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— NUMERICAL INVESTIGATION

Andrzej Rostworowski

M. Smoluchowski Institute of Physics, Reymonta 4, 30-059 Kraków, Poland

(Received August 17, 2005)

In this paper we present our partial results of numerical investigation of
the quantum Coulomb field |u〉. In particular we investigate the matrix of
the C1 = −1/2MµνM

µν operator in Jacobi base, obtained from orthonor-
malization of Cn

1
|u〉 vectors and photon distribution in the bound state of

the C1 operator, in search for some critical values of the coupling constant
e2 of the theory. So far our results are negative, that is, all characteristics
we studied are smooth functions of 0 < e2 < π.

PACS numbers: 03.70.+k, 12.20.Ds

1. Introduction

We use mechanical units such that ~ = 1 = c and the metric (+,−,−,−).
Staruszkiewicz’s theory of the phase of the infrared part of electromagnetic
field is formulated in the key papers [1, 2] and further developments are
presented in [3–13]. The theory is defined by the action:

SA =
1

8πe2

∫

x·x=−1

d3ξ
√
ggik∂iS(x(ξ))∂kS(x(ξ)) . (1)

The phase S(x) is a massless scalar field which lives on the (2+1)-dimensio-
nal hyperboloid x · x = −1. Once the system is quantised, one can see
that one of its degrees of freedom (namely quantum counterpart of a con-
stant solution of equation of motion) is periodic. Once its scale is fixed the
numerical value of the coupling e2 becomes physically meaningful. In the
original derivation of the theory [1], e2 is the fine structure constant with the
experimental value e2 = 1/137.03599911(46) [14]. The reader who does not
like this connection can consider the action (1) as some field theory model in
the curved (2+1)-dimensional space–time with some nontrivial dependence

(2941)
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on the numerical value of e2 being just some mathematical fact. ξ is any set
of coordinates on the hyperboloid x ·x = −1. In the following we use ξ1 = ψ,
ξ2 = θ and ξ = ϕ, where ψ is time coordinate: x0 = sinhψ (−∞ < ψ <∞)
and θ, ϕ are usual polar and azimuthal angles on a sphere. Solution of equa-
tion of motion and subsequent canonical quantisation leads to the following
expansion and commutation rules ( [1] p. 364):

S(x) = S0 − eQ thψ +

∞
∑

l=1

l
∑

m=−l

[

f
(+)
lm (ψ, θ, ϕ)clm + h.c.

]

, (2)

[Q, S0] = ie , [Q, clm] = 0 , [S0, clm] = 0 , (3)

[clm, c
†
l′m′ ] = 4πe2 δll′δmm′ . (4)

The explicit form of the functions f
(+)
lm (ψ, θ, ϕ), leading to the commutation

rules (4), is given in [1,4]. The action (1) has the following symmetries: the
Lorentz symmetry, which gives six constant of motion Mµν = −Mνµ and
the “gauge” symmetry S(x) → S(x)+const, which gives additional constant
of motion called the total charge. This constant is equal to the Q operator
in the expansion (2):

Q = − 1

4πe

∫

Cauchy surface

dΣi∂iS(ξ) . (5)

The generators of Lorentz transformation were explicitly given in [12], we
rewrite here the boost generators for the reader’s convenience:

M0+ = M01 + iM02

= −2
√
z√
3

Q

e

(

a1(−1) − a†11

)

+ i
∞
∑

l=2

√

l2 − 1

4l2 − 1

l
∑

m=−l+2

√

(l +m− 1) (l +m)a†lma(l−1)(m−1)

+ i

∞
∑

l=2

√

l2 − 1

4l2 − 1

l−2
∑

m=−l

√

(l −m− 1) (l −m)a†(l−1)(m+1)alm ,

M03 = −
√

2z√
3

Q

e

(

a10 + a†10

)

− i
∞
∑

l=2

√

l2 − 1

4l2 − 1

l−1
∑

m=−l+1

√

l2 −m2
(

a†lma(l−1)m − a†(l−1)malm

)

,
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where

alm =
1√

4πe2
clm and a†lm =

1√
4πe2

c†lm ,

and z = e2/π. In the following we use z instead of e2/π. The vacuum state
of the theory is defined by:

clm|0〉 = 0 = 〈0|c†lm (6)

and
Q|0〉 = 0 = 〈0|Q . (7)

The first condition (6) follows directly from the commutation rules (4), while
the second (7) is a consequence of the Lorentz invariance of the vacuum state:

Mµν |0〉 = 0 = 〈0|Mµν .

In [2, 11] the important theorem has been proved: The quantum Coulomb
field1 |u〉, (for definition see [2]) when decomposed into unitary, irreducible
representations of the proper orthochronous Lorentz group contains

• only representations from the main series if z > 1,

• representations from the main series and a single representation from
the supplementary series if 0 < z < 1, corresponding to the special
value of the Casimir operator:

0 < C1 = −1

2
MµνM

µν = z(2 − z) < 1 .

This theorem shows that the value z = 1 is distinguished, as it separates two
regimes with markedly different kinematical properties. This theorem is also
interesting in a sense that it relates the numerical value of the fine structure
constant with a purely kinematical quantity namely the parameter which
labels unitary irreducible representations from the supplementary series. For
the Coulomb field |u〉 the continuous part of the norm equals 1− ez(1− z),

1 The quantum Coulomb field is defined as

|u〉 = exp [−iS(u)] |0〉 ,

where u is some 4-velocity, u · u = 1, and S(u) is the mean of the operator valued

distribution S(x) over a Cauchy surface u · x = 0:

S(u) =
1

4π

Z

x·x=−1

d
3
ξ
√

g δ(u · x(ξ))S(ξ) .

S0 = S(u) in the rest frame of u.
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while the discrete part of the norm equals ez(1 − z). Thus for the small
values of z almost entire norm of the Coulomb field is concentrated upon
discrete part of the norm.

Our aim was to find the wave function of the bound state and if possible
to find some characteristics of the bound state which depend on the numer-
ical value of z. So far results are negative: the wave function is still not
known and all the characteristics we studied seem to be smooth functions of
z. We used the method of the cut Fock space [13]. We confirmed all the re-
sults presented in [13] and investigated the mean number of infrared photons
in the bound state. It seems that this number is finite for all 0 < z < 1. The
paper is organised as follows. In Sec. 2 we summarise the method of [13]. In
Sec. 3 we give some general properties of the C1 matrix in the base defined
in Sec. 2. In Sec. 4 we briefly discuss our implementation of building the
orthogonal base of Sec. 2 and successive approximation of the bound state.
In Sec. 5 we discuss some properties of the bound state, in particular its
mean number of photons.

2. Staruszkiewicz’s theory in the cut Fock space

2.1. Recurrence relations for a matrix of a general Hermitian operator in

Jacobi form

Let H be a Hermitian operator and |e0〉 a normalised state. Acting
with Hn on |e0〉 we get a set of linearly independent states: |e0〉, H |e0〉,
H2 |e0〉 , . . . . Applying the Gram–Schmidt procedure on this set of states
we obtain the orthononormal base: |e0〉, |e1〉, |e2〉, . . . . In this orthonormal
base the H matrix is 3-diagonal. The base |ei〉 can be obtained in the
following way:

|en〉 = En |e0〉 , (8)

where

En =
1√
Zn

(

Hn −
n−1
∑

k=0

〈EkH
n〉Ek

)

(9)

and the mean values are taken in the state |e0〉. From the construction
〈EnEk〉 = δkn. Then the H matrix elements can be calculated from the
following recurrence relations:

〈en+1|H|en〉 =

√
Zn+1√
Zn

, (10)

〈en|H|en〉 =

〈

EnH
n+1
〉

√
Zn

− 〈En−1H
n〉√

Zn−1
, (11)
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where

Zn =
〈

H2n
〉

−
n−1
∑

k=0

〈EkH
n〉2 = 〈EnH

n〉2 , (12)

〈EmH
n〉 =

1√
Zn

(

〈

Hm+n
〉

−
m−1
∑

k=0

〈EkH
m〉 〈EkH

n〉
)

(13)

and all mean values are taken in the state |e0〉. Thus all H matrix elements
are given in terms of

〈

Hk
〉

. In our case H ≡ C1 and |e0〉 ≡ e−iS0 |0〉.

2.2. Evaluation of C1 moments

The moments
〈

Ck
1

〉

are evaluated from a generating function

〈

u
∣

∣eiτC1

∣

∣u
〉

=
1

π
eiτ

∞
∫

0

dν νeiτν2

+∞
∫

−∞

dλ (sin νλ)(sinhλ)e−z(λ coth λ−1) . (14)

On the right-hand side we exchange the order of integration, integrate term
by term and then compare coefficients at successive powers of τ at both
sides. We get

〈u |Cn
1 |u〉 =

n
∑

k=0

n!

k!(n − k)!
Ak ,

where

Ak = (−1)k
d2k+1

dλ2k+1

[

(sinhλ)e−z(λ coth λ−1)
]
∣

∣

∣

λ=0
.

It is useful to note that

(λ cot λ− 1) =
∑

n≥1

4nB2n
λ2n

(2n)!
.

It should be noted that we checked that this procedure works experimentally

rather then theoretically : in fact the autocorrelation function (14) has zero
radius of convergence, but all moments calculated in a direct way agree
exactly with the moments obtained from the above procedure.

The moments 〈Cn
1 〉 are polynomials in z, of degree n, with all coefficients

positive.

〈C1〉 = 2z and 〈Cn
1 〉 = O

(

z2
)

for n ≥ 2 . (15)
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3. General properties of the C1 matrix

We have calculated the elements of the C1 matrix in the base |e0〉, |e1〉,
|e2〉, . . . , defined in the previous section, in function of z up to the size
21 × 21. The general structure of the non-zero elements is

[C1]n,n = cn,n

W(n−3)×(n−2)+(n−2)×(n−1)+1

W(n−3)×(n−2)W(n−2)×(n−1)
, (16)

[C1]n,n+1 = cn,n+1

√

W(n−3)×(n−2)W(n−1)×n

W(n−2)×(n−1)
, (17)

where Wk is a polynomial of degree k in z, with all coefficients positive.
We note that all zeros of these polynomials have negative real part but

there is a numerical evidence [13] that the zero with the biggest real part
(which happens to be always real) approaches zero in the limit n → ∞,
reducing the convergence radius of successive matrix elements to zero. Sim-
ilarly we checked the zeros with the smallest real part (which again happens
to be real) are not bounded from below (they decrease linearly with n,
where n(n + 1) is polynomial degree). This indicates that the C1 matrix is
not analytic at z = 0 nor at z = ∞. This is consistent with the following
approximations for C1 matrix at small and large z:

[C1]n,n = 2n(n− 1) +

(

4

3
n(n− 1) + 2

)

z +O
(

z2
)

,

[C1]n,n+1 =
2(n+ 1)n(n− 1)
√

(2n− 1)(2n + 1)
+

4(n + 1)n(n− 1) + 8n

3
√

(2n − 1)(2n + 1)
z +O

(

z2
)

,

and

[C1]n,n =

(

8

3
(n− 1) + 2

)

z +
4 (n− 1) (4 (n− 1) + 1)

5

− 12 (n− 2) (n− 1) (8n− 3)

175

1

z

+
6 (n− 2) (n− 1)

(

80n2 − 152n + 51
)

875

1

z2

− 108 (n− 2) (n− 1)
(

2248n3 − 8001n2 + 8361n + 2451
)

336875

1

z3

+O

(

1

z4

)

,
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[C1]n,n+1 =
2
√

2n (2n+ 1)

3
z

+
4 (n− 1)

√

2n (2n+ 1)

5
− 3 (n− 1) (8n− 9)

√

2n (2n+ 1)

175

1

z

+
6 (n− 1)

(

20n2 − 43n+ 27
)
√

2n (2n+ 1)

875

1

z2

− 27 (n−1)
(

8992n3−29756n2+35055n−13859
)
√

2n (2n+1)

1347500

1

z3

+O

(

1

z4

)

.

The expansion for large z can be easily continued, but its form suggests that
the expansion is asymptotic: the ratio of the two successive terms in the
expansion behaves like n/z and becomes large for n → ∞. This suggests
that C1 matrix is not analytic at z = ∞. We have not managed to guess
the exact form of the next terms of the expansion for small z, but again the
ratio of successive terms in the expansion behaves as nz and becomes large
for n → ∞. Otherwise our result to the order O

(

z2
)

can be easily checked
due to (15).

4. Implementation in Mathematica

The C1 matrix and coefficients of the bound state in the orthonormal
base (8) can be obtained as described in the previous section. However, to
get the explicit form of |ei〉 vectors as well as the bound state one has to
evaluate (8) explicitly from first principles. To do such calculation programs
like Mathematica or Maple can be used. We use the method of [13] with
a slight modification in representing the states. Any state can be represented
as superposition of the vectors from the Fock basis:

∞
∏

l=1

l
∏

m=−l

(

a†lm

)nlm

e−inQS0 |0〉 .

Thus in Mathematica we represent a state from nQ = Q/e = 1 sector as
a flexible list of the form

|state〉={N, {α1, . . . , αN
| {z }

Nelements

},{{p1

1, np1

1

}, . . . , {p1

k1
, np1

k1

}}, . . . , {{pN
1 , npN

1

}, . . . , {pN
kN

, npN

kN

}}
| {z }

Nelements

}.

The first element of this list (N) gives the number of Fock basis states in
the superposition. The second is the list of (N) amplitudes multiplying basis
states in the superposition. Next elements are lists, each representing one
of the (N) Fock basis states entering superposition. Each of these lists is
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a list of pairs, the first element (position p) encodes l, m: p = l2 + l + m,
the second is the number of quanta for a given p. Only non-zero occupation
numbers are explicitly encoded. We give here a few examples:

|0〉 ↔ {0, {}} ,

|e0〉 ≡ e−iS0 |0〉 ↔ {1, {1}, {}} ,

|e1〉 ≡
1√
6

(

−2 a†1(−1) a
†
11 +

(

a†10

)2
)

e−iS0 |0〉

↔
{

2,

{

− 2√
6
,

1√
6

}

, {{1, 1}, {3, 1}}, {{2, 2}}
}

.

We implement all basic operations on states, like linear superposition, ac-
tion of creation (annihilation) operators, as operations on the lists. This
approach allows to do calculation from first principles (commutation rules),
analytically on a computer.

5. The properties of the bound state of C1 operator

For any eigenstate |x〉 of the C1 operator for the eigenvalue x one can
define a series

Fx(z) =

∞
∑

n=0

∣

∣

∣
a(x)

n

∣

∣

∣

2
, (18)

where

|x〉 =
∞
∑

n=0

|en〉 〈en|x〉 =
∞
∑

n=0

a(x)
n |en〉 .

Due to the fact that in the Jacobi base |e0〉, |e1〉, . . . the C1 matrix is three-
diagonal, the eigenequation C1 |x〉 = x |x〉 becomes a recurrence equation

for the coefficients a
(x)
n . The Staruszkiewicz’s theorem says that the series

(18) is finite only if 0 < z < 1 and x = z(2− z). If this theorem was broken
for some value of z it would exclude this value from the theory. So far no
numerical evidence that this happens has been found [13]. It seems that the
series (18) is finite for all 0 < z < 1.

We find an explicit form of the first 8 Jacobi base vectors |e0〉, . . ., |e7〉.
The number of Fock basis states entering |ei〉 grows rapidly and reaches
27085 components for |e7〉. In general in |en〉 there are at most 2n photons,
with l ≤ n. Then we get successive approximations of the bound state
C1 |bound〉 = z(2 − z) |bound〉:

|boundN 〉 =
1

√

N
∑

n=0
|an|2

N
∑

n=0

an |en〉 .
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The first 8 coefficients for z = 1/2 and z = 1 is listed in Table I. Formally,
we do not know if the bound state exists for z = 1, however, it is useful
to compare characteristics of the bound state for 0 < z < 1, with the
limiting value z = 1. In the following the bound state for z = 1 means, the
eigenstate for the eigenvalue 1. We searched for some nontrivial dependence
of the mean number of photons and photon distribution on the numerical
value of z. So far results are negative that is all observables we looked at are
smooth functions of z. For example the probabilities of finding n photons
in successive approximations of the bound state for z = 1/2 and z = 1 are
given in Table II and presented in Fig. 1. For other values of 0 < z < 1 the
photon distributions look very similar. We plot the probability of finding n
photons in |bound7〉 for z = 1, 1/2, 1/100, 1/500 in Fig. 2.

TABLE I

Coefficients of the first 8 Jacobi base states |e0〉, . . ., |e7〉 in the linear superposition
giving the bound state of the C1 operator for z = 1/2 and z = 1.

n 0 1 2 3 4 5 6 7

z=1/2 an 1 −0.306 0.188 −0.137 0.108 −0.090 0.077 −0.067

z=1 an 1 −0.765 0.702 −0.670 0.651 −0.638 0.628 −0.621

In Fig. 3 we plot mean number of photons in successive approximations
of the bond state for z = 1/2 and z = 1. The z = 1/2 case is well fitted
with the dependence, which indicates that it converges to ∼ 0.47 (we get
this value for different types of convergent fits). The z = 1 case is well fitted
with logarithmic dependence, which may indicate that the mean number of
photons diverges for z = 1. If this is the case it indicates once again, that
the value z = 1 is the distinguished point of the theory.

Figs. 1, 2 suggests that for 0 < z < 1 the probability of finding n photons
in the bound state is given by

P (n) =

{

c(z)e−γ(z) n for n = 0, 2, 3, 4, . . .
0 for n = 1,

(19)

where the exponent γ and the normalisation constant are functions of z.
The consistency of this assumption is supported in the following way: once
the exponent γ is determined the value of the normalisation constant c is set
by the normalisation condition

∑∞
n=1 P (n) = 1; then the mean number of

photons can be calculated. For the distribution (19), c is also the probability
of finding 0 photons in the bound state and can be independently estimated
as a limiting value of the n = 0 row of Table II for the corresponding
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TABLE II

The probabilities of finding n photons in successive approximations of the bound
state for z = 1/2 and z = 1.

|b
o
u
n
d

3
〉

|b
o
u
n
d

4
〉

|b
o
u
n
d

5
〉

|b
o
u
n
d

6
〉

|b
o
u
n
d

7
〉

n z = 1/2

0 0.8710 0.8622 0.8562 0.8519 0.8486

2 0.1001 0.1018 0.1027 0.1032 0.1035

3 0.0212 0.0247 0.0269 0.0284 0.0295

4 0.0067 0.0091 0.0108 0.0120 0.0130

5 0.0009 0.0019 0.0028 0.0034 0.0040

6 6.27E-5 2.87E-4 5.64E-4 8.35E-4 1.08E-3

7 2.34E-5 7.90E-5 1.53E-4 2.34E-4

8 8.13E-7 7.11E-6 2.05E-5 3.97E-5

9 3.54E-7 1.88E-6 5.04E-6

10 7.37E-9 1.09E-7 4.58E-7

11 3.57E-9 2.84E-8

12 5.0E-11 1.13E-9

13 2.6E-11

14 2.6E-13

n z = 1

0 0.5608 0.5208 0.4917 0.4693 0.4513

2 0.2556 0.2440 0.2343 0.2260 0.2190

3 0.1030 0.1135 0.1187 0.1206 0.1214

4 0.0624 0.0799 0.0908 0.0981 0.1031

5 0.0160 0.0313 0.0431 0.0522 0.0594

6 0.0022 0.0090 0.0165 0.0234 0.0295

7 0.0014 0.0044 0.0079 0.0116

8 9.84E-5 7.56E-4 2.00E-3 3.63E-3

9 7.39E-5 3.52E-4 8.65E-4

10 3.08E-6 4.00E-5 1.51E-4

11 2.59E-6 1.83E-5

12 7.19E-8 1.44E-6

13 6.57E-8

14 1.30E-9
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Fig. 3. The mean number of photons in successive approximations of the bound

state for z = 1/2 and z = 1, together with schematic fits.

value of z. The mean number of photons from the distribution (19) can be
compared with the value obtained form the fit like in Fig. 3. For example
for z = 1/2 we fit the exponent γ from the first 7 points (n = 0, . . . , 6) for
|bound7〉 (see Table II) and we get γ = 1. This gives c = 0.824 and the mean
number of photons = 0.455. This is consistent with the limiting value 0.826
of the first row of Table II (we get this value fitting 1−ak/(k+b) dependence,
with k = 3, . . . , 7 for successive numbers in the row) and the mean number
obtained from the fit in Fig. 3. The same consistency is obtained for other
values of 0 < z < 1.
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6. Summary

It is known from the birth of the Staruszkiewicz’s theory [1, 2] that
the Hilbert space structure of the theory depends on the numerical value
of the coupling constant, with the value e2/π = 1 being distinguished.
Below this value the bound state of the (first) Casimir operator C1 appears.
We searched for the other special values of e2, looking at mean number of
photons and photon distribution in the bound state. So far our results are
negative, that is all observables we looked at seem to be smooth functions
of 0 < e2 < π. However, we still believe that with deeper understanding of
the Staruszkiewicz’s theory the other critical values will be recognised.

I am greatly indebted to Professor Andrzej Staruszkiewicz for many en-
lightening discussions and directions. I am also indebted to Professor Jacek
Wosiek for suggesting me investigation of photon distribution and sharing
his experience in studying Staruszkiewicz’s theory in the cut Fock space on a
computer. This work was supported by the Rector of Jagellonian University
Scholarship Found for the academic year 2004/2005.
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