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There exists a scenario of a proof of the general Penrose inequality that
requires a convexity property and the no-twist condition of a foliation of
the Cauchy hypersurface. This paper shows that the no-twist condition
can be removed and that, in the Schwarzschild geometry with linear axial
perturbations, there do exist foliations that are convex in the required sense.

PACS numbers: 04.20.–q, 04.20.Dw

1. Introduction

The Penrose inequality can constitute a necessary condition for the va-
lidity of the cosmic censorship ( [4,5]). It has been proved a few years ago in
the Riemannian case by Huisken and Ilmanen [7], and Bray [8]. That cor-
responds, roughly speaking, to momentarily static initial data of Einstein
equations. It is well known that the inequality holds true in spherically
symmetric systems [9], for any foliation choice of the hypersurface ( [10,11]),
but under a dominant energy condition.

Malec, Mars and Simon presented a scheme for the proof of the gen-
eral Penrose inequality [13], which requires the existence of such a three-
dimensional Cauchy hypersurface that (i) can be foliated by a family of
two-spheres that conform to the Geroch flow condition [6] and (ii) are con-
vex in the sense explained in the next section. If the above is true in a chosen
space-like hypersurface and the dominant energy condition is satisfied, then
the inequality is valid.

The purpose of this paper is twofold. Firstly, we show that one of the con-
ditions of [13] can be relaxed — the foliation in question can have a nonzero
twist. Secondly, and that is the main result, we demonstrate that there
exists a foliation satisfying all other conditions of [13] in axial perturbations
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of maximal slices of Schwarzschild spacetimes. Therefore, one can conclude
that the Penrose inequality is satisfied in a perturbed Schwarzschild space-
time.

2. Definitions

Let a Cauchy surface Σ be endowed with a metric

(3) ds2 = (N2 + NANA) dr2 + 2NA dr dxA + (2)gAB dxA dxB (1)

and an extrinsic curvature Kij . Assume that the surfaces Sr, defined as
the level sets r = const, have spherical topology. The radial variable can
be always reparametrized, so that r =

√

Ar/4π, where Ar is the area of
Sr [17]. The Latin small case indices i, j, k . . . range from 1 to 3 while Latin
capital indices A,B,C . . . denote tangential components and they range from
2 to 3. The index r always means the radial component — normal to the
two-dimensional foliation — and is never used in summation. Sr has the
induced two-dimensional metric (2)gAB with an inverse (2)gAB . The trace of
Kij will be denoted as Tr K = Kij

(3)gij . KT
AB is a two-dimensional trace-less

tensor defined by:

KT
AB = KAB − 1

2
(2)gAB(KDE

(2)gDE) = KAB − 1

2
(2)gABq . (2)

The embedding of Sr in the three-dimensional manifold Σ is described by
the second fundamental form pAB with the mean curvature p = Tr p =
pAB

(2)gAB . The trace-less part of pAB is defined as

pT
AB = pAB − 1

2
(2)gABp , (3)

N is the three-dimensional lapse while NA denotes the covariant components
of the two-dimensional shift vector. We will say that the metric (1) has
a nonzero twist if NA is nonzero. It is assumed in what follows that prN = 2
— the inverse mean curvature flow condition (IMCF) of Geroch [6].

The embedding of Sr in a four-dimensional space–time can be specified
with the help of the so-called optical scalars — objects that are built from
the two fundamental forms, Kij and pAB. One has

θ = p + q , (4a)

θ′ = p − q . (4b)

The apparent horizon H in the original formulation [1] is defined as the
outermost level set SH of θ = 0 in Σ such that θ′(SH) ≥ 0. Penrose
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conjectured that the mass m of a space–time and the area AH of the apparent
horizon do satisfy the inequality

m ≥
√

AH

16π
. (5)

This definition of apparent horizons can be ambiguous [19]; a recent discus-
sion on that can be found in [20].

The main result of [13] proves Eq. (5) assuming that (i) the twist van-
ishes, (ii) there exists an inverse mean curvature flow extending from the
outermost apparent horizon SH (being one of the foliation leaves for some
r = r0) to spatial infinity, (iii) outside SH the optical scalar θ′(Sr) > 0,
(iv) the ratio q/p is constant on each foliation leaf and, finally (v) the dom-
inant energy condition holds.

Let us observe that one of the assumptions can be replaced by another
that allows a more transparent geometric interpretation. Namely, the con-
dition (iv) is equivalent to (iv’) θ = cθ′ with a positive c being constant on
all foliation leaves outside SH . Indeed, it was already shown in [13] that if
q/p =const, then |q/p| < 1 and θ = γθ′, where γ = (1 + q/p)/(1 − q/p) > 0
is constant on all leaves in question. Conversely, if we start from θ = cθ′

and c > 0, then q/p = (1 − c)/(1 + c) is constant on all foliation leaves
outside SH . Obviously, |q/p| < 1. The assumption θ = cθ′ appears in the
Hayward’s approach [21].

The optical scalars can be related to the expansions θ′(Sr) and θ(Sr)
of bundles of light rays that start orthogonally from Sr inward or outward,
respectively. The positivity of θ and θ′ on a particular two-surface Sr im-
plies that the in-going null rays are convergent everywhere and the outgoing
null rays are divergent everywhere; that probably ensures that Sr is locally
geodesically convex (i.e., for any two close enough points lying on Sr there
exists a geodesic segment joining them that does not leave the ball enclosed
by Sr). In the light of that and the preceding Lemma, the condition (iv)
can be interpreted as demanding a kind of convexity.

3. Nonzero twist

The initial data of Einstein evolution equations have to satisfy the non-
linear constraints

R(3) = 16πρ + KijK
ij − (Tr K)2 , (6a)

Di

(

Ki
l − δi

l TrK
)

= −8πjl , (6b)

where D is the covariant derivative and R(3) is the Ricci scalar on Σ, while
ρ and jl are the energy and momentum densities, respectively.
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The rest of this section contains only a sketch of the derivations, which
are straightforward but laborious. Calculational details will be described
elsewhere [16]. Let K and n be the Gauss curvature and a normal of Sr,
correspondingly. The Hamiltonian constraint can be written as

nlDlp = −8πρ − 1

2
KijK

ij +
1

2
(Tr K)2 + K − 3

4
p2 − 1

2
pTA

BpTB
A + Dla

l , (7)

where al = niDin
l is the “acceleration”. Let us remark that Eq. (7) coincides,

assuming Kij = 0 and changing normalization of p, with the Eq. (2) of [17].
We will need the Hawking mass associated with a two-dimensional surface
Sr, it is defined in terms of the optical scalars as follows

MH(S) =

√

AS

16π

4π

∫

S

d2S

(

K − θθ′

4

)

. (8)

Assume that V (S) is a volume of an annulus that is contained between
two leaves S1 and S2, having radii r1 and r2 (r1 < r2), respectively. Let
us multiply both sides of Eq. (7) by pr/2 and the momentum constraint
in Eq. (6) by nlqr/2, respectively, and integrate over the volume V (S).
One obtains, after subtracting the two expressions, integration by parts and
numerous suitable rearrangements

MH(S2) = MH(S1) + M(V ) + J(V ) (9)

+
1

16π

∫

V (S)

dV

[

r(2)gAB∇(2)
A (NKr

B)(Tr K − Kj
l n

lnj)

+
pr

2
(2)gAD(2)gEB

×
(

pT
ABpT

DE − 2pT
ABKT

DE

Tr K − Kj
l n

lnj

p
+ KT

ABKT
DE

)

+ pr(2)gAB

×
(

∇(2)
A N

N

∇(2)
B N

N
+2NKr

B

∇(2)
A N

N

Tr K − Kj
l njn

l

p
+NKr

ANKr
B

)]

.

Here M(V ) = 1
2

∫

V (S) rpρdV and J(V ) = 1
2

∫

V (S) r(Tr K − Kb
an

anb)jin
i dV

are the total mass and “radial” momentum, correspondingly. Notice that
the right-hand side of Eq. (9) coincides with the volume form of the Eq. (11)
in [13].
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In the case when both optical scalars are nonnegative along the foliation,
from the centre up to the surface S and

Tr K − Ki
jn

jni

p
= F (r) ,

i.e., ∇(2)
A

Tr K − Ki
jnin

j

p

∣

∣

∣

∣

∣

r=const

= 0 ,

then the following can be observed.
(i) The first integral of Eq. (9) vanishes.

(ii) The positivity of both optical scalars implies p ≥ |Tr K − Kj
i njn

i|
= |q|. Therefore, the second and third group of expressions appearing in the
integrand

(2)gAD(2)gEB

(

pT
ABpT

DE − 2pT
ABKT

DE

Tr K − Kj
l n

lnj

p
+ KT

ABKT
DE

)

(10)

and

(2)gAB

(

∇(2)
A N

N

∇(2)
B N

N
+2NKr

B

∇(2)
A N

N

Tr K−Kj
l njn

l

p
+NKr

ANKr
B

)

(11)

are nonnegative.
(iii) Moreover, if the dominant energy condition is assumed and p ≥

|Tr K − Kj
i n

inj|, then M(V ) ≥ |J(V )|.
The Eq. (9) clearly demonstrates, that the Hawking mass MH(S2) is non-

decreasing and nonnegative if the Hawking mass is nonnegative at S1. If S1 is
the apparent horizon, then MH(S1) =

√

AH/16π; assuming that S2 is taken
at spatial infinity, one obtains that the asymptotic mass
m ≡ m(S2) ≥

√

AH/16π. The existence of the foliation satisfying con-
ditions (i)–(v) implies the validity of the Penrose inequality.

4. Axial perturbations of the Schwarzschild spacetime

In this section we will check that the Schwarzschild geometry with linear
axial perturbations does indeed fulfill the needed assumptions.

Regge and Wheeler [14] found the general form of axial perturbations,

gtt = −
(

1 − 2m

r

)

, (12a)

gtr = 0, (12b)
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gtθ = −εh0(t, r)
1

sin θ

∂

∂φ
YLM , (12c)

gtφ = εh0(t, r) sin θ
∂

∂θ
YLM , (12d)

grr =
1

1 − 2m/r
, (12e)

grθ = −εh1(t, r)
1

sin θ

∂

∂φ
YLM , (12f)

grφ = εh1(t, r) sin θ
∂

∂θ
YLM , (12g)

gθθ = r2 + εh2(t, r)

(

1

sin θ

∂2

∂θ∂φ
− cos θ

sin2 θ

∂

∂φ

)

YLM , (12h)

gθφ =
ε

2
h2(t, r)

(

1

sin θ

∂2

∂φ2
+ cos θ

∂

∂θ
− sin θ

∂2

∂θ2

)

YLM , (12i)

gφφ = r2 sin2 θ − εh2(t, r)

(

sin θ
∂2

∂θ∂φ
− cos θ

∂

∂φ

)

YLM , (12j)

where ε is a “smallness” parameter (i.e., we neglect terms of the order of
ε2 and higher). There is a gauge freedom, which allows one to set h2 ≡ 0
(this is the so-called “Regge–Wheeler gauge”). The background geometry
(i.e., with ε = 0) is given by the standard Schwarzschild slicing,

ds2 = −
(

1 − 2m

r

)

dt2 +
dr2

1 − 2m/r
+ r2 dΩ2 . (13)

All the following calculations were performed using a computer algebra
package GRTensorII [24]. Firstly, we change the background slicing to the
maximal one (Tr K = 0), by performing a coordinate change:

t = t −
∞
∫

r

c dr′

(1 − 2m/r′)
√

r′4 − 2mr′3 + c2
, (14)

leaving r, θ, φ unaltered. We then choose the slicing by Cauchy hypersurfaces
Σt defined by t = const. On the new slices the extrinsic curvature vanishes
up to terms linear in ε. The Ricci scalar of such hypersurfaces Σt reads

R(3) =
6c2

r6
+ O(ε2) . (15)

In the next step we choose a foliation in a fixed hypersurface Σt by two-
dimensional surfaces Sr, defined by r = const, and calculate the second
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fundamental form pAB and its trace p. The coordinate radius r coincides
with the areal radius. The apparent horizon resides at the two-surface having
r = 2m. It appears that the IMCF condition is satisfied in the chosen slicing
(Sr) of Σt:

Npr = 2 . (16)

It might be regarded as surprising that the above equality is exact — there
are no terms with higher orders of ε. Finally we find the value of q/p,

Tr K − Kj
i njn

i

p
= − c√

r4 − 2mr3 + c2
+ O(ε2); (17)

it is constant on Sr up to terms linear in ε. That concludes the proof
that linear axial perturbations of the Schwarzschild geometry satisfying the
Regge–Wheeler gauge condition fall into the class of geometries considered
in [13]. For that reason the Penrose inequality holds true. An open question
is whether the linear perturbations can be integrated to a full solution of the
constraint equations. One can expect that in the nonlinear case the gauge
should be left free; the function h2 can be specified due to condition (iv)
of Sec. 2.

An interesting sub-case of the above presented slicing is given by the
condition c = 0, which defines the moment of time-symmetry slice of the
background geometry. We have then R(3) = O(ε2); if the linear perturba-
tions happen to be a proper approximation to the full nonlinear solution,
then the scalar curvature R(3) can be nonzero — either positive or negative.
Thus, it is possible, that in the Schwarzschild metric with full nonlinear
perturbations, one could find a region with R(3) < 0. That means that re-
sults of Huisken and Ilmanen [7] and Bray [8] cannot be directly applied to
a perturbed Schwarzschild geometry. This indicates also that the approach
outlined in [13] is not sensitive on the sign of the scalar curvature of the
Cauchy hypersurface.

5. Remarks on polar perturbations

Thus far we have shown that the linear axial perturbations of maximal
slices of the Schwarzschild geometry satisfying the Regge–Wheeler gauge
condition still fulfill demands of the procedure outlined in the former section,
up to terms linear in ε. There was no need to adjust the gauge function
h2(t, r).

The situation is different for the polar perturbations. We explicitly
checked that the Regge–Wheeler gauge is too rigid to allow linear perturba-
tions to satisfy the condition of [13]. In the case of polar perturbations there
is, however, a gauge freedom with three arbitrary functions. As we require
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only two conditions (i.e., the IMCF and convexity conditions) we expect
that it is possible to choose those three gauge functions in such a way that
the required conditions will be satisfied. In order to find such a gauge we
have to perform all the required calculations, using the general form of per-
turbations. In this situation the algebra becomes very complex and further
work is required in order to arrive at conclusive results.

6. Conclusions

We checked the validity of a particular scheme of proving the Penrose
inequality in the case of Einstein initial data defined on a slice foliated by
topological spheres and satisfying the IMCF and the convexity conditions.
A class of spacetimes admitting those conditions — the Schwarzschild geom-
etry with axial perturbations — was given. It can also be expected, that the
proof shown here extends on even perturbations of the Schwarzschild metric.
Another approach to the Penrose inequality is presented by Jezierski [18] in
the case of the perturbed Reissner–Nordström metric.

The only assumptions needed in the presented proof are the assumptions
(i)–(v) presented in Sec. 2. No other assumptions are required, in particular
the three-dimensional slice may have negative scalar curvature (as long as
the assumptions of the Sec. 2 are satisfied). The above results support the
belief that the scheme presented in the paper [13] can be useful in proving
the Penrose inequality in general case.

This work has been supported in part by the Polish State Committee for
Scientific Research (KBN) grants No. 1 P03B 093 28 and 1 P03B 012 29.

REFERENCES

[1] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).

[2] S. Hawking, G.F.R. Ellis, The Large Scale Structure of Space–Time, Cam-
bridge University Press, Cambridge 1973.

[3] R. Penrose, Riv. Nuovo Cim. 1, 252 (1969).

[4] R. Penrose in D.J. Hegyi, Annals of the New York Academy of Sciences 224,
New York 1973, p. 125.

[5] G. Gibbons, Global Riemannian Geometry, Ed. T.J. Willmore and
N.J. Hitchin, Ellis Harwood, Chichester 1984, p. 194; G. Gibbons, Class.
Quantum Grav. 14, 2509 (1997).

[6] R. Geroch in D.J. Hegyi, Annals of the New York Academy of Sciences 224,
New York 1973, p. 108.

[7] G. Huisken, T. Ilmanen, J. Diff. Geom. 59, 353 (2001).



The Penrose Inequality in Perturbed Schwarzschild Geometries 2939

[8] H. Bray, J. Diff. Geom. 59, 177 (2001).

[9] P.S. Jang, R.M. Wald, J. Math. Phys. 18, 41 (1977).

[10] E. Malec, N. Ó Murchadha, Phys. Rev. D49, 6931 (1994); M. Iriondo,
E. Malec, N. Ó Murchadha, Phys. Rev. D54, 4792 (1996).

[11] S. Hayward, Phys. Rev. Lett. 81, 4557 (1998).

[12] J. Frauendiener, Phys. Rev. Lett. 87, 101101 (2001).

[13] E. Malec, M. Mars, W. Simon, Phys. Rev. Lett. 88, 1221102 (2002).

[14] T. Regge, J.A. Wheeler, Phys. Rev. 108, 1063 (1957).

[15] F.J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).

[16] K. Roszkowski, The Penrose Inequality in General Relativity (PhD thesis in
Polish, Jagellonian University, Cracow, Poland) 2005.

[17] J. Jezierski, J. Kijowski, Phys. Rev. D36, 1041 (1988).

[18] J. Jezierski, Acta Phys. Pol. B 25, 1413 (1994).

[19] G. Horowitz in Springer Lecture Notes in Physics 202, 1 (1984).

[20] J. Karkowski, E. Malec, Acta Phys. Pol. B 36, 59 (2005).

[21] S. Hayward, Class. Quantum Grav. 11, 3037 (1994).

[22] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, H. Freeman & Com-
pany, New York 1973.

[23] J. Karkowski, E. Malec, Z. Świerczyński, Class. Quantum Grav. 10, 1361
(1993); J. Karkowski, P. Koc, Z. Świerczyński, Class. Quantum Grav. 11,
1535 (1994).

[24] P. Musgrave, D. Pollney, K. Lake, GRTensorII (Queen’s University, Kingston,
Ontario, Canada), http://grtensor.org/.


