~p)(1 + γ0)

√

p0

p0 +m

(

i
∂

∂pk

)√

p0

p0 +m
Λ+(~p)ψ(~p) .

From this equation it is clear that

Q̂k = Λ+(~p)(1 + γ0)

√

p0

p0 +m

(

i
∂

∂pk

)√

p0

p0 +m
Λ+(~p) . (8)

Newton–Wigner position operator simplifies in the Foldy–Wouthuesen repre-
sentation. In this representation its eigenfunctions are obtained via unitary
transformation [72–74]:

φ
(s)
(~y)(~p) = eiWψ

(s)
(~y)(~p) ,

where the Foldy–Wouthuesen unitary operator is

eiW =

√

2p0

p0 +m

{

1

2
(1 + γ0)Λ+(~p) +

1

2
(1 − γ0)Λ−(~p)

}

.

Using the identity

1

2
(1 + γ0)Λ+(~p)u(~0, s) =

1

2
(1 + γ0)Λ+(~p)

1

2
(1 + γ0)u(~0, s) =

p0 +m

2p0
u(~0, s) ,

we get

φ
(s)
(~y)(~p) =

1

(2π)3/2
e−i~p·~yu(~0, s) .

These are Newton–Wigner position operator eigenstates in the Foldy–Wout-
huesen representation. The corresponding position operator can be derived
from them in the above described manner. The result is (in the momentum
space)

~̂Q(W ) =
1

2
(1 + γ0)i

∂

∂~p
,

or in configuration space

~̂Q(W ) =
1

2
(1 + γ0)~x =

1

2
(1 + γ0)~x

1

2
(1 + γ0) .
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Therefore, the Newton–Wigner position operator appears to be just the
positive-energy projection of the Foldy–Wouthuesen “mean position opera-
tor” [72–74] and hence (8) is equivalent to

~̂Q = Λ+(~p)

{

i
∂

∂~p
+ i

β~α

2p0
− iβ(~α · ~p)~p + (~σ × ~p)p0

2p2
0(p0 +m)

}

Λ+(~p) , (9)

where ~σ = (1/2i)~α × ~α.
Let us compare time evolutions of the conventional (Dirac) and Newton–

Wigner position operators in the Heisenberg picture [75, 76]. The Dirac
position ~x(t) = eiĤt~xe−iĤt satisfies the Heisenberg equation of motion

d~x(t)

dt
= i[Ĥ, ~x(t)] = eiĤt~αe−iĤt = ~α(t) ,

where we have used Ĥ = ~α · ~̂p+βm and the canonical commutation relations
(we are using ~ = c = 1 convention throughout this section)

[xi, p̂j ] = iδij .

On the other hand by using

[αi, αj ] = 2(δij − αjαi) = 2(αiαj − δij) ,

[β, ~α] = 2β~α = −2~αβ ,

we get

d~α(t)

dt
= i[Ĥ, ~α(t)] = ieiĤt[Ĥ, ~α]e−iĤt = 2i[~̂p − ~α(t)Ĥ ] = 2i[Ĥ~α(t) − ~̂p] .

Differentiating once more, we obtain

d

dt
~̇α(t) = −2i~̇α(t)Ĥ = 2iĤ ~̇α(t) . (10)

Therefore,
~̇α(t)Ĥ = −Ĥ~̇α(t)

and the solution of (10) is

~̇α(t) ≡ d~α(t)

dt
= ~̇α(0)e−2iĤt = 2i(~̂p − ~αĤ)e−2iĤt . (11)

One can integrate (11) by using

t
∫

0

e−2iĤτdτ =
i

2
Ĥ−1

(

e−2iĤt − 1
)

,
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and the result is

~α(t) = ~̂pĤ−1 + (~α− ~̂pĤ−1)e−2iĤt.

Inserting this into
d~x(t)

dt
= ~α(t)

and integrating the resulting equation, we get the Dirac position operator
in the Heisenberg picture

~x(t) = ~x+ ~̂pĤ−1t+
i

2

(

~α− ~̂pĤ−1
)

Ĥ−1
(

e−2iĤt − 1
)

. (12)

This equation shows that a free electron surprisingly performs a very com-
plicated oscillatory motion. The first two terms are just what is expected,
because

~pH−1 =
~p

p0

H

p0
=

~p

p0
(Λ+(~p) − Λ−(~p))

is essentially the conventional relativistic velocity for positive-energy wave
functions. But the last term in (12) is at odds with our classical intuition.
According to it the Dirac electron executes rapid oscillatory motion, which
Schrödinger called “Zitterbewegung”. As ~α(t) · ~α(t) = 1, the instantaneous
value of electron’s velocity during this trembling motion is always 1 (that
is the velocity of light). The Zitterbewegung is a result of an interference
between positive and negative frequency Fourier components of the particle
wave-packet. The way the Zitterbewegung shows itself depends on the char-
acter of the particle wave-packet [75]. In the case of plane wave (not localised
particles) one has a steady-state violent oscillations with amplitude ∼ 1/m
and angular frequency ∼ 2m (~/mc and 2mc2/~ if ~ and c are restored; for
the electron ~/mc = 3.85 × 10−3 Å and 2mc2/~ = 1.55 × 1021 Hz).

For the Newton–Wigner position operator we will have

d ~̂Q(t)

dt
= i[Ĥ, ~̂Q(t)] = ie−iW eiĤ(W )t[Ĥ(W ), ~̂Q(W )]e

−iĤ(W )teiW .

But in the Foldy–Wouthuesen representation

Ĥ(W ) = βp0, ~̂Q(W ) =
1

2
(1 + β)i

∂

∂~p

and

[Ĥ(W ), ~̂Q(W )] = − i

2
(1 + β)

~p

p0
.
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Therefore,

d ~̂Q(t)

dt
= ie−iW 1

2
(1 + β)

~p

p0
eiW =

~p

p0
Λ+(~p)

and
~̂Q(t) = ~̂Q+

~p

p0
Λ+(~p)t , (13)

where ~̂Q ≡ ~̂Q(0) is the initial value of the Newton–Wigner position op-
erator given by (9). As we see, the Zitterbewegung is absent in the time
development of the Heisenberg picture Newton–Wigner position operator.
This is not surprising because only positive frequencies are present in the
Fourier components of wave packets that are localised in the Newton–Wigner
sense. However, this absence of trembling has a price: Newton–Wigner wave-
packets cannot be localised sharper than 1/m. To see this, let us consider
the Newton–Wigner eigenfunction (7) in configuration space.

ψ
(s)
(~y)

(~x) =
1

(2π)3

∫

ei~p·(~x−~y)

√

2p0

p0 +m
Λ+(~p)u(~0, s) d~p .

By using

u(~0, s) =
1

2
(1 + γ0)u(~0, s), Λ+(~p)

1

2
(1 + γ0)

=
1

2p0

(

p0 +m 0
~p · ~σ 0

)

, (14)

we get

ψ
(s)
(~y)(~x) =

1

(2π)3

∫

ei~p·(~x−~y) 1
√

2p0(p0 +m)

(

p0 +m 0
~p · ~σ 0

)

u(~0, s) d~p ,

or

ψ
(s)
(~y)

(~x) =

(

A(~z;m) 0

−2i~σ · ∂2A(~z;m)
∂~z∂m 0

)

u(~0, s) ,

where ~z = ~x− ~y and

A(~z;m) =
1

(2π)3

∫

ei~p·~z
√

p0 +m

2p0
d~p .

For evaluation of the latter function, it is convenient to decompose

√

1 +
m

p0
= 1 +

∞
∑

n=1

an

(

m

p0

)n

.
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Then

A(~z;m) =
δ(~z)√

2
+

√
2

(2π)2

∞
∑

n=1

an

∞
∫

0

p

(

m

p0

)n sin (pz)

z
dp , (15)

where p = |~p| and z = |~z|. But

I = mn

∞
∫

0

p

pn
0

sin (pz)

z
dp = −m

n

z

d

dz

∞
∫

0

cos (pz)

(p2 +m2)
n

2

dp .

This latter integral can be evaluated by using [77]

Kν(mz) =
Γ (ν + 1

2)(2m)ν√
πzν

∞
∫

0

cos (pz)

(p2 +m2)ν+ 1
2

dp

and
1

z

d

dz
[zνKν(z)] = −zν−1Kν−1(z) ,

where Kν(z) is the Macdonald function. The result is

I =

√
πm3

Γ (n
2 )2

n−1
2

(mz)
n−3

2 Kn−3
2

(mz) .

Substituting this into (15), we get

A(~z;m) =
1√
2

[

δ(~z) +

√
πm3

(2π)2

∞
∑

n=1

an

Γ (n
2 )

(mz

2

)
n−3

2
Kn−3

2
(mz)

]

.

But for large arguments [77]

Kν(z) ≈
√

π

2z
e−z

{

1 +
4ν2 − 1

8z

}

.

Therefore, the function A(z;m) decays for large |~x− ~y| as e−m|~x−~y| indicat-
ing that the localisation provided by the ψ(s)

(~y)(~x) wave-function is no better
than 1/m.

It seems, therefore, that the quantum mechanics and relativity create
conceptual problems for Zeno’s prescription to observe Achilles and the tor-
toise race (check the tortoise position when Achilles reach the position tor-
toise occupied at previous step). If we use the Dirac position for this goal,
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we will face Zitterbewegung, and if we use the Newton–Wigner one, the
contenders will be not sharply localised. The notion of object’s localisation,
which seems so benignly obvious in classical mechanics, undergoes a radical
change when distances are smaller than the Compton wavelength of the ob-
ject. At first sight the notion of localisation at Compton scales appears as
purely academic concept because even for electron the Compton wavelength
is very small and the Zitterbewegung frequency very high, far beyond the
present day experimental accessibility. But this situation can be changed in
near future thanks to narrow-gap semiconductors [78].

In such semiconductors the dispersion relation between the energy and
the wavenumber for electrons is analogous to that of relativistic electrons
in vacuum and as a result effective relativity arises with maximum velocity
of about 108 cm/sec instead of the velocity of light [78, 79]. Such systems
can be used to model various relativistic phenomena the Zitterbewegung
included. The amplitude of the corresponding trembling motion in semi-
conductors can be quite large, as much as 64Å for InSb [78], and can be
experimentally observed using high-resolution scanning-probe microscopy
imaging techniques [80].

9. Quantum revivals of Zeno

Achilles is localised not only at the initial instant but remains so dur-
ing the whole race. Maybe for Zeno this facet of classical world was not
paradoxical at all but it appears not so trivial at modern times, after the
quantum revolution. In quantum mechanics wave-packets spread as time
goes by and it is not after all obvious how the classical reality with its
definiteness arises from the weird quantum world. It is assumed, usually,
that classical behaviour of macroscopic objects, like Achilles and tortoise, is
something obvious and always guaranteed. But this is not correct. For ex-
ample, a cryogenic bar gravity-wave detector must be treated as a quantum
harmonic oscillator even though it may weigh several tons [81]. Supercon-
ductivity and superfluidity provide another examples of quantum behaviour
at macroscopic scales.

To illustrate surprises that a quantum particle on a racetrack can offer,
let us consider a wave packet of an electron in a hydrogen atom constructed
from a superposition of highly excited stationary states centred at a large
principal quantum number n̄ = 320 [82]. Initially the wave packet is well-
localised near a point on the electron’s classical circular orbit. Then it
propagates around the orbit in accordance with the correspondence princi-
ple. During the propagation the wave packet spreads along the orbit and
after a dozen classical periods TKepler appears as nearly uniformly distributed
around the orbit (Fig. 8).
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Fig. 8. Circular-orbit wave packet at initial stages of its time evolution [82].

If we wait long enough something extraordinary will happen: after some
time Trev the wave packet contracts and reconstructs its initial form (Fig. 9).
This resurrection of the wave packet from the dead is called a quantum re-
vival and it is closely related to the Talbot effect in optics [83]. In many
circumstances the revivals are almost perfect and repeat as time goes on. At
times (k1/k2)Trev, where k1 and k2 are two mutually prime numbers, frac-
tional revivals happen and the wave packet consists of several high-correlated
smaller clones of the original packet.

To explain the origin of quantum revivals, let us consider a particle of
mass m in an infinite square well of width L [84, 85]. The energy spectrum
of the system is given by

En =
1

2m

(

π~

L

)2

n2.
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Fig. 9. Wave-packet revival and fractional revivals [82].

Suppose the initial wave function is

ψ(x; 0) =

∞
∑

n=1

anφn(x),

where φn(x) are the energy eigenfunctions. Time evolution of this wave
function is described by

ψ(x; t) =

∞
∑

n=1

ane
− i

~
Entφn(x).

Therefore, if there exists such a revival time Trev that

En

~
Trev = 2πNn + ϕ (16)

for all nonzero an, where Nn is an integer that can depend on n and ϕ does
not depend on n, then ψ(x;Trev) will describe exactly the same state as
ψ(x; 0).

But (16) is fulfilled if

Trev =
4mL2

π~
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and ϕ = 0. Therefore, any quantum state in an infinite square well will be
exactly revived after a time Trev. Note that the classical period of bouncing
back and forth between the walls is

Tcl =

√

2m

E
L

and for highly excited states (n≫ 1)

Tcl =
2mL2

nπ~
≪ Trev .

Now let us consider the quantum state ψ(x; t) at half of revival time

ψ(x;Trev/2) =
∞
∑

n=1

ane
−iπn2

φn(x) =
∞
∑

n=1

(−1)nanφn(x) ,

where we have used e−iπn2
= (−1)n identity. But

φn(x) =

√

2

L
sin

nπx

L
= −(−1)nφn(L− x) .

Therefore,

ψ(x;Trev/2) = −
∞
∑

n=1

anφn(L− x) = −ψ(L− x; 0) ,

and we have the perfect revival of the initial quantum state but at a location
L− x which mirrors the initial position about the center of the well.

At one quarter of the revival time

ψ(x;Trev/4) =

∞
∑

n=1

ane
−iπn2/2φn(x) .

But

e−iπn2/2 = cos
n2π

2
− i sin

n2π

2
=

{

1, if n even ,
−i, if n odd .

Therefore,

ψ(x;Trev/4) =
∑

n even

anφn(x) − i
∑

n odd

anφn(x) .

Comparing this expression to

ψ(x; 0) =
∑

n even

anφn(x) +
∑

n odd

anφn(x)
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and
ψ(L− x; 0) = −

∑

n even

anφn(x) +
∑

n odd

anφn(x) ,

we deduce that [85]

ψ(x;Trev/4) =
1 − i

2
ψ(x; 0) − 1 + i

2
ψ(L− x; 0) .

Therefore, we have the perfect fractional revival at a time Trev/4 when two
smaller copies of the initial wave packet appear at locations x and L− x.

Space–time structure of the probability density |ψ(x; t)|2 is also very
interesting. When plotted over long time periods (of the order of Trev) it
exhibits fine interference patterns known as quantum carpets [86,87]. Some
examples, taken from [85], are shown in Fig. 10.

Fig. 10. The quantum carpets for the Pöschel–Teller and Rosen–Morse potentials.
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Contemporary experimental technique allows to investigate quantum re-
vivals and carpets and many theoretical results have been confirmed by
experiments [83, 88]. Of course, nothing remotely similar to this weird phe-
nomena happens during the Achilles and the tortoise race. And we come
to one more paradox: why Zeno’s paradoxes, formulated purely in classical
terms, make complete sense for us? The answer may sound like this [81]:
“The environment surrounding a quantum system can, in effect, monitor
some of the systems observables. As a result, the eigenstates of these ob-
servables continuously de-cohere and can behave like classical states”. Ob-
jects have no a priori classical properties. These properties are emergent
phenomenon and come into being only through the very weak interaction
with the ubiquitous degrees of freedom of the environment. Amazingly, the
emergence of the classical world seems to be just another side of the quan-
tum Zeno effect. As an example one can consider a large chiral molecule
(like sugar) which can have both left-handed and right-handed classical spa-
tial structures [89, 90]. For symmetry reasons, the ground state is equal
mixture of both chiral states. Chiral molecules are never found in energy
eigenstates and this is probably not surprising because such states are ex-
amples of Schrödinger cat states (like a superposition of a dead and an alive
cat) which look truly absurd from classical viewpoint. But the real reason
why non-classical states of the Chiral molecules are not observed is that it
is chirality (not parity) that is recognised by the environment, for example
by scattered air molecules. The chirality of the molecule is thus continu-
ously “observed” by the environment and, therefore, cannot change because
of quantum Zeno effect.

10. Zeno meets quantum gravity

Another twist to the story of localisation is added when one tries to
incorporate gravity into a quantum theory. Any sharp localisation of the
system creates a significant local energy density due to uncertainty relations
and, therefore, changes the space–time metric according to the philosophy
of general relativity. This can effect another localisation effort nearby in an
unavoidable manner [91] and as a result it will matter whether x-position
measurement is carried before or after y-position measurement. Moreover,
localisation sharper than the Plankian scale creates a singularity in the
space–time metric and, therefore, is problematic. We expect consequently
that any coherent quantum gravity theory will not only bring the funda-
mental Plankian scale as the limit of space–time divisibility with it, but also
a non-commutative space–time geometry.

Not only the concept of localisation of material objects but also oper-
ational meaning of the space–time itself is expected to be lost at Plankian
scales. The principles of quantum mechanics and general relativity limit
the accuracy of space–time distance measurements. The argument goes as
follows [92].
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Suppose we want to measure the initial distance between Achilles and the
tortoise. We can attach a small mirror to the tortoise while a clock with light-
emitter and receiver to Achilles. When the clock reads zero a light signal is
sent to be reflected by the mirror. If the reflected signal arrives back at time
t then the distance is l = ct/2. Note that this is a quite realistic scheme
used, for example, in Lunar Laser Ranging experiments [93]. Quantum
mechanics sets some limits on ultimate precision which can be reached in
such distance measurements. Let, for example, the initial uncertainty in the
clock’s position be ∆x. Then according to uncertainty relation its speed is
also uncertain with the spread

∆v ≥ 1

2

~

m∆x
,

where m is the mass of the clock. At time t the uncertainty of the clock’s
position will be larger

∆x(t) = ∆(x(0) + vt) =
√

(∆x)2 + (t∆v)2 =

√

(∆x)2 +
1

4

t2~2

m2(∆x)2
.

The optimal uncertainty at initial time that minimises the uncertainty at
time t is given by

(∆x)2 =
1

2

t~

m
.

Therefore, the minimal uncertainty at time t is

∆x(t) =

√

t~

m
=

√

2l~

mc
= λC

√

2l

λC
,

where λC = ~/mc is the Compton wavelength of the clock. The mirror
contributes similarly to the overall uncertainty of the distance l to be mea-
sured. Therefore, ignoring small factors of the order of 2, we obtain an
order of magnitude estimate [92, 94] (the argument actually goes back to
Wigner [95, 96])

∆l ≥ λC

√

l

λC
. (17)

Hence we need massive clock to reduce the uncertainty. But the mass of
the clock cannot be increased indefinitely because the distance l should be
greater than the clock’s Schwarzschild radius. Otherwise the clock will col-
lapse into a black hole as it is assumed that its size is smaller than l. There-
fore,

l ≥ Gm

c2
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and inserting this into (17) we get

∆l ≥ lP , (18)

where

lP =

√

~G

c3

is the Planck length.
Ng and Van Dam argue even for a more restrictive bound [92]. suppose

the clock consists of two parallel mirrors a distance d apart. Then its one
tick cannot be less than d/c and this implies ∆l ≥ d if the clock is used for
timing in distance measurements. But d should be greater than the clock’s
Schwarzschild radius. Therefore,

∆l ≥ Gm

c2
. (19)

Squaring (17) and multiplying the result by (19), we eliminate the clock’s
mass and obtain (∆l)3 ≥ ll2P. Therefore,

∆l ≥ lP

(

l

lP

)1/3

. (20)

It seems there is a common consensus about the validity of (18). While
the more stronger bound (20) is still under debate (see, for example, [94]).
Nevertheless this latter bound is consistent with the holographic principle
[97] which states that the information content of any region of space cannot
exceed its surface area in Planck units. Indeed [98], suppose we have a cube
of dimension l× l× l and every cell ∆l×∆l×∆l of this cube can be used to
store one bit of information. ∆l cannot be made less than dictated by the
bound (20), otherwise it will be possible to measure the size of the cube in
∆l units and reach the precision superior to the limit (20). Therefore, the
information content of the cube

N =
l3

(∆l)3
≤ l2

l2P
.

In any case, we can conclude that basic principles of quantum mechanics
and general relativity strongly suggest discreteness of space–time at some
fundamental scale. Zeno anticipated such possibility and attacked it with
another couple of paradoxes. The first one, the Arrow, states that [2]

• If everything is either at rest or moving when it occupies a space equal

to itself, while the object moved is always in the instant, a moving

arrow is unmoved.
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Stated differently, if a particle exists only at a sequence of discrete instants
of time, what is the instantaneous physical properties of a moving particle
which distinguishes it from the not moving one? And if there is no such
properties (well, the notion of instantaneous velocity requires the concept
of limit and thus is inappropriate in discrete space–time) how the motion is
possible?

Modern physics changed our perspective of particles and motion and
the Arrow seems not so disturbing today. For example we can defy it by
stating that the arrow cannot be at rest at definite position according to
the uncertainty principle. Alternatively, we can evoke special relativity and
say that there is a difference how the world looks for a moving arrow and
for an arrow at rest [2]: they have different planes of simultaneity. Special
relativity can cope also with the second Zeno paradox against space–time
discreteness, the Stadium:

• Consider two rows of bodies, each composed of an equal number of

bodies of equal size. They pass each other as they travel with equal

velocity in opposite directions. Thus, half a time is equal to the whole

time.

If motion takes place in discrete quantum jumps then there should be an
absolute upper bound on velocity. The maximum velocity is achieved then
all jumps are in the same direction. The Stadium is intended to show logical
impossibility of the maximum relative velocity. Suppose the rows of bodies
from the paradox move at maximum or nearly maximum speed. Then in
the rest frame of the first row other bodies are approaching at twice or so
the maximum possible speed. Now we know that the latter inference is
not sound. But Zeno was right that radical change of classical concepts of
space and time is necessary to assimilate an observer-independent maximum
velocity. “Space by itself and time by itself are to sink fully into shadows
and only a kind of union of the two should yet preserve autonomy” — to
quote Minkowski from his famous Cologne lecture in 1908.

In fact space–time discreteness coupled with the relativity principle as-
sumes two invariant scales: not only the maximum velocity but also the
minimum length. In this respect the special relativity refutation of Zeno is
not complete. Only recently a significant effort was invested in developing
Doubly Special Relativity [99, 100] — relativity theories with two observer-
independent scales. These developments, although interesting, still are lack-
ing experimental confirmation.

Doubly Special Relativity, if correct, should be a limiting case of quan-
tum gravity — an ultimate theory of quantum space–time and a major
challenge of contemporary physics to combine general relativity with quan-
tum mechanics. This synthesis is not achieved yet but curiously enough its
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outcome may turn out to vindicate Parmenidean view that time and change
are not fundamental reality. In any case the problem of time seems to be
central in quantum gravity because time plays conceptually different roles
in quantum mechanics and general relativity not easy to reconcile [101–105].

In quantum mechanics time is an external parameter, not an observable
in the usual sense — it is not represented by an operator. Indeed, sup-
pose there is an operator T̂ , representing a perfect clock, such that in the
Heisenberg picture T̂ (t) = eiĤtT̂ e−iĤt = t. Then (we are using again ~ = 1
convention)

i[Ĥ, T̂ (t)] =
d

dt
T̂ (t) = 1 .

Therefore, [T̂ (t), Ĥ ] = i and [Ĥ, eiαT̂ ] = αeiαT̂ . If ψ is an energy eigenstate
with energy E then

ĤeiαT̂ψ =
{[

Ĥ, eiαT̂
]

+ eiαT̂ Ĥ
}

ψ = (E + α)eiαT̂ψ .

Therefore, eiαT̂ψ is also the energy eigenstate with energy E + α and the
Hamiltonian spectrum cannot be bounded from below as it usually is. This
argument goes back to Pauli [106]. Alternatively we can resort to the Stone–
von Neumann theorem [107] and argue that the canonically conjugate T̂ and
Ĥ are just the disguised versions of the position and momentum operators
and, therefore, must have unbounded spectra.

However, there are subtleties in both the Pauli’s argument [106] as well
as in the Stone–von Neumann theorem [108] and various time operators
are suggested occasionally. Note that many useful concepts in physics are
ambiguous or even incorrect from the mathematical point of view. In an
extremal manner this viewpoint was expressed by Dieudonné [109]: “When
one gets to the mathematical theories which are at the basis of quantum
mechanics, one realizes that the attitude of certain physicists in the han-
dling of these theories truly borders on the delirium”. Of course, this is an
exaggeration but sometimes mathematical refinement leads to new physical
insights and it is not excluded that the last word about the time operator is
not said yet. In any case, subtle is the time in quantum mechanics!

The idea of an event happening at a given time plays a crucial role in
quantum theory [110] and at first sight introduces unsurmountable difference
between space and time. For example [101], if Ψ(~x, t) is a normalised wave
function then

∫

|Ψ(~x, t)|2d~x = 1 for all times, because the particle must be
somewhere in space at any given instant of time. While

∫

|Ψ(~x, t)|2dt can
fluctuate wildly for various points of space.

Nevertheless, the conceptual foundation of quantum theory is compati-
ble with special relativity. Absolute Newtonian time is simply replaced by
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Minkowski spacetime fixed background and unitary representations of the
Poincaré group can be used to develop quantum theory. Situation changes
dramatically in general relativity. “There is hardly any common ground be-
tween the general theory of relativity and quantum mechanics” [95]. The
central problem is that spacetime itself becomes a dynamical object in gen-
eral relativity. Not only matter is influenced by the structure of spacetime
but the metric structure of spacetime depends on the state of ambient mat-
ter. As a result, the spatial coordinate ~x and the temporal coordinate t lose
any physical meaning whatsoever in general relativity. If in non-general-
relativistic physics (including special relativity) the coordinates correspond
to readings on rods and clocks, in general relativity they correspond to
nothing at all and are only auxiliary quantities which can be given arbitrary
values for every event [95, 111].

Already at classical level, general relativity is a great deal Parmenidean
and usually some tacit assumptions which fix the coordinate system is needed
to talk meaningfully about time and time-evolution. To quote Wigner [95]
“Evidently, the usual statements about future positions of particles, as speci-
fied by their coordinates, are not meaningful statements in general relativity.
This is a point which cannot be emphasised strongly enough and is the basis
of a much deeper dilemma than the more technical question of the Lorentz
invariance of the quantum field equations. It pervades all the general the-
ory, and to some degree we mislead both our students and ourselves when
we calculate, for instance, the mercury perihelion motion without explaining
how our coordinate system is fixed in space, what defines it in such a way
that it cannot be rotated, by a few seconds a year, to follow the perihelion’s
apparent motion”.

In quantum theory the situation only worsens. The Hamiltonian gener-
ates the time evolution of quantum system. But the equations of motion
of general relativity are invariant under time re-parametrisation. Therefore,
the time evolution is in fact unobservable — it is a gauge. The Hamiltonian
vanishes and the Schrödinger equation in cosmology — the Wheeler–DeWitt
equation does not contain time. “General relativity does not describe evo-
lution in time: it describes the relative evolution of many variables with
respect to each other” [111]. Zeno and Parmenides with their strange idea
that time and change are some kind of illusion still have chance in quantum
gravity!

11. Conclusion

The main conclusion of this paper is that physics is beautiful. Questions
aroused two and half millennium ago and scrutinised many times are still
not exhausted. Zeno’s paradoxes deal with fundamental aspects of reality
like localisation, motion, space and time. New and unexpected facets of
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these notions come into sight from time to time and every century finds
it worthwhile to return to Zeno over and over. The process of approach-
ing to the ultimate resolution of Zeno’s paradoxes seems endless and our
understanding of the surrounding world is still incomplete and fragmentary.

“Nevertheless, I believe that there is something great in astronomy, in
physics, in all the natural sciences that allows the human being to look
beyond its present place and to arrive at some understanding of what goes
on beyond the insignificant meanness of spirit that so often pervades our
existence. There is a Nature; there is a Cosmos; and we walk towards the
understanding of it all. Is it not wonderful? There are many charms in the
profession; as many charms as in love provided, of course, that they are not
in the service of mercantile aims” [112].
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