
Vol. 36 (2005) ACTA PHYSICA POLONICA B No 10

NON-MARKOVIAN MONTE CARLO ALGORITHM
FOR THE CONSTRAINED MARKOVIAN EVOLUTION

IN QCD∗

S. Jadach, M. Skrzypek

The H. Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences,

Radzikowskiego 152, 31-342 Cracow, Poland
and

CERN Department of Physics, Theory Division

CH-1211 Geneva 23, Switzerland

(Received June 28, 2005)

We revisit the challenging problem of finding an efficient Monte Carlo
(MC) algorithm solving the constrained evolution equations for the initial-
state QCD radiation. The type of the parton (quark, gluon) and the energy
fraction x of the parton exiting emission chain (entering hard process) are
predefined, i.e. constrained throughout the evolution. Such a constraint is
mandatory for any realistic MC for the initial state QCD parton shower.
We add one important condition: the MC algorithm must not require the
a priori knowledge of the full numerical exact solutions of the evolution
equations, as is the case in the popular “Markovian MC for backward evo-
lution”. Our aim is to find at least one solution of this problem that would
function in practice. Finding such a solution seems to be definitely within
the reach of the currently available computer CPUs and the sophistication
of the modern MC techniques. We describe in this work the first example
of an efficient solution of this kind. Its numerical implementation is still
restricted to the pure gluon-strahlung. As expected, it is not in the class
of the so-called Markovian MCs. For this reason we refer to it as belonging
to a class of non-Markovian MCs. We show that numerical results of our
new MC algorithm agree very well (to 0.2%) with the results of the other
MC program of our own (unconstrained Markovian) and another non-MC
program QCDnum16. This provides a proof of the existence of the new class
of MC techniques, to be exploited in the precision perturbative QCD cal-
culations for the Large Hadron Collider.

PACS numbers: 12.38.Bx, 12.38.Cy

∗ Supported in part by the EU grant MTKD-CT-2004-510126, in partnership with the
CERN Physics Department and by the Polish Ministry of Scientific Rersearch and
Information Technology grant No. 620/E-77/6.PR UE/DIE 188/2005-2008.

(2979)

2980 S. Jadach, M. Skrzypek

1. Introduction

The unprecedented experimental precision of the forthcoming experi-
ments at the Large Hadron Collider (LHC), in terms of apparatus resolu-
tion and event statistics, will have to be matched by a far better precision of
the theoretical calculations in the strong interaction sector than available at
present. The well established theory of strong interactions, Quantum Chro-
modynamics (QCD), is in principle able to provide very precise predictions
for the high energy scale (mass, transverse momentum, momentum transfer)
processes. The perturbative predictions of QCD are obtained within one of
two very different calculational frameworks: the so-called matrix element
(ME) calculations and models of the parton shower (PS) type implemented
in the Monte Carlo (MC) event generators. For a more detailed review of
these methods, see for example Ref. [1]. In the ME calculations the ba-
sic ingredients are real- and virtual-emission matrix elements evaluated in
the fixed-order perturbative QCD, for the hard process at the high energy
scale, embedded in the standard Lorenz-invariant phase space (LIPS). The
fixed-order ME is combined with the parton distributions (PDFs) describing
lower energy multiple emissions in an inclusive manner (integrated over the
transverse momenta). On the other hand, the PS framework offers a fully
exclusive picture, down to hadronization energy scale, that is the true MC
events with explicit 4-momenta, for all multiple soft and collinear emissions
associated with the hard process — the same emissions as are encapsulated
in the PDFs of the ME approach. However, the classic PS implements the
hard process only at the Born (tree) level.

The above two complementary approaches have their strong and weak
points of their own. Without entering into details, we may safely say that
it is absolutely mandatory to combine the virtues of the two approaches if
one hopes to ever achieve a significant improvement of the precision of the
QCD predictions, for a wide class of observables (not only total rates); see
conclusions of Ref. [1].

There were numerous attempts to combine ME calculations with the
parton shower approach beyond the leading order, the most elaborate being
the recent one of Frixione and Webber [2]. However, none of them are fully
satisfactory and there are more proposals in this direction; see for instance
Ref. [3]. There seems to be a growing consensus that part of the problem is in
the fundamental formulation of the PS models implemented in the PS MC.

Non-Markovian Monte Carlo Algorithm for . . . 2981

All these models are of the Markovian1 type, in which the branching process
(the binary decay of the parton) continues until the boundary of the phase
space is hit; the number of branchings (emissions) is known at the very end
of the branching process. This is in stark contrast to the ME approach,
where the number of partons involved is defined at the very beginning, and
the integral over standard LIPS is evaluated for a given ME. In this sense,
the ME approach is basically non-Markovian — this is one of the (principal)
sources of the difficulties in combining the ME and PS approaches.

In this paper we do not offer any “silver bullet” solution of the above
problems. However, we provide one possibly useful cornerstone, in con-
structing yet another class of methods of combining ME and PS methodolo-
gies. Our aim is to provide the means of reformulating the PS model and
the corresponding MC algorithm in a non-Markovian way. In fact, we re-
strict ourselves to an even narrower, but well defined subject of solving QCD
DGLAP [4] evolution equations using the MC method, which is at the heart
of any PS MC modelling. We also show, for the initial-state PS (IS PS), that
the non-Markovian solution of the DGLAP evolution equations emerges in a
natural way as an alternative solution to yet another long-standing difficulty
in the PS MC modelling: the problem of the energy constraint. The energy
constraint in the IS PS is the requirement of constraining to a predefined
value the energy of the parton entering the hard process. This is so because
of a selective nature of the typical hard process ME, typically due to narrow
resonances. In the typical Markovian PS MC the energy of a parton entering
the hard process results from many branchings and it is impossible to put
any constraint on it, in the same way as it is impossible to predefine the
number of branchings or the type of the parton (quark or gluon) at the end
of the branching process. The well known and widely adopted work-around
is the so-called “Markovian MC for the backward evolution” of Sjöstrand [5]2.
We shall show that there exists yet another class of MC algorithms with the
energy constraint, which turns out to be non-Markovian in a natural way.

Summarizing, the motivation of our search for non-Markovian modelling
of the QCD evolution equations is that: (a) it is closer to the ME approach,
(b) it solves the energy constraint problem in the IS PS in a novel way, with
potential advantages of its own, as discussed below.

1 Since the adjective “Markovian” is (ab)used for a wide range of the phenomena, let
us state that we understand by the Markovian process a walk in a multiparameter
space with the consecutive steps labelled with the continuous time variable. The rule
governing single steps forward ignores the past history of the walk. The iterative
solution of the QCD evolution equations can be interpreted as a finite Markovian
process, limited by the maximum time. A Markovian MC implements this process
in a natural way. In such a MC the number of steps is known at the very end of the
MC algorithm.

2 See also Ref. [6].

2982 S. Jadach, M. Skrzypek

This paper is one of several related works done in parallel, exploiting var-
ious aspects of the Markovian-type and non-Markovian-type MC solutions
of the QCD evolution equations. Basic results of the present work were
presented in the conference contributions quoted in Ref. [7]. The earlier
work of Ref. [8] presents precision MC evaluations of the LL QCD evolution
equations3 using an unconstrained Markovian MC. Although the Markovian
calculations of Refs. [8, 9] are not our main aim, they form a very valuable
baseline (benchmark) for the constrained non-Markovian calculations, as the
ones presented here.

This work presents the first successful MC algorithm in the constrained
non-Markovian class, although restricted to the pure gluon-strahlung in the
actual numerical implementation. Later on, the authors of this paper have
found yet another family of MC algorithms, in the same important class of
non-Markovian constrained MCs, which will be described in the forthcoming
Ref. [10], and are even more efficient and easier to implement. However, at
this early stage it makes perfect sense to collect all possible non-Markovian
MC algorithms for the QCD evolution equations, simply because it is difficult
to foresee which of them will be most adequate in the future attempts at
combining PS and ME calculations. In other words, the richer the menu of
the different non-Markovian algorithms at our disposal, the better.

The plan of the paper is the following: in the next section we elaborate
more on our aims and the general framework of our work. In Section 3
we formulate in detail several examples of the constrained evolution MC
algorithms, and present numerical tests of the corresponding computer im-
plementations. A short summary concludes the main result. The Appendix
contains the algebra related to the MC method (multibranching) employed
in Section 3.

2. MC solutions for QCD evolution equations

As was already said, we are looking for any possibly non-Markovian, MC
solution of the QCD evolution equations, with the constraint on the final
parton type and its x, the energy fraction. Needless to say, for a given x,
the solutions of the evolution equations obtained from the constrained non-
Markovian MC will be identical to those obtained from unconstrained MC
algorithms, or any other non-MC method — the real difference is in the
efficiency.

The DGLAP evolution equations in QCD, for the quark and gluon distri-
butions in the hadron, are derived in QCD using the renormalization group
or diagrammatic techniques [4]. Let us briefly rederive the iterative solution
of these equations. We start, as usual, from the evolution equations in the

3 This work is extended to NLL in Ref. [9].

Non-Markovian Monte Carlo Algorithm for . . . 2983

standard integro-differential form:

∂

∂t
Dk(t, x) =

∑

j

1
∫

x

dz

z
Pkj(z)

αS(t)

π
Dj

(

t,
x

z

)

=
∑

j

Pkj(t, ·) ⊗ Dj(t, ·) ,

where

f(·)⊗g(·)(x) ≡
∫

dx1dx2δ(x − x1x2)f(x1)g(x2)

and Pkj(t, z) ≡ αS(t)
π Pkj(z). Indices i and k = G, qa, q̄b denote gluon, quark

and antiquark, while the evolution time is t = ln(Q). The differential
evolution equation can be turned into the integral equation

eΦk(t,t0)Dk(t, x) = Dk(t0, x) +

t
∫

t0

dt1e
Φk(t1,t0)

∑

j

P
Θ
kj(t1, ·) ⊗ Dj(t1, ·)(x) ,

where the IR regulator ε is introduced:

Pkj(t, z) = −P
δ
kk(t, ε)δkjδ(1 − z) + P

Θ
kj(t, z) , (1)

P
Θ
kj(t, z) = Pkj(t, z)Θ(1 − z − ε) (2)

and the Sudakov form factor

Φk(t, t0) =

t
∫

t0

dt′ P
δ
kk(t

′, ε)

appears. The multiple iteration of the above integral equation leads to:

xDk(t, x) = e−Φk(t,t0)xDk(t0, x)

+

∞
∑

n=1

∑

k0...kn−1

[n
∏

i=1

t
∫

t0

dti Θ(ti − ti−1)

1
∫

0

dzi

]

×e−Φk(t,tn)

1
∫

0

dx0

[n
∏

i=1

ziP
Θ
kiki−1

(ti, zi)

×e−Φki−1
(ti,ti−1)

]

x0Dk0(t0, x0)δ

(

x − x0

n
∏

i=1

zi

)

,

where kn ≡ k, and the iterative solution is just a series of integrals ready
for integration/simulation with the MC method. Note that the solution for

2984 S. Jadach, M. Skrzypek

distributions of parton energies xDk(x) is more convenient, because kernels
obey the energy sum rules:

∑

l

∫

dz zPlk(z) = 0 . (3)

More details can be found in Refs. [8, 9].
It is well known [11] that the above iterative solution can be implemented

as a Markovian process with the probability of every single step forward given
by the kernel times the Sudakov form factor. Formal derivation requires
adding the extra integration variable tn+1, tn+1 > t, in every integral; see
Ref. [9]. However, for our present purpose the above iterative solution of the
evolution equations is the proper starting point.

In Ref. [8] it was demonstrated that the high-precision Markovian-type
MC solution of the evolution equations is feasible and it agrees with the
non-MC program QCDnum16 [12] to within 0.2% over a wide range of x
and Q.

Let us still consider one technical point: the choice of the evolution time.
The MC algorithm will be more efficient if the t-dependence of the strong
coupling constant αS(t) is absorbed by a suitable redefinition of the evolution
time:

τ ≡ 1

αS(tA)

t
∫

tA

dt1 αS(t1),
∂t

∂τ
=

αS(tA)

αS(t)
. (4)

The choice of tA is arbitrary. For instance, following the one-loop α
(0)
S (t) =

(2π)/(β0(t − ln Λ0)), we may conveniently choose tA such that α
(0)
S (tA) =

2π/β0 (e.g. tA − ln Λ0 = 1 and hence tA = ln(eΛ0)). In such a case τ =
ln(t − ln Λ0). The other choice is tA = t0, where t0 is the starting point of
the evolution. In either case we have

Dk(τ, x) = e−Φk(τ,τ0)Dk(τ0, x)

+

∞
∑

n=1

1
∫

0

dx0

∑

k0...kn−1

[n
∏

i=1

τ
∫

τ0

dτiΘ(τi − τi−1)

1
∫

0

dzi

]

×e−Φk(τ,τn)

[n
∏

i=1

P
Θ
kiki−1

(τi, zi)e
−Φki−1

(τi,τi−1)

]

×Dk0(τ0, x0)δ

(

x − x0

n
∏

i=1

zi

)

, (5)

Non-Markovian Monte Carlo Algorithm for . . . 2985

where k ≡ kn. The kernel P and form factor Φk are redefined slightly:

Pkiki−1
(τi, zi) =

αS(tA)

π
Pkiki−1

(zi) , (6)

Φk(τ, τ0) =

τ
∫

τ0

dτ ′
P

δ
kk(ε) = (τ − τ0)P

δ
kk(ε) . (7)

In the LL case P is completely independent of τi. In the following we shall
usually opt for tA = ln(eΛ0)) and αS(tA)/π = 2/β0.

3. Constrained non-Markovian MC algorithms

3.1. Solution types I and II

What are the general classes of the constrained MC solutions? Let us
write once again the iterative solution of the evolution equations convoluted
with4 the parton distribution Dk0(τ0, x0) at the low energy scale τ0 and
the hard-process matrix element denoted as H(x) (see also Fig. 1 for the
illustration):

σ =
∑

k

∫

dxHk(x)Dk(τ, x)

=
∑

k

∫

dxHk(x)

1
∫

0

dx0

∞
∑

n=0

∑

kn−1...k1k0

[n
∏

i=1

τ
∫

τi−1

dτi

1
∫

0

dzi

]

×e−(τ−τn)Rk

[n
∏

i=1

P
Θ
kiki−1

(zi)e
−(τi−τi−1)Rki−1

]

δ

(

x − x0

n
∏

i=1

zi

)

×Dk0(τ0, x0) , (8)

where we define k ≡ kn and
0
∏

k=1

≡ 1 in order to keep the formula compact.

In the LL kernels and form factors simplify and from Eq. (3) it follows that5:

Φk(τ, τ0) = (τ − τ0)Rk, Rk ≡ P
δ
kk(ε) =

∑

j

1−ǫ
∫

0

dz zP
Θ
jk(z) . (9)

4 For simplicity we include here an iterative solution of the evolution equations for
the single initial-state hadron, but our real interest is the case with two initial-state
hadrons.

5 In the NLL case an additional τ dependence through αS(τ) will invalidate such a
simple relation.

2986 S. Jadach, M. Skrzypek

HADRON

H(sxx’)
x

z
1

0

z z
2

x x

z
n

1 2 n... x=x
0D(x)

HARD PROCESS
x’

(or lepton) 3

Fig. 1. Graphical representation of the iterative series of Eq. (8).

For the purpose of future discussion we define here additional virtual form
factors:

Rjk =

1−ǫ
∫

0

dz zP
Θ
jk(z) , R′

k =
∑

j 6=k

Rjk = Rk − Rkk . (10)

Let us discuss basic limitations and possible solutions for the MC im-
plementation of the above series of multidimensional integrals. As already
stated, in the ISR case, since there are narrow resonances in the hard-process
function H(x), the variable x has to be the first one generated in the MC
algorithm, i.e. it has to be the outermost integration variable. Similarly it
is better to keep k = kn as the outermost summation variable as well.

The central issue is the following: How do we treat the variable x0?
There are two possible options. In the first option (I) x0 is kept as a second
outermost integration variable, next to x, i.e. it is generated in the MC as
a second variable. In the second option (II) x0 is treated as one of the last
variables in the MC – in fact it is derived from the other ones using energy
constraint.

The following formula describes the first case:

σ =
∑

kk0

∫

dx0

x0

∫

dxHk(x) Dkk0

(

τ,
x

x0

∣

∣

∣
τ0

)

Dk0(τ0, x0) ,

Dkk0(τ, z|τ0) =

∞
∑

n=0

∑

kn−1...k1

[n
∏

i=1

τ
∫

τi−1

dτi

1
∫

0

dzi

]

×e−(τ−τn)Rk

[n
∏

i=1

P
Θ
kiki−1

(zi)e
−(τi−τi−1)Rki−1

]

δ

(

z−
n
∏

i=1

zi

)

,

(11)

with k ≡ kn as usual. We shall refer to this option as to a solution type I;
this is the scenario that was implemented for the QED ISR pure brems-

Non-Markovian Monte Carlo Algorithm for . . . 2987

strahlung in several YFS-type MC programs, starting from the prototype of
Ref. [13]. The main technical difficulty is the implementation/elimination of
the δ(z −∏ zi) function. This problem was solved in QED by eliminating
the delta function with integration over the z of the hardest photon6 (the
largest 1 − z). This scenario looks definitely feasible, and the first working
example will be described in a separate work; see Ref. [10].

The second scenario, referred to as solution type II relies on the fact that
the starting parton distribution for typical hadron beam particle Dk0(τ0, x)
can be relatively well (by MC standards) approximated by a power-like
function Dk0(τ0, x) ∼ x−1+η over a wide range of ln(x) (i.e. 10−4 < x < 1),
with the parameter η not far from zero. In fact the gluon and quark singlet
parton distributions of the nucleon at low Q feature η ≃ −0.2. In solutions
of type II the essential idea is that, in Eq. (8), the δ(x − x0

∏n
i=1 zi) is

eliminated using the integration over x0. It means that x0, contrary to
type I, is generated in the MC as a last variable instead of a second one.
More precisely it is not generated at all, but determined as a function of
all previously generated variables x0 = x(

∏

zi)
−1, by means of solving the

energy constraint.
Let us isolate explicitly the small-z limit from the starting parton distri-

bution:

Dk0(τ0, x0) = W ∗D
k0

(x0) Ak0x
−1+η
0 , W ∗D

k0
(x0) ≡

Dk0(τ0, x0)

Ak0x
−1+η
0

≤ 1 , (12)

where W ∗D
k is the MC weight to be neglected now and restored later on.

Elimination of the δ-functions with the help of the x0-integration leads to

σ =
∑

k

∫

dx Hk(x) Ak0x
−1+η

∞
∑

n=0

∑

kn−1...k1k0

[n
∏

i=1

τ
∫

τi−1

dτi

1
∫

0

dzi

]

×e−(τ−τn)Rk

[n
∏

i=1

z−η
i P

Θ
kiki−1

(zi) e−(τi−τi−1)Rki−1

]

×Θ

(n
∏

j=1

zj − x

)

W ∗D
k0

(x̄0) , (13)

where x̄0 = x/
∏

j zj . For the distributions of quarks and gluons in the
proton at a low energy scale we have the same η ≃ −0.2. Hence, we may
also include all factors z−η

i in the MC weight W D
k ≤ 1, to be neglected and

6 In this QED case the integration over x0 is rather trivial because one starts from
D(τ0, z) = δ(1 − z).

2988 S. Jadach, M. Skrzypek

restored at a later stage of the MC algorithm together with the other details
of the Dk(τ0, x0) function, or in a more sophisticated MC algorithm, we may

actually generate exactly the distributions z−η
i PΘ

kiki−1
(zi). In the following

let us assume the former simpler case with z−η
i in the MC weight:

σ =
∑

k

∫

dx Hk(x) Ak0x
−1+η

∞
∑

n=0

∑

kn−1...k1k0

[n
∏

i=1

τ
∫

τi−1

dτi

1
∫

0

dzi

]

×e−(τ−τn)Rk

[n
∏

i=1

P
Θ
kiki−1

(zi) e−(τi−τi−1)Rki−1

]

Θ
(

n
∏

j=1

zj − x
)

W D
k (x, x̄0) ,

W D
k0

(x, x̄0) =
Dk0(τ0, x̄0)

Ak0 x̄
−1+η
0

{ n
∏

i=1

zi

}−η

=
Dk0(τ0, x̄0)

Ak0x̄
−1+η
0

{

x

x̄0

}−η

≤ 1 , (14)

where Dk0(τ0, x̄0) → Ak0 x̄
−1+η
0 in the limit x̄0 → 0.

Let us stress that Eq. (13) implements the exact iterative distribution of
the evolution equations. In the following sections we will show the results
from the prototype MC based directly on the above expression for the pure
bremsstrahlung case. As we shall see, it works well for the case of the
emission from a quark; however, it has rather low acceptance (∼ 10−3) for
the emission from a gluon. We shall call such a MC solution, directly based
on Eq. (13), solution type II.a.

In another method, II.b, we shall reorganize the integration variables in
a hierarchical way, and use multibranching to isolate the 1/z part of the
gluon-to-gluon kernel. Such a solution is rather complicated and non-trivial
to implement in a general case with multiple flavour-changing (quark–gluon)
transitions. However, successful implementation of the pure gluon-strahlung
case, presented in the next section, allows us to claim that the efficiency of
the MC type II.b is satisfactory, and the gate to practical applications of
MC solutions of this type is wide open.

3.2. Constrained Monte Carlo: solutions class II

As already noticed in Ref. [8], in the long emission chain (on average
∼ 20 emissions), from Q = 1 GeV to Q = 1 TeV, most of the emissions
are of bremsstrahlung type, i.e. they preserve the identity of the parton on
the main line of the chain. It was shown there that on the average only
about one out of twenty emissions involves flavour transmutation, q → G or
G → q; the other ones are gluon emissions. With this in mind, it is therefore
natural to reorganize the iterative solution of the evolution equations in such
a way that all pure bremsstrahlung adjacent vertices in the emission chain are

Non-Markovian Monte Carlo Algorithm for . . . 2989

lumped together into segments described by the following universal evolution
function:

d′k(τ, z|τ0) = e−(τ−τ0)Rkk

∞
∑

n=0

n
∏

i=1

τ
∫

τi−1

dτi

1
∫

0

dzi P
Θ
kk(zi) δ

(

z −
n
∏

j=1

zj

)

, (15)

where the type of parton on the main line, k = Q or k = G, is unchanged.
Note that we have retained in Eq. (15) only part of the virtual form factor
Rk, namely the Rkk function, which matches exactly the real emission kernel
PΘ

kk of pure bremsstrahlung. The leftover R′
k is included explicitly in the

following Eq. (16).
The full iterative solution of the previous section can be expressed in

terms of the product of the above functions and the kernels representing
flavour-changing transitions q → G or G → q in the following way:

Dk(τ, x) =

∞
∑

n=0

1
∫

0

dx0

∑

kn−1...,k1,k0
kj 6=kj−1,j=1,...,n

(

n
∏

i=1

τ
∫

τi−1

dτi

)(

n
∏

i=1

1
∫

0

dzi

)(

n+1
∏

i=1

1
∫

0

dz′i

)

×e−(τ−τn)R′
k d′k(τ, z

′
n+1|τn)

×
n
∏

i=1

[

P
Θ
kiki−1

(zi) e
−(τi−τi−1)R′

ki−1 d′ki−1
(τi, z

′
i|τi−1)

]

×Dk0(τ0, x0)δ

(

x − x0

n
∏

i=1

zi

n+1
∏

i=1

z′i

)

, (16)

where we employ the usual conventions: kn ≡ k and
∏0

j=1 ≡ 1.
We say that the above formula implements hierarchical organization of

the emission chain, because it represents the Markovian process in which
each pure bremsstrahlung step (segment) in the Markovian random walk
(emission chain) is an independent Markovian process of its own! This el-
egant and powerful reorganization of the emission chain is proved formally
in the separate work of Ref. [14].

The complete hierarchical formula for the integrated cross section, after
elimination of the delta function with x0 integration, reads as follows:

σ =
∑

k

∫

dx Hk(x)Ak0x
−1+η

∞
∑

n=0

∑

kn−1...,k1,k0
kj 6=kj−1,j=1,...,n

n
∏

i=1

τ
∫

τi−1

dτi

n
∏

i=1

1
∫

0

dzi

n+1
∏

i=1

1
∫

0

dz′i

×e−(τ−τn)R′
k d′k(τ, z

′
n+1|τn)

n
∏

i=1

[

P
Θ
kiki−1

(zi)e
−(τi−τi−1)R′

ki−1 d′ki−1
(τi, z

′
i|τi−1)

]

2990 S. Jadach, M. Skrzypek

×Θ

(n
∏

i=1

zi

n+1
∏

i=1

z′i − x

)

W D
k0

(x, x̄0) ,

×d′k(τi, z
′
i|τi−1) = e−(τi−τi−1)Rkk

×
∞
∑

n(i)=0

n(i)
∏

m=1

τ (i)
∫

τ
(i)
m−1

dτ (i)
m

1
∫

0

dz(i)
m P

Θ
kk(z

(i)
m)δ

(

z′i −
n(i)
∏

m=1

z(i)
m

)

,

(17)

where

τ (i) ≡ τi, τ
(i)
0 ≡ τi−1, x̄0 =

x
∏n

i=1 zi
∏n+1

i=1 z′i
≤ 1 . (18)

The above formula is the starting point in the next two subsections for
construction of constrained MC algorithms of type II.

3.2.1. Solution II.a

In the straightforward solution of type II, which we call II.a, the single
Θ-function for both flavour-changing emissions and pure bremsstrahlung
segments is replaced by the product of the individual Θ-functions — thus
decoupling completely the z-integration space and opening the way for the
analytical integrations of the approximate spectra for the purpose of the MC
generation. More precisely, let us first notice that we are really dealing with
the single Θ-function involving all z variables due to trivial identity

n+1
∏

i=1

[1
∫

0

dz′i

(n(i)
∏

m=1

1
∫

0

dz(i)
m

)

δ

(

z′i −
n(i)
∏

m=1

z(i)
m

)

]

Θ

(n
∏

i=1

zi

n+1
∏

i=1

z′i − x

)

=

n+1
∏

i=1

(n(i)
∏

m=1

1
∫

0

dz(i)
m

)

Θ

(n
∏

i=1

zi

n+1
∏

i=1

n(i)
∏

m=1

z(i)
m − x

)

. (19)

We are now ready to describe the essence of the MC algorithm of type
II.a. We use the following identity

Θ

(n
∏

i=1

zi

n+1
∏

i=1

n(i)
∏

m=1

z(i)
m − x

)

= W Θ
II.a

n
∏

i=1

Θ(zi − x)
n+1
∏

i=1

n(i)
∏

m=1

Θ

(

z(i)
m − x

)

, (20)

Non-Markovian Monte Carlo Algorithm for . . . 2991

where the function

W Θ
II.a ≡ Θ

n
∏

i=1

zi

n+1
∏

i=1

n(i)
∏

m=1

z(i)
m − x

 ≤ 1 (21)

is the Monte Carlo weight. This MC weight will be neglected later on, so
that variables can be generated according to simplified distributions, and
finally the generated events will be weighted according to this weight.

Let us rewrite our master integral (17) without any approximations

σ =
∑

k

∫

dx Hk(x) Ak0x
−1+η

∞
∑

n=0

∑

kn−1...,k1,k0
kj 6=kj−1,j=1,...,n

[n
∏

i=1

τ
∫

τi−1

dτi

1
∫

x

dzi

]

×e−(τ−τn)R′
kd′′k(τ, x|τn)

×
[n
∏

i=1

P
Θ
kiki−1

(zi)e
−(τi−τi−1)R′

ki−1d′′ki−1
(τi, x|τi−1)

]

×W D
k0

(x, x̄0)W
Θ
II.a ,

d′′k(τi, x|τi−1) = e−(τi−τi−1)Rkk

∞
∑

n(i)=0

n(i)
∏

m=1

τ (i)
∫

τ
(i)
m−1

dτ (i)
m

n(i)
∏

m=1

1
∫

x

dz(i)
m P

Θ
kk(z

(i)
m) , (22)

where x̄0 = x/
(

∏n
i=1 zi

∏n+1
i=1

∏n(i)

m=1 z
(i)
m

)

and one should remember that

d′′-functions provide integration over all the z
(i)
i variables that are implic-

itly present in the function W Θ
II.a. The enormous advantage of the above

procedure is that in the approximate integral we can sum up and integrate
immediately over all bremsstrahlung segments of the emission chain. To see
it let us drop the two MC weights W D

k0
and W Θ

II.a. Now we can immediately
sum up and integrate analytically the pure bremsstrahlung subintegrals:

d′′k(τi, x|τi−1) = exp

(

(τi − τi−1)

(

−Rkk +

1
∫

x

dz P
Θ
kk(z)

))

(23)

and hence

σ =
∑

k

∫

dxHk(x)Ak0x
−1+η

∞
∑

n=0

∑

kn−1...,k1,k0
kj 6=kj−1,j=1,...,n

[n
∏

i=1

τ
∫

τi−1

dτi

1
∫

x

dzi

]

2992 S. Jadach, M. Skrzypek

×e
(τ−τn)(−Rk+

1
R

x

dzPΘ
kk

(z))
[n
∏

i=1

P
Θ
kiki−1

(zi)e
(τi−τi−1)(−Rki−1

+
1
R

x

dzPΘ
ki−1ki−1

(z))
]

.

(24)

The above looks rather promising, because we are left with the relatively sim-
ple problem of generating several variables τi and zi (i ≤ 5 seems sufficient)
for the flavour-changing emissions, for which the above integrals provide ex-
plicit analytical distribution. The MC events are attributed with the MC
weight WII.a = W D

k0
(x̄0) W Θ

II.a ≤ 1. The key question is: What is the accep-
tance rate for this weight? We did an introductory exercise, implementing
the pure bremsstrahlung version of it. We have found that, unfortunately,
the acceptance rate for the emission from the gluon line is only about 10−4.
This inefficiency can be traced back to the presence of the 1/z singularity
in the G → G kernel. Namely, if we allow for the range x > xmin = 10−5 we
also allow for z to be generated to the same low limit. In the case of PGG(z)
containing a 1/z part, this creates many events with low zi. Consequently,
x̄0 = x/

∏

zi goes very often beyond 1 and the corresponding MC weight
W Θ

II.a gets zero value.
On the other hand, for the quark line the acceptance rate is close to 1,

which is clearly related to the absence of the component 1/z in Pqq(z).
The above numerical exercise indicates that the 1/z part in the PGG(z)

has to be treated better, as is done in the present case II.a. A more so-
phisticated treatment of the 1/z component of the kernel is applied in the
solution II.b described in the next section.

The present solution II.a is still a workable solution. In spite of its very
low efficiency, due to its relative simplicity, it can still be quite useful for
testing other more sophisticated solutions. We therefore implemented it also
in the MC program, for the moment only in the pure bremsstrahlung version.

3.2.2. Solution II.b

In this section we present a solution more sophisticated than the II.a
one of the previous section: we split the bremsstrahlung kernel PGG into
two parts: (B) ∼ 1/z and (A) = the rest. Then we apply the multibranch-
ing7, as described in Appendix A, to every pure bremsstrahlung segment
of the emission chain. Finally, we also treat the Θ-function more selec-
tively than in II.a. The product of the individual Θ-functions appears for

7 Multibranching or multichannelling is the standard MC technique in which the dis-
tribution is split into a sum of positively defined subdistributions. First the index
numbering the distributions is generated. Once the subdistribution is chosen, a MC
point is generated according to this subdistribution, instead of the total distribution;
see Ref. [15] for details.

Non-Markovian Monte Carlo Algorithm for . . . 2993

the flavour-changing emissions and part (A) of the bremsstrahlung kernel,
while the single Θ-function is left for each segment describing part (B) of
the pure bremsstrahlung. Such partial decoupling in the z-integration space
still allows for the analytical integration of the approximate spectra for the
purpose of the early stage of the MC generation. This is possible because
segments of type (B) in the pure bremsstrahlung parts are integrable (to a
Bessel function), as shown below, while for the rest we get exponentials in
a way similar to those in II.a.

Again, the starting point is the complete hierarchical formula (17) for the
integrated cross section. In the case of the gluonic subintegral d′k=G(τi, z

′
i|τi−1)

we reorganize this integral to isolate the 1/z part from the kernel. In order
to split the PGG(z) in two positive parts, one of them being 1/z, we have to
simplify it first:

P
Θ
GG(z) = P̄

Θ
GG(z)wGG(z) , PΘ

GG(z) = P̄Θ
GG(z)wGG(z) ,

P̄Θ
GG(z) = 2CA

(

1

z
+

1

1 − z

)

, wGG(z) = (1 − z(1 − z))2 ≤ 1 . (25)

Having done that and using the multibranching identity of Eq. (91) in the
Appendix we may rewrite the gluonic bremsstrahlung subintegral for k = G
as follows:

d′k(τi, z
′
i|τi−1) =

1
∫

0

dZ(i)

Z(i)
Θ(Z(i) − z′i)d

B
k (τi, Z

(i)|τi−1) dA
k

(

τi,
z′i

Z(i)
|τi−1

)

×Wkk(z
(i)(z•(i), z′

(i)
)) , (26)

where

dA
k (τi, Z

(i)|τi−1) = e−(τi−τi−1)RA
kk

×
∞
∑

n′(i)=0

n′(i)
∏

m=1

τi
∫

τi−1

dτ ′(i)
m Θ(τ ′(i)

m −τ
′(i)
m−1)

n′(i)
∏

m=1

∫

dz′(i)m P̄
ΘA
kk (z′(i)m)δ

(

Z(i)−
n′(i)
∏

m=1

z′(i)m

)

,

dB
k (τi, Z

(i)|τi−1) = e−(τi−τi−1)RB
kk

×
∞
∑

n•(i)=0

n•(i)
∏

m=1

τi
∫

τi−1

dτ•(i)
m Θ(τ•(i)

m −τ
•(i)
m−1)

n•(i)
∏

m=1

∫

dz•(i)m P̄
ΘB
kk (z•(i)m)δ

(

Z(i)−
n•(i)
∏

m=1

z•(i)m

)

(27)

and

P̄ΘA
GG (z) =

2CA

1 − z
, P̄ΘB

GG (z) =
2CA

z
,

2994 S. Jadach, M. Skrzypek

P
ΘB
GG(z) = P̄

ΘB
GG(z), P

ΘA
GG(z) = P

Θ
GG(z) − P

ΘB
GG(z) . (28)

In the above we used the notation z′(i) = (z′
(i)
1 , . . . , z′

(i)

n′(i)) and z•(i) =

(z
•(i)
1 , . . . , z

•(i)

n•(i)).
The MC weight due to the kernel simplification

WGG(z(i)(z•(i), z′
(i)

)) =
n•(i)+n′(i)
∏

m=1

wGG(z(i)
m (z•(i), z′

(i)
)) , (29)

depends on the variables z
(i)
m after relabelling. A special kind of permutation

z
(i)
m → z

•(i)
l , z′

(i)
l , which we refer to as relabelling, is an important part of the

MC algorithm — it is defined precisely in the Appendix. Since relabelling
is just a permutation of z’s, we may calculate the weight WGG with the

z
•(i)
l , z′

(i)
l variables before the relabelling:

WGG =

n•(i)
∏

m=1

wGG(z•(i)m)

n′(i)
∏

m=1

wGG(z′
(i)
m) . (30)

Until now we made no approximation in our master integral — we only
reorganized integration variables, in particular isolating the 1/z component
in the pure bremsstrahlung subintegrals for the gluon emitters. In full anal-
ogy to case II.a, in the last step in this reorganization we eliminate all
variables z′i and a class of δ-functions with the help of the identity:

n+1
∏

i=1

1
∫

0

dz′i Θ(Z(i) − z′i)

n+1
∏

i=1

δ

(

z′i
Z(i)

−
n′(i)
∏

m=1

z′
(i)
m

)

Θ

(n
∏

i=1

zi

n+1
∏

i=1

z′i − x

)

=

n+1
∏

i=1

Z(i)Θ

(

n
∏

i=1

zi

n+1
∏

i=1

(

Z(i)
n′(i)
∏

m=1

z′
(i)
m

)

− x

)

. (31)

Consequently, from now on we substitute z′i with z̄′i

z′i → z̄′i = Z(i)
n′(i)
∏

m=1

z′
(i)
m ≤ 1 . (32)

On the other hand, we keep δ-functions inside the dB
G functions, which will

also be treated analytically, but separately; see below.
Now comes the essential step in the algorithm II.b — we define the

following MC weight:

Non-Markovian Monte Carlo Algorithm for . . . 2995

Θ

({ n
∏

j=1

zj

n+1
∏

j=1

Z(j)

}{ n+1
∏

i=1

n′(i)
∏

m=1

z′
(i)
m

}

− x

)

= W Θ
II.bΘ

(n
∏

j=1

zj

n+1
∏

j=1

Z(j) − x

) n+1
∏

i=1

n′(i)
∏

m=1

Θ

({ n
∏

j=1

zj

n+1
∏

j=1

Z(j)

}

z′
(i)
m − x

)

= W Θ
II.b Θ

(

1 − zeff
min(z,Z)

)

n+1
∏

i=1

n′(i)
∏

m=1

Θ
(

z′
(i)
m − zeff

min(z,Z)
)

, (33)

where

zeff
min

(

z1, z2, ..., zn, Z(1), Z(2), ..., Z(n+1)
)

≡ x
∏n

j=1 zj
∏n+1

j=1 Z(j)
. (34)

The new MC weight

W Θ
II.b ≡ Θ

n
∏

i=1

zi

n+1
∏

i=1

(

Z(i)
n′(i)
∏

m=1

z(i)
m

)

− x

 ≤ 1 (35)

will be neglected later on and restored at the end as a standard MC com-
pensating weight8.

All these preparatory steps lead us to the following master equation for
method II.b, still without any approximation, but with clearly defined MC
weights and the distributions to be generated at the early stage of the MC
algorithm:

σ =
∑

k

∫

dxHk(x)Ak0x
−1+η

∞
∑

n=0

∑

kn−1...,k1,k0
kj 6=kj−1,j=1,...,n

n
∏

i=1

τ
∫

τi−1

dτi

n
∏

i=1

1
∫

0

dzi

×
n+1
∏

i=1

1
∫

0

dZ(i)

Z(i)
e−(τ−τn)R′

kdA
k
′
(τ, zeff

min|τn)dB
k (τ, Z(n+1)|τn)

×
n
∏

i=1

[

P
Θ
kiki−1

(zi)e
−(τi−τi−1)R′

ki−1dA
ki−1

′
(τi, z

eff
min|τi−1)d

B
k (τi, Z

(i)|τi−1)

]

×W D
k0

(x̄0) W Θ
II.b Θ(1 − zeff

min) ,

8 There are a few other slightly different possible choices of zeff
min, which are not discussed

here.

2996 S. Jadach, M. Skrzypek

dA
k
′
(τi, z

eff
min|τi−1) = e−(τi−τi−1)RA

kk

∞
∑

n′(i)=0

n′(i)
∏

m=1

τi
∫

τ
′(i)
m−1

dτ ′(i)
m

×
n′(i)
∏

m=1

1
∫

0

dz′(i)m P̄
ΘA
kk (z′(i)m)Θ(z′(i)m − zeff

min)WGG(z•(i),z′(i)) . (36)

The functions dB
k (τi, Z

(i)|τi−1) and the variables Z(i) are really present only
for gluon, k = G. However, in order to keep the notation compact, we
understand that

dB
k 6=G(τi, Z

(i)|τi−1) ≡ δ(1 − Z(i)) . (37)

We also assume
∏0

n=1 = 1, as usual. The reader should also keep in mind

that at this stage the integrand of the part dA′
still depends on the integra-

tion variables of dB
G.

In the MC algorithm of type II.b all three MC weights are neglected:

W D
k0

(x̄0) W Θ
II.b,WGG(z•(i),z′(i)) ≡ WII.b (38)

at the early stage of the MC algorithm and later on generated MC events
are weighted with WII.b. Since WII.b ≤ 1, we may easily transform weighted
MC events into unweighted events by rejecting some of the MC events in
the usual way.

The MC weight WII.b was chosen in such a way that once it is neglected,
we can perform a lot of analytical integrations:

σprim. =
∑

k

∫

dxHk(x)Ak0x
−1+η

∞
∑

n=0

∑

kn−1...,k1,k0
kj 6=kj−1,j=1,...,n

n
∏

i=1

τ
∫

τi−1

dτi

n
∏

i=1

1
∫

x

dzi

×
n+1
∏

i=1

1
∫

x

dZ(i)e−(τ−τn)R′
kdA

k
∗
(τ, zeff

min|τn)
1

Z(n+1)
dB

k (τ, Z(n+1)|τn)

×
n
∏

i=1

[

P
Θ
kiki−1

(zi)e
−(τi−τi−1)R′

ki−1 dA
ki−1

∗
(τi, z

eff
min|τi−1)

1

Z(i)
dB

k (τi, Z
(i)|τi−1)

]

×Θ

(n
∏

j=1

zj

n+1
∏

j=1

Z(j) − x

)

,

dA
k
∗
(τi, z

eff
min|τi−1) = e−(τi−τi−1)RA

kk

∞
∑

n′(i)=0

n′(i)
∏

m=1

τi
∫

τ
′(i)
m−1

dτ ′(i)
m

n′(i)
∏

m=1

1
∫

zeff
min

dz′(i)m P̄
ΘA
kk (z′(i)m)

Non-Markovian Monte Carlo Algorithm for . . . 2997

= exp

(

(τi − τi−1)

(

−RA
kk +

1
∫

zeff
min

dzP̄
ΘA
kk (z)

)

)

, τ
(i)
0 = τi−1 ,

dB
G(τi, Z

(i)|τi−1) = e−(τi−τi−1)RB
GG

{

δ(Z(i) − 1)

+

∞
∑

n•(i)=1

(τi − τi−1)
n•(i)

n•(i)!

n•(i)
∏

m=1

1
∫

0

dz•(i)m P̄
ΘB
GG(z•(i)m) δ

(

Z(i) −
n•(i)
∏

m=1

z•(i)m

)

}

.

(39)

The distribution dB
G for the trouble-making component of the kernel P̄ΘB

GG (z)=
PΘB

GG (z) = 2CA/z and RB
GG = (αS(tA)/π)2CA, can be calculated analyti-

cally:

dB
G(τi, Z

(i)|τi−1) = e−(τi−τi−1)RB
GG

[

δ(Z(i) − 1)

+
1

Z(i)

∞
∑

n=1

(τi − τi−1)
n

n!
(RB

GG)n
n
∏

i=1

1
∫

0

dzi δ

(

Z(i) −
n
∏

j=1

zj

)

]

. (40)

The integral

n
∏

i=1

1
∫

0

dziδ

(

Z(i) −
n
∏

j=1

zj

)

=
n
∏

i=1

∫

d ln ziδ

(

ln Z(i) −
n
∑

j=1

ln zj

)

=
[ln(1/Z(i))]n−1

(n − 1)!
(41)

is just the volume of the simplex and when inserting it in Eq. (40) we find

dB
G(τi, Z

(i)|τi−1)

=e−(τi−τi−1)RB
GG

[

δ(Z(i)−1)+
1

Z(i)

∞
∑

n=1

(τi−τi−1)
n

n!(n − 1)!
(RB

GG)n lnn−1 1

Z(i)

]

.(42)

The above can easily be expressed in terms of the I1 Bessel function:

0F1(2;u) =
∞
∑

n=0

un

n!(n + 1)!
=

1√
u

I1(2
√

u) . (43)

We shall, however, introduce our own notation:

B′(η, Z(i)) = e−η[δ(1 − Z(i)) + η0F1(2;−η ln Z(i))] , (44)

2998 S. Jadach, M. Skrzypek

which leads to the simple expression

dB
G(τi, Z

(i)|τi−1) =
1

Z(i)
B′
(

(τi − τi−1)R
B
GG, Z(i)

)

, (45)

which can easily be plugged into a MC program.

In the above results of the analytical integrations, we easily identify the
compact analytical expression for the distributions of the z and τ variables
of the flavour-changing emissions (upper layer in the hierarchy). For each
pure gluonic segment, there is one additional variable Z.

Since the average multiplicity of the flavour-changing emissions is ∼ 1, we
may simply plug in the integrations over τi, zi, Z

(i), i = 1, ..., nmax into any
general-purpose MC simulator, for instance into the FOAM program [16, 17].
The value of nmax = 5 is probably more than sufficient for a precision of
10−4 and it is feasible for FOAM (up to about 20-dimensional distributions),
especially because the integrand does not involve any strong singularities.
Also, generating points according to the higher-dimensional distributions
will be done very rarely.

This completes the theoretical description of the constrained MC algo-
rithm of type II.b.

3.3. Construction of non-Markovian constrained MCs, type II

In this section we present an actual implementation of some of the con-
strained MC algorithms of class II described in the previous sections. Some
numerical results are also given.

We shall proceed from simple examples of the MC algorithms for simpli-
fied distributions, gradually going to more elaborate examples in which the
previous, simpler, MC examples are used as benchmarks in the numerical
tests. It is worthwhile to describe the above step-by-step method of creating
more and more sophisticated versions of the MC algorithm and its numerical
realization, because it is an essential part of constructing any precision MC
event generator, albeit it is rarely explicitly exposed in the literature. It
can be of vital interest for any reader interested in the practical aspects of
constructing MC event generators9.

9 Such simplified MC programs existed for many precision MCs for the QED calcula-
tions with YFS exclusive exponentiation; see for instance Ref. [13].

Non-Markovian Monte Carlo Algorithm for . . . 2999

3.3.1. Benchmark MC for PGG = 2CA/z, Poisson-type and inefficient

As a warming-up exercise, let us now work out in detail a MC algorithm
calculating the following integral, cf. Eq. (40):

I(γ) =

1
∫

ǫ1

dxdB
G(τ, x|τ0) =

1
∫

ǫ1

dx
1

x
B′(γ, x) , (46)

where γ = (αS(tA)/π)2CA(τ − τ0) and ǫ1 ≪ 1.

B′(γ, x) = e−γ

[

δ(x − 1) +

∞
∑

n=1

γn

n!

n
∏

i=1

1
∫

0

dziδ

(

x −
n
∏

j=1

zj

)

]

(47)

with the aim of preparing basic tools and setting baseline normalization for
the MC algorithm of type II.b (similarly as it was done in Ref. [13]). On
the one hand, the Bessel-class function B′ is known analytically in terms of
a series (44). On the other hand, the integral I(γ) can be rewritten as

I(γ) = e−γ

[

1 +

∞
∑

n=1

γn

n!

n
∏

i=1

1
∫

ǫ1

dzi

zi
Θ

(n
∏

j=1

zj − ǫ1

)

]

, (48)

remembering that x =
∏

i zi. The above integral is easily implementable in

the MC, which treats the Θ function as a MC weight: W = Θ
(

∏n
j=1 zj−ǫ1

)

.

The variable n is generated according to the distribution

Ī0 = e−γ , Īn>0 =
e−γγn

n!
lnn 1

ǫ1
, Ī =

∞
∑

n=0

Īn = e−γe−γ ln ǫ1 . (49)

The variables zi ∈ (ǫ1, 1) are generated according to the distribution 1/zi.
Once we generate suitably long series of MC events (n; z1, z2, ..., zn) we
calculate the integral using the average weight, with the usual expression
I = 〈W 〉Ī. In the same MC run we can also obtain the distribution
B′(γ, x)/x, just by examining the histogram of x =

∏

i zi.
In the LHS plot of Fig. 2 we show the (properly normalized) distribution

of x from the MC. The acceptance rate ∼ 3×10−4 is rather low — it demon-
strates the problem with the 1/z component in any MC (also Markovian) in
which the starting point of the generation of the emission probability is of
the Poisson type. This phenomenon is quite general. Our numerical example
shows the evolution from Q = 1 GeV to Q = 1 TeV. The average emission
multiplicity in the MC run is about 3.4 for ǫ1 = 10−3. Since the resulting

3000 S. Jadach, M. Skrzypek

distribution of x is known analytically, we can also examine its ratio to the
MC result. In the RHS plot of Fig. 2 we show this ratio (for 1.4×109 events).
It is equal to 1, to within the statistical error of order ∼ 1%. In the LHS
plot we clearly see that the contribution ∼ δ(x) is reproduced by this MC
algorithm/program (absent in the analytical program).

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

M
C

(B
re

m
sG

)

0

2

4

6

8

10

12

14

16

(a)

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

R
at

io
=M

C
(B

re
m

sG
)/

A
n

al
yt

ic

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

(b)

Fig. 2. Pure gluon case. PGG = 2CA/z. The distribution of x =
∏

i zi and its ratio

to the analytical prediction B′(γ, x).

For the purpose of the next exercises we are interested not only in the
value of the integral, but also in the exclusive distributions. In Fig. 3 we
examine the distributions of the first four variables xi =

∏i
n=1 and τi in

the emission chain. The ordered τi variables are generated within the range
(τ0, τ) corresponding to Q0 = 1 GeV and Q = 1 TeV. In the following we shall
check that the above semi-exclusive distributions are correctly reproduced
by more sophisticated MC algorithms. In this figure we also include the
distributions of the emission multiplicity and the MC weight. In the weight
distribution we exclude zero-weight events.

3.3.2. Weight-1 algorithm for PGG = 2CA/z, Bessel type

The inefficiency of the algorithm described in the previous subsection is
mainly due to the fact that the emission probability distribution in the
integral under consideration is of the type Pn ∼ xn/n!(n − 1)!, Bessel-
type for short, while in the MC we actually generate a Poisson distribution
Pn ∼ xn/n! and turn it into a Bessel-type one by the inefficient brute-force
rejection method. Now we proceed to the next step — we construct a proto-
type algorithm in which a Bessel-type emission probability is used from the
start and there is no need for the rejection at all. The previous inefficient
Poisson-type MC will be useful, however, as a precision cross-check for the
new one, especially for testing semi-exclusive distributions.

Non-Markovian Monte Carlo Algorithm for . . . 3001

, n=1,2,3,4nτ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5000

10000

15000

20000

25000

30000

35000

40000 (a)

tau distribution, no. 0

), n=1,2,3,4nln10(x
-3 -2.5 -2 -1.5 -1 -0.5 0
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
(b)

D(lo10g x) distribution no. 0

h_Mult
Entries 1.4652e+09
Mean 3.402
RMS 1.355

n
0 2 4 6 8 10 12 140

20

40

60

80

100

120

140

310×

h_Mult
Entries 1.4652e+09
Mean 3.402
RMS 1.355

(c)

 Multiplicity

h_wt
Entries 502679
Mean 1
RMS 0

wt
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

100

200

300

400

500

310×

h_wt
Entries 502679
Mean 1
RMS 0

(d)

 wt dist.

Fig. 3. Pure gluon case. Kernel = 2CA/z. Distribution of the variables xi =
∏i

n=1
zi and of the ordered τi ∈ (τ0, τ).

Let us consider almost the same integral

I ′(γ) =

1
∫

ǫ1

dx
1

x
h(x) γ 0F1(2;−γ ln(x)) , (50)

which in the multi-integral form looks as follows:

I ′(γ) =

1
∫

ǫ1

dx
1

x
h(x)

[

∞
∑

n=1

γn

n!

n
∏

i=1

1
∫

0

dzi δ

(

x −
n
∏

j=1

zj

)]

, (51)

where we have removed the unimportant δ(1 − z) component and inserted

3002 S. Jadach, M. Skrzypek

the test function10 h(x)/x. This integral can be rewritten as

I ′(γ) =

1
∫

ǫ1

dx

x
h(x)

[∞
∑

n=1

γn lnn−1(1/x)

n!(n − 1)!

×
(

(n − 1)!

lnn−1(1/x)

n
∏

i=1

1
∫

0

d ln ziδ
(

ln x −
n
∑

j=1

ln zj

)

)]

, (52)

where the internal part of the integrand is conveniently normalized as

(n − 1)!

lnn−1(1/x)

n
∏

i=1

1
∫

0

d ln zi δ
(

ln x −
n
∑

j=1

ln zj

)

≡ 1 (53)

and we may simulate z variables very easily. Changing variables to yi = ln zi,
we see that the distribution in yi is a uniform distribution over the n − 1
dimensional simplex. There are several convenient methods of generating
points uniformly within such a simplex. The simplest method is to throw
randomly n − 1 uniform points ui ∈ (ln x, 0), i = 1, 2, . . . , n − 1 and order
them using any standard method: ln x = un < un−1 < . . . < u1 < u0 = 0.
Then we take the differences yi = ui −ui−1, i = 1, . . . , n, which by construc-
tion fulfil the constraint ln x =

∑n
j=1 yj.

The MC algorithm consists of the following steps: first the x is generated
according to the distribution

ρ(x) =
1

x
h(x) γ 0F1(2;−γ ln(x)) . (54)

Next the number of emissions n is generated according to a (normalized)
Bessel-type probability11 distribution12:

Pn =
(

γ 0F1(2;−γ ln(x))
)−1 γn lnn−1(1/x)

n!(n − 1)!
,

∞
∑

n=1

Pn = 1 . (55)

Finally the variables zi are generated as described above. In this algorithm
all events are generated with weight 1, provided x is generated exactly ac-
cording to ρ(x), for instance using the general-purpose tool FOAM. The algo-
rithm is very efficient and fast.

10 In the following numerical exercises we set it to the constant value h(x) = 1.908359.
11 It is done by using the simple/universal method of inverting cumulative distribution.
12 Let us note that a similar Bessel-type distribution of the number of emissions is used

by Kharraziha and Lonnblad in the event generator based on the Linked Dipole Chain
model [18].

Non-Markovian Monte Carlo Algorithm for . . . 3003

Numerical results from the corresponding MC program are shown in
Fig. 4. Plot (A) in this figure shows the distribution which is the integrand
of Eq. (50) from the MC run. The analytical result superimposed on the
same plot is indistinguishable from the MC result. In the next plot (B)
we show the ratio of the two distributions, MC and analytical. They agree
within a very small statistical error of order ∼ 10−4. In the next two plots,
(a) and (b), we see that the new algorithm reproduces perfectly well the
semi-exclusive distributions of the same two plots in Fig. 3. The multiplicity
distribution in the plot (c) is also well reproduced. Plot (d) shows the MC
weight distribution.

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

M
C

(B
re

m
sB

)

0

20

40

60

80

100

120

140

160

180

200 (A)

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

R
at

io
=M

C
(B

re
m

sB
)/

A
n

al
yt

ic

0.995

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

(B)

, n=1,2,3,4nτ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60
610×

(a)

tau distribution, no. 0

), n=1,2,3,4nln10(x
-3 -2.5 -2 -1.5 -1 -0.5 0
0

5

10

15

20

25

610×

(b)

D(lo10g x) distribution no. 0

h_Mult
Entries 7.056e+08
Mean 3.416
RMS 1.339

n
0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

160

180

200

610×

h_Mult
Entries 7.056e+08
Mean 3.416
RMS 1.339

(c)

 Multiplicity

h_wt
Entries 7.056e+08
Mean 0.9904
RMS 0.00935

wt
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

100

200

300

400

500

600

700

610×

h_wt
Entries 7.056e+08
Mean 0.9904
RMS 0.00935

(d)

 wt dist.

Fig. 4. Pure gluon case. Kernel= 2CA/z. Distribution of the variables xi =
∏i

n=1
zi and of the ordered τi ∈ (τ0, τ).

3004 S. Jadach, M. Skrzypek

3.3.3. Prototype benchmark type II.a, pure bremsstrahlung

The two toy MCs from previous sections should be regarded as introduc-
tory exercises (and numerical benchmarks) for the next step, in which we
shall elaborate on the constrained Markovian MC solution with x-tagging of
the type II.a. We shall restrict ourselves to pure bremsstrahlung from the
gluon or quark line, without using the multibranching to isolate PB

GG ∼ 1/z.
The corresponding MC prototype we name BremsP. The purpose of that is
threefold: (a) to measure the MC efficiency of this class of the MC algo-
rithms, (b) to provide a cross-check for the more sophisticated prototype
MC with multibranching for the bremsstrahlung from the gluon line, which
will be developed in the next section, (c) to compare it with the other con-
strained Markovian MC prototypes for the pure bremsstrahlung.

The starting point for the construction of the algorithm is Eq. (14).
Its simplified version, restricted to the pure bremsstrahlung case, is the
following:

σk =

∫

dxHk(x)Akx
−1+ηe−(τ−τ0)Rkk

∞
∑

n=0

n
∏

i=1

τ
∫

τi−1

dτi

1
∫

x

dziP
Θ
kk(zi)

×W ΘW D
k (x, x̄0) , (56)

where

W D
k (x, x0) =

Dk(τ0, x0)

Akx
−1+η
0

{

x

x̄0

}−η

, W Θ = Θ

(

n
∏

j=1

zj − x

)

. (57)

Neglecting W ΘW D we can perform a z-integration and n-summations:

σk =

1
∫

0

dxHk(x) Akx
−1+ηe(τ−τ0)(−Rkk+Ωkk(x)) ,

Ωkk(x) =

1
∫

x

dzP
Θ
kk(z) . (58)

The emission multiplicity distribution is Poissonian:

Pn(x) =
1

n!
e−λ(x)λ(x)n , λ(x) = (τ − τ0)Ωkk(z) (59)

and we may generate it together with the τi variables, much as in the Marko-
vian case, except that the average multiplicity (forward leap in Markovian

Non-Markovian Monte Carlo Algorithm for . . . 3005

random walk) now depends on x (in the unconstrained Markovian it was
constant). The variable x is generated as a first variable using FOAM then n
and finally zi ∈ (x, 1) exactly according to PΘ

kk(z).
A few comments on the form factor are in order here. The part (τ − τ0)

Ωkk(x) is clearly coming from the real emission and, for instance, will be
different if we generate according to an approximate P̄Θ

kk(z); see later in
this section. The part −(τ − τ0)Rkk = −Φkk(τ, τ0) is a genuine virtual
part of the form factor, independent of any details of the MC generation,
cf. Eqs. (9)–(10). With the usual expansion

Pik(τ, z) = δ(1 − z)δikAkk +
1

(1 − z)+
δikBkk +

1

z
Cik + Dik(z) , (60)

we obtain

Rkk = (τ − τ0)
−1Φkk(τ, τ0) =

αS(tA)

π

[

Bkk ln
1

ǫ
− Akk

]

, (61)

and the real emission form factor is

Ωkk(x) =
αS(tA)

π

[

Bkk ln
1 − x

ǫ
+ Ckk ln

1

x
+

1
∫

x

dz Dkk(z)

]

, (62)

where

1
∫

x

dz DGG(z) = 2CA

(

− 11

6
+ x
(

2 − 1

2
x +

1

3
x2
)

)

(63)

and

1
∫

x

dz Dqq(z) = CF

(

− 3

2
+ x +

1

2
x2

)

. (64)

In Fig. 5, we show type II.a MC results for the same semi-exclusive
distributions as previously, using realistic gluon distribution DG(τ0, x) =
Cx−0.8(1 − x)5, for the gluon-strahlung out of the gluon emitter line. As
we see, the efficiency of the MC is extremely low — the acceptance rate
is merely 1.5 × 10−5 (note that the weight-0 events are not included in
Fig. 5d). Nevertheless, these results will still be useful to cross-check the
more efficient algorithm type II.b in the next section. We have investigated
what the sources of the inefficiency are. As in the previous toy model, the
main reason for low efficiency is that there are many zero-weight events

3006 S. Jadach, M. Skrzypek

due to W Θ. The factor (1 − x)5 in the gluon distribution causes a loss of
efficiency of a factor 3. The factor x−0.8 accounts for a mere factor 2 in
the efficiency loss. It is therefore not urgent to eliminate this efficiency by
means of incorporating z−η factor into DGG(z). This possibility we have
considered in the general discussion on method II. On the other hand, a
factor 3 loss in the MC efficiency in method II, which is due to the presence
of (1− z)5 in the gluon SF, looks at first sight irreducible. Nonetheless, one
may consider modelling this factor using the internal rejection loop, because
the (1−z)5 factor, upon expanding, is a sum of monomials zp and the overall
normalization can be calculated (with non-MC methods) as a sum over these
terms. It is not excluded that with some extra effort, the overall efficiency
of the method II.a could be improved to the level of 10−4.

, n=1,2,3,4,10nτ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1000

2000

3000

4000

5000

6000

7000

(a)

tau distribution, no. 0

), n=1,2,3,4,10nln10(x
-3 -2.5 -2 -1.5 -1 -0.5 0
0

50

100

150

200

250

300

350

400
(b)

D(lo10g x) distribution no. 0

h_Mult
Entries 1.0146e+09

Mean 19.87

RMS 4.334

n
0 5 10 15 20 25 30 35

0

200

400

600

800

1000

1200

1400

1600

h_Mult
Entries 1.0146e+09

Mean 19.87

RMS 4.334

(c)

 Multiplicity

h_wt
Entries 118697
Mean 0.144
RMS 0.1981

wt
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

10000

20000

30000

40000

50000

60000

h_wt
Entries 118697
Mean 0.144
RMS 0.1981

(d)

 wt dist.

Fig. 5. Results from BremsP for the gluon emitter, k = G.

Let us now repeat the same exercise for the bremsstrahlung emitted from
the quark line. In Fig. 6 we show the corresponding results (k = q) and the
starting quark distribution being Dq(τ0, x) = Dsea(z) + DU (z) + DD(z),
that is sea plus both valence quarks, taking a typical parametrization of the
proton parton distribution function at Q0 = 1 GeV. Strikingly, the overall
efficiency is very good; the rejection rate ≃ 〈w〉/〈wmax〉 is only about 30%!

Non-Markovian Monte Carlo Algorithm for . . . 3007

Obviously, without 1/z component in the kernel, the basic algorithm type II
is quite efficient. It should be remembered that in the actual run Pqq(z)
is generated exactly (i.e. with the help of the internal rejection loop). The
fact that the weight distribution extends above 1, up to 2.5, is related to the
valence component. However, the entire weight distribution looks very well
for the optional rejection method.

, n=1,2,3,4,10nτ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

500

1000

1500

2000

2500

3000

3500

4000

4500
310×

(a)

tau distribution, no. 0

), n=1,2,3,4,10nln10(x
-3 -2.5 -2 -1.5 -1 -0.5 0
0

50

100

150

200

250

300

350

310×

(b)

D(lo10g x) distribution no. 0

h_Mult
Entries 1.36e+07

Mean 8.628

RMS 2.933

n
0 5 10 15 20 25 30 350

500

1000

1500

2000

2500

3000

310×

h_Mult
Entries 1.36e+07

Mean 8.628

RMS 2.933

(c)

 Multiplicity

h_wt
Entries 1.306726e+07

Mean 1.729

RMS 0.5712

wt
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

200

400

600

800

1000

310×

h_wt
Entries 1.306726e+07

Mean 1.729

RMS 0.5712

(d)

 wt dist.

Fig. 6. Results from BremsP for quark emitter, k = Q.

The overall normalization of this MC is cross-checked with the help of
the Markovian MC EvolMC of Ref. [8]. In the top part of Fig. 7 we show
result of the evolution from 1 GeV to 1 TeV in which we restrict ourselves to
gluon emission out of the gluon line, taking the starting gluon distribution
as in the proton. The non-Markovian type II.a MC BremsP reproduces the
results of the Markovian MC EvolMC within a statistical error of a few per
cent. The apparent discrepancy at high x values is most likely due to some
technical bias related to extremely high MC event rejection rate13.

13 We did not try to investigate its precise source, because the practical importance of
BremsP is limited to a test of semi-exclusive distributions, not normalization.

3008 S. Jadach, M. Skrzypek

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

IIa
 C

M
C

 B
re

m
sP

G

lu
o

n

0

5

10

15

20

25

30

35

40

(a)

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

R
at

io
=B

re
m

sP
/M

ar
ko

vi
an

G

lu
o

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

IIa
 C

M
C

(B
re

m
sP

)

Q
u

ar
ks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

(a)

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

R
at

io
=B

re
m

sP
/M

ar
ko

vi
an

0.85

0.9

0.95

1

1.05

1.1

1.15

(b)

Fig. 7. Results from the non-Markovian BremsP (II.a) compared with results of the

Markovian EvolMC. Evolution from 1 GeV to 1 TeV due to multiple gluon emission

from the gluon emitter line (upper plots) and quark emitter line (lower plots).

Starting Dk(τ0, z) as in the realistic proton. Nf = 3 in the virtual form factor.

In the low part of Fig. 7 we present the analogous comparison of BremsP
and EvolMC for multiple gluon emission from the quark line. Again, the
agreement is quite reasonable, this time within a smaller statistical error of
∼ 1%.

As an additional cross-check we also implemented another variant of the
II.a type constrained MC algorithm BremsP, with the approximate kernels
P̂ and correcting weight applied at the very end of the MC generation. In
this case we define

σk =

∫

dx Hk(x) Akx
−1+ηe−(τ−τ0)Rkk

∞
∑

n=0

n
∏

i=1

τ
∫

τi−1

dτi

1
∫

x

dziP̂
Θ
kk(zi)

×W ΘW D
k (x, x̄0)W

P

k , (65)

Non-Markovian Monte Carlo Algorithm for . . . 3009

where the additional weight is

W P

k =

n
∏

i=0

PΘ(zi)

P̂Θ(zi)
. (66)

Neglecting weights we have

σk =

1
∫

0

dx Hk(x) Akx
−1+η e(τ−τ0)(−Rkk+Ω̂kk(x)) ,

Ω̂kk(x) =

1
∫

x

dz P̂
Θ
kk(z) , (67)

where the simplified kernel is defined as

P̂kk(t, z) = δ(1 − z)Akk +
1

(1 − z)+
Bkk +

1

z
Ckk , (68)

leading to the following real emission form factor

Ω̂kk(x) =
αS(tA)

π

[

Bkk ln
1 − x

ǫ
+ Ckk ln

1

x

]

. (69)

We have checked that the above MC algorithm gives the same quark and
gluon distributions, as expected. It is also quite interesting to check how
strongly the efficiency of the MC deteriorates when the additional weight
W P is introduced. In the quark case, the acceptance rate drops from 0.7
to 0.25, which is not much, while for gluons it drops by a factor ∼ 10, well
below 10−5.

In the next step we will clone the MC subgenerator of type II, which
generates bremsstrahlung from the quark line according to simplified P̄Θ

qq =
2CF /(1 − z) and from the gluon line according to “truncated” simplified
P̄ΘA

GG = 2CA/(1 − z). After that, having tested the components at hand,
we shall introduce the integration over Z using FOAM and for the brems-
strahlung from the gluon line we shall combine the Bessel’s MC with PΘB

GG =
2CA/z with the above MC for PΘA

GG = 2CA/(1 − z) and compare resulting
distributions with the Markovian benchmark of Fig. 7. This will close the
most important first step in making a prototype MC according to method
II.b.

3010 S. Jadach, M. Skrzypek

3.3.4. Constrained MC type II.b, pure bremsstrahlung

In the following we implement the algorithm II.b in the case of pure
bremsstrahlung from the gluon or quark line. In this particular case, the
master formula of Eq. (39) for the early stage MC (obtained from Eq. (36)
by neglecting the MC weight) has only one variable Z(1) and zeff

min = x/Z(1).
It takes the following simplified form:

σ̄k =

1
∫

0

dxHk(x) Akx
−1+η

×
1
∫

x

dZ(1)e−(τ−τ0)R′
kdA

k
∗
(τ, zeff

min|τ0)
1

Z(1)
dB

k (τ, Z(1)|τ0) ,

dA
k
∗
(τ, zeff

min|τ0) = e−(τ−τ0)RA
kk

∞
∑

n′=0

n′
∏

m=1

τ
∫

τ ′
m−1

dτ ′
m

n′
∏

m=1

1
∫

zeff
min

dz′mP̄
ΘA
kk (z′m)

= exp

(

−(τ − τ0)R
A
kk + (τ − τ0)

1
∫

zeff
min

dzP̄
ΘA
kk (z)

)

,

dB
q (τ, Z(1)|τ0) = δ(1 − Z(1)) ,

dB
G(τ, Z(1)|τ0) = e−(τ−τ0)RB

GG

{

δ(Z(1) − 1)

+

∞
∑

n•=1

n•
∏

m=1

τ
∫

τ•
m−1

dτ•
m

n•
∏

m=1

1
∫

0

dz•mP̄
ΘB
GG(z•m)δ

(

Z(1) −
n•
∏

m=0

z•m

)

}

=
1

Z(1)
B′
(

(τ − τ0)R
B
GG, Z(1)

)

= e−(τ−τ0)RB
GG(δ(Z(1) − 1) + d̂B

G(τ, Z(1)|τ0)) ,

d̂B
G(τ, Z(1)|τ0) =

1

Z(1)
(τ − τ0)R

B
GG 0F1(2;−(τ − τ0)R

B
GG ln(Z(1))) . (70)

Non-Markovian Monte Carlo Algorithm for . . . 3011

The integral proportional to δ(1 − Z(1)) has to be treated separately14:

σ̄q =

1
∫

0

dxHq(x)Aqx
−1+ηe−(τ−τ0)R′

qdA
q
∗
(τ, x|τ0) ,

σ̄G =

1
∫

0

dx HG(x) AGx−1+η

1
∫

x

dZ(1)

Z(1)

×e−(τ−τ0)R′
GdA

G
∗
(

τ,
x

Z(1)

∣

∣

∣τ0

)

e−(τ−τ0)RB
GG d̂B

G(τ, Z(1)|τ0)

+

1
∫

0

dxHG(x)AGx−1+ηe−(τ−τ0)R′
GdA

G
∗
(τ, x|τ0)e

−(τ−τ0)RB
GG . (71)

The distribution of the variables x and Z = Z(1) for the general-purpose
simulator FOAM are given by the integrands in the integrals:

σ̄q =

1
∫

0

dx

1
∫

x

dZHq(x)Aqx
−1+η exp

[

−(τ − τ0)

(

R′
q+RA

qq−
1
∫

x

dzP̄
ΘA
qq (z)

)

]

,

σ̄G =

1
∫

0

dx

1
∫

x

dZ

Z
HG(x) AGx−1+η

× exp

[

−(τ − τ0)

(

R′
G + RA

GG + RB
GG −

1
∫

x/Z

dzP̄
ΘA
GG(z)

)

]

d̂B
G(τ, Z|τ0)

+

1
∫

0

dxHG(x)AGx−1+η exp

[

−(τ − τ0)

(

R′
G+RB

GG+RA
GG −

1
∫

x

dzP̄
ΘA
GG(z)

)

]

.

(72)

Keeping in mind that RB
qq = 0, we recover in Eq. (72) the complete virtual

form factor Rk

R′
k+RA

kk+RB
kk = Rk = (τ−τ0)

−1Φk(τ, τ0) =
αS(tA)

π

[

Bkk ln
1

ǫ
−Akk

]

, (73)

14 The need of treating the δ-part separately will be more annoying in the general case,
with several gluon emitter bremsstrahlung segments, because this causes proliferation
of the separate MC branches with different distributions, adding a lot of code, difficult
to write and debug.

3012 S. Jadach, M. Skrzypek

see Eq. (61). Finally we arrive at the following expression:

σ̄q =

1
∫

0

dx

1
∫

x

dZHq(x)Aqx
−1+ηe−(τ−τ0)(Rq−Ω̄A

q (x))

= σ̄(a)
q , σ̄(b)

q = 0 ,

σ̄G =

1
∫

0

dx

1
∫

x

dZ

Z
HG(x)AGx−1+ηe−(τ−τ0)(RG−Ω̄A

G(x/Z))d̂B
G(τ, Z|τ0)

+

1
∫

0

dxHG(x)AGx−1+ηe−(τ−τ0)(RG−Ω̄A
G

(x))

= σ̄
(a)
G + σ̄

(b)
G . (74)

The MC algorithm of type II.b for generating single (weighted) MC event
consists of the following steps:

1. Generate a branch index X = a, b according to a probability propor-

tional to σ̄
(X)
k ; FOAM does that efficiently.

2. For given X generate variables x and Z or only x according to the

integrand of the corresponding integral σ̄
(X)
k ; also done by FOAM.

3. In the case X = a generate two emission multiplicities n′ and n•, the
first one according to the Poisson distribution with 〈n′〉 =
(τ − τ0)Ω

A
k (x/Z) and the other one according to the Bessel-type dis-

tribution with λ = (τ − τ0)R
B
GG ln(1/Z) (as in the toy models).

4. Knowing the multiplicities, generate the variables (τ ′
i , z

′
i), i = 1, . . . , n′

and (τ•
j , z•j), j = 1, . . . , n•, using methods described earlier.

5. Relabel the emission vertices, guided by the order of the τ variables.

6. Calculate the final MC weight, the same as was neglected at the early
stage of generating “phase-space” variables.

The above algorithm is also illustrated schematically in Fig. 8, in the
x-space, before the relabelling. Arrows help to understand the order of the
reconstruction of all x variables out of z variables.

Non-Markovian Monte Carlo Algorithm for . . . 3013

1

1/Z

z zz3 2 1

Backward evolution

0

z1
zn

... ...

w=0

ziΠForward evolution Z

x x/Z x 0

1
zn z

Fig. 8. Scheme of the II.b MC algorithm in x space before relabelling, for the case of

pure bremsstrahlung. x0 = x/(Z
∏

i z′i) results from Z and
∏

zi. The zero-weight

case of x0 > 1 is also indicated.

In Fig. 9 we show numerical results for the II.b prototype MC for the
same semi-exclusive x- and τ -distributions as previously. MC results coin-
cide very well with these from BremsP in Fig. 5. This is a highly non-trivial
result, having in mind sophistication of the algorithm II.b. Let us stress
that the above agreement cannot be obtained without a correct relabelling
procedure being performed in the final stage of the algorithm II.b15.

, n=1,2,3,4,10nτ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1000

2000

3000

4000

5000

6000

7000

310×

(a)

tau distribution, no. 0

), n=1,2,3,4,10nln10(x
-3 -2.5 -2 -1.5 -1 -0.5 0
0

50

100

150

200

250

300

350

400

450

310×

(b)

D(lo10g x) distribution no. 0

h_Mult
Entries 1.268633e+09

Mean 19.95

RMS 4.336

n
0 5 10 15 20 25 30 350

0.5

1

1.5

2

2.5

3

3.5

4

4.5

h_Mult
Entries 1.268633e+09

Mean 19.95

RMS 4.336

(c)

 Multiplicity

h_wt
Entries 2.061046e+09

Mean 0.009628

RMS 0.02407

wt
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10

210

310

410

510

610

710

810

910

h_wt
Entries 2.061046e+09

Mean 0.009628

RMS 0.02407

(d)

 wt dist.

Fig. 9. Results form GenIIb MC prototype for gluon emitter, k = G.

15 We have checked this fact numerically in a separate MC exercise.

3014 S. Jadach, M. Skrzypek

The generation time of an event (before any rejections) is similar for
both algorithms II.a and II.b. Therefore the acceptance, i.e. the ratio of the
average to maximum weight, is a good measure of the overall efficiency of the
algorithms. The acceptance for the new algorithm type II.b, as read from
the weight distribution in Fig. 9 is 9.6× 10−3. This is a little bit worse than
expected; it is, however, fully satisfactory — it is better by a factor of 500
than the efficiency 2 × 10−5 for the solution II.a (without multibranching),
see Fig. 5. Using algorithm II.a as a guide, one may argue that the 9.6×10−3

efficiency can still be improved by a factor of 2 by including exactly the x−0.8
0

factor. Another factor of 3 could be obtained by performing a modelling of
the (1 − x0)

5 distribution in an internal rejection loop of the algorithm. In
this way the overall efficiency may go up to the level of 5%.

Plots in Fig. 9 show tests of exclusive distributions and efficiency, but not
the overall normalization. A strong test of the overall normalization of the
algorithm II.b is shown in Fig. 10, where high statistics (∼ 4 × 109 events)
results of the II.b MC are compared with those of the forward Markovian
MC EvolMC of Ref. [8]16. The agreement is reached within a statistical error
of about 0.1% for x < 0.01 and of 0.3% for x < 0.1. For higher x, in spite of
the extreme smallness of DG(x) (over 9 orders of magnitude), the agreement
holds perfectly well within the statistical errors.

At this point we may state that our method II.b of solving the constrained
MC really works in practice and is reasonably efficient.

We want to stress that it would not be possible to reach this conclusion
without constructing and testing the explicit prototype of the algorithm type
II.a, and other auxiliary MC exercises, as we did in this work.

In the above numerical exercises we have restricted ourselves to the LL
case, with Nf = 3 massless quarks. The QCD evolution kernels are unique
and well known, and we therefore skip their explicit definition. The running
constant αS(t) = 2π/(β0(t − ln Λ0)) was used with Λ0 = 0.245748338. The
following starting values of the parton distributions in proton at Q0 = 1 GeV
were used in all our numerical exercises:

xDG(Q0, x) = 1.9083594473 · x−0.2(1 − x)5.0 ,

xDq(Q0, x) = 0.5 · xDsea(x) + xD2u(x) ,

xDq̄(Q0, x) = 0.5 · xDsea(x) + xDd(x) ,

xDsea(Q0, x) = 0.6733449216 · x−0.2(1 − x)7.0 ,

xD2u(Q0, x) = 2.1875000000 · x0.5(1 − x)3.0 ,

xDd(Q0, x) = 1.2304687500 · x0.5(1 − x)4.0 . (75)

16 Results of EvolMC were in turn cross-checked very precisely with the results of two
non-MC evolution programs; see Ref. [8].

Non-Markovian Monte Carlo Algorithm for . . . 3015

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

II.
b

 C
M

C

0

5

10

15

20

25

30

35

(x)log
-3 -2.5 -2 -1.5 -1 -0.5 0

R
at

io
 II

.b
/E

vo
lF

M
C

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

Fig. 10. Comparison of II.b MC GenIIb with the Markovian MC EvolMC for pure

gluonstrahlung k = G, DG(τ0, z) as in proton. Nf = 0.

4. Summary

In this paper we presented a MC algorithm, which belongs to a new class
of MC algorithms capable of generating a constrained Markovian evolution
of parton distributions according to DGLAP evolution equations. Prac-
tical numerical implementation is for the moment restricted to the pure
bremsstrahlung case. Since the algebraic framework is defined for the full
DGLAP, it is therefore a matter of more programming to extend it to the
general case. In the presented numerical tests (pure bremsstrahlung) the al-
gorithm has been checked against the dedicated forward evolution (Marko-
vian) MC program that we have written. We found an agreement at the
level of 0.1%. The measured efficiency of the constrained MC is found to
be quite satisfactory. This work opens the way to a new class of MC al-
gorithms with possible applications in the initial-state QCD parton shower
MC. Furthermore, the Bessel-type distribution of the number of emissions,
which forms the core of our algorithms, is similar to this obtained from the
CCFM approach [19], as shown in [18]. This suggests another possible area
of applications of our algorithms.

3016 S. Jadach, M. Skrzypek

We would like to thank W. Płaczek and T. Sjöstrand for useful dis-
cussions. We thank, for their warm hospitality, the CERN Particle The-
ory Group, where part of this work was done. We thank ACK Cyfronet
AGH Computer Center for granting us access to their PC clusters funded
by the European Commission grant INFSO-RI-508833; and the Polish State
Committee for Scientific Research grant 112/E-356/SPB/6.PR EU/DIE 424/
2004-2006.

Appendix

The technique of the kernel split (multibranching)

In Section 3.2.2 we have shown how to reorganize integration variables
in the evolution iterative solution, such that in the Monte Carlo integra-
tion/simulation algorithm it is possible to generate first the chain of flavour
indexes (gluon or quark type) and the corresponding evolution time vari-
ables τi (i.e. those of the emissions which change flavour), and later the
other variables corresponding to gluon emissions (no flavour change).

In the following we shall describe the application of the MC technique
of multibranching to our problem. In the multibranching one splits the
integrand into many positive components, chooses randomly one at a time
and generates points according to this particular component. In the context
of the iterative solution of the evolution equation, it is worthwhile to apply
this technique to the kernel for the transition of the gluon into gluon:

PGG(z) = 2CA

[

z

1 − z
+

1 − z

z
+ z(1 − z)

]

, (76)

which has two very different singularities 1/z and 1/(1 − z). Therefore it
is profitable in the Monte Carlo to split PGG(z) = PA

GG(z) + PB
GG(z) such

that PA
GG(z) ∼ 1/(1 − z) and PB

GG ∼ 1/z (see Fig. 11), and to generate
them separately, applying additional MC methods suited to the individual
character of each type of singularity17.

Since we already know from Section 3.2.2 how to isolate the pure brems-
strahlung subintegrals d′k; see Eq. (15), let us concentrate on one of them:

17 One should also take care of the positivity of the two components. For simplicity we
would like to have P B

GG(z) = 2CA/z. However, in such a case P A
GG(z) = PGG(z) −

P B
GG(z) is not positive. A possible solution is to first simplify PGG(z) → P̄GG(z) =

2CA[1/z + 1/(1− z)], compensating the simplification with the MC weight at a later
stage, and then to split P̄GG(z) into two positive components without any problem.
We shall come back to this point later on.

Non-Markovian Monte Carlo Algorithm for . . . 3017

=

z

+
111

1−z
1

+ 1−z z

Fig. 11. Graphical representation of the split of the (approximate) gluon emission

kernel into two parts.

d′k(τ, x|τ0) = e−(τ−τ0)Rkkδ(x − 1) +
∞
∑

n=1

(

n
∏

j=1

τ
∫

τ0

dτjΘ(τj − τj−1)

1
∫

0

dzj

)

×e−(τ−τn)Rkk

(

n
∏

i=1

PΘ
kk(zi)e

−(τi−τi−1)Rkk

)

δ

(

x −
n
∏

i=1

zi

)

,(77)

where in reality we are interested in the gluon case Pkk(z) = PGG(z).

Taking advantage of the independence of the kernels on τ we can rewrite
the above equation as follows:

d′k(τ, x|τ0) = e−(τ−τ0)Rkk

∞
∑

n=0

(τ − τ0)
n

n!

n
∏

i=1

1
∫

0

dzi

×
n
∏

i=1

[PΘA
kk (zi) + PΘB

kk (zi)]δ

(

x −
n
∏

i=1

zi

)

, (78)

where more compact notation is achieved by defining
∏0

i=1 ≡ 1. Note that at
this stage we made certain important short-cuts, because we have integrated
over τ . This simplifies the argument but makes it questionable in view of
certain important claims concerning the final distribution in the space of
(n; τ1, z1, τ2, z2, ..., τn, zn), which we are going to make at the end of this
appendix. We shall therefore refine our proof later on, showing how to
proceed for the distributions with unintegrated τ ’s.

Σ

Fig. 12. Reorganization of the multiple gluon emission leading to multibranching.

3018 S. Jadach, M. Skrzypek

Let us now reorganize the overall sum as follows (see also schematic
illustration in Fig. 12),

d′k(τ, x|τ0) = e−(τ−τ0)Rkk

∞
∑

n1=0

∞
∑

n2=0

(τ − τ0)
n1+n2

n1!n2!

n1
∏

i=1

1
∫

0

dzi

n2
∏

j=1

1
∫

0

dzj

×
n1
∏

i=1

PΘA
kk (zi)

n2
∏

j=1

PΘB
kk (zj) δ

(

x −
n1
∏

i=1

zi

n2
∏

j=1

zj

)

, (79)

where the two sums take care of the two kernel components. We can now
factorize the whole integral as a convolution of the two integrals, each of
them corresponding to one component of the kernel:

d′k(τ, x|τ0) =

1
∫

0

dzA

1
∫

0

dzBδ(x − zAzB) d′Ak (τ, zA|τ0) d′Bk (τ, zB |τ0) ,

d′Xk (τ, x|τ0) = e−(τ−τ0)RX
kk

∞
∑

n=0

(τ − τ0)
n

n!

n
∏

i=1

PΘX
kk (zi) δ

(

x −
n
∏

j=1

zj

)

,

X = A,B . (80)

The functions RX are constrained only by

∑

X

RX
kk = Rkk . (81)

For example in some cases they may be defined as

RX
kk =

1−ε
∫

0

dzzPΘX
kk (z) . (82)

We may restore the ordered evolution time integrals

d′Xk (τ, x|τ0) = e−(τ−τ0)RX
kk

∞
∑

n=0

n
∏

j=1

τ
∫

τ0

dτjΘ(τj−τj−1)

n
∏

i=1

PΘX
kk (zi)δ

(

x−
n
∏

j=1

zj

)

.

(83)
However, it should be remembered that the variables τi and zi are not exactly
the same as in the original integral (in spite of the same notation) but they
are related by means of a “relabelling” procedure described later in this
appendix. The above algebra is represented schematically in Fig. 13.

Non-Markovian Monte Carlo Algorithm for . . . 3019

Integrable

Σ
Z

−> Π Θ

Z

Θ iΠ zi(−x) (z − x)

Fig. 13. Further reorganization of the multiple gluon emission in the multibranch-

ing.

It is now possible to implement the integral of Eq. (80) as a pair of two
independent “parallel Markovian processes”, both starting at τ0 and stopping
at τ . The first one would have decay constant RA

kk and variable zi gener-
ated according to PΘA

kk (zi), yielding emission multiplicity n1 at the stopping
point, while the second one would have its decay constant RB

kk, variables zj

generated according to PΘB
kk (zj), and the emission multiplicity n2.

It is important to understand that at the very end the two sets of zi, τi,
i = 1, ..., n1 and zj , τj , j = 1, ..., n2 can be merged, forgetting from which
parallel generation branch they originate. Merging is done simply by creat-
ing a common list of ordered variables τi and renaming/reordering zi vari-
ables in exactly the same way. Such relabelling procedure will undo the

procedure of combining together the
(

n1+n2

n1

)

terms done in Eq. (79). The

relabelling procedure is illustrated schematically in Fig. 14. The resulting
zl, l = 1, ..., n1 + n2 will be then distributed according to the product

n1+n2
∏

l=1

[PΘA
kk (zl) + PΘB

kk (zl)] . (84)

Moreover, also the total multiplicity n = n1 +n2 and the evolution times τl,
l = 1, ..., n will be distributed as if they were coming from the corresponding
single Markovian MC.

t0 t max

t

t

t

relabelling

1’ 2’ 3’ 4’ 5’

1 2 3 5 6 7 8 9 n

1" 2" 3" 4" 5"

4

Fig. 14. Illustration of “relabelling”. The actual generation is done in two steps:

First, for each of the two branches (squares and circles) the ordered τ ’s are gener-

ated separately and independently in the entire τ -range. Next, (τi, zi) are relabelled

according to a common ordering in τ . Only after such a relabelling is x constructed:

x =
∏n

j=1
zj.

3020 S. Jadach, M. Skrzypek

Actually, the reader may be concerned that the above claim is not re-
ally founded on a solid derivation because we have excluded the τ space
in the binomial decomposition after integrating over τ ’s at an early stage
of derivation, while we are now making statements on the distribution in
the full space τ1, z1, τ2, z2, ..., τn, zn. We need clearly to refine our derivation
keeping the τ -space alive. The full derivation involves non-trivial combi-
natorics, and here we shall only give a sketch on the necessary reasoning.
Consider the expression with three kernels
∫

dτ1dτ2dτ3Θ321

∫

dz1dz2dz3(A(3) + B(3))(A(2) + B(2))(A(1) + B(1)) ,

(85)
where we abbreviate: Θ321 = Θ(τ3 − τ2)Θ(τ2 − τ1) and A(i) = PA

kk(zi),
B(j) = PB

kk(zj). It is decomposed as follows:

∫

dτ1dτ2dτ3Θ321

∫

dz1dz2dz3[A(3)A(2)A(1)

+B(3)A(2)A(1) + A(3)B(2)A(1) + A(3)A(2)B(1)

+B(3)B(2)A(1) + B(3)A(2)B(1) + A(3)B(2)B(1)

+B(3)B(2)B(1)] . (86)

Each of the four groups in four lines is now transformed separately into a
single factor with different ordering pattern of the τ variables. For instance
the second line we transform explicitly as follows:
∫

dτ1dτ2dτ3Θ321

∫

dz1dz2dz3[B(3)A(2)A(1)+A(3)B(2)A(1)+A(3)A(2)B(1)]

=

∫

dτ1dτ2dτ1′dz1dz2dz1′Θ1′21B(1′)A(2)A(1)

+

∫

dτ1dτ1′dτ3dz1dz1′dz3Θ31′1A(3)B(1′)A(1)

+

∫

dτ1′dτ2dτ3dz1′dz2dz3Θ321′A(3)A(2)B(1′)] , (87)

where we essentially renamed both z’s and τ ’s sitting in the B-factor. The
same can be done for variables in the A-factors:

∫

dτ•
1 dτ•

2 dτ ′
1dz•1dz•2dz′1Θ1′2•1•B(1′)A(2•)A(1•)

+

∫

dτ•
1 dτ ′

1dτ•
2 dz•1dz′1dz•2Θ2•1′1•A(2•)B(1′)A(1•)

+

∫

dτ ′
1dτ•

1 dτ•
2 dz′1dz•1dz•2Θ2•1•1′A(2•)A(1•)B(1′)] . (88)

Non-Markovian Monte Carlo Algorithm for . . . 3021

Let us summarize explicitly the relabelling of the variables that has been
done above:

for τ ′
1 > τ•

2 > τ•
1 : τ1 = τ ′

1, τ2 = τ•
2 , τ1 = τ•

1 , z1 = z′1, z2 = z•2 , z1 = z•1 ,

for τ•
2 > τ ′

1 > τ•
1 : τ1 = τ•

2 , τ2 = τ ′
1, τ1 = τ•

1 , z1 = z•2 , z2 = z′1, z1 = z•1 ,

for τ•
2 > τ•

1 > τ ′
1 : τ1 = τ•

2 , τ2 = τ•
1 , τ1 = τ ′

1, z1 = z•2 , z2 = z•1 , z1 = z′1,

(89)

Now, we may pull out the kernels and combine the Θ-functions

∫

dτ•
1 dτ•

2 dτ ′
1dz•1dz•2dz′1B(1′)A(2•)A(1•)[Θ1′2•1• + Θ2•1′1• + Θ2•1•1′]

=

∫

dτ•
1 dτ•

2 dτ ′
1 dz•1dz•2dz′1 Θ2•1•A(2•)A(1•) Θ′

1B(1′) , (90)

where Θ1′ = 1 and Θ2•1• = Θ(τ•
2 − τ•

1). The above tedious relabelling of z’s
and τ ’s and recombining of Θ’s into product of two independent ones can
be done for any number of kernels. The net result is an interesting identity:

n
∏

i=1

1
∫

τi−1

dτi

1
∫

0

dzi (A(zi) + B(zi))w(τ ,z)

=
n
∑

n1=0

n1
∏

i=1

1
∫

τ•
i−1

dτ•
i

1
∫

0

dz•i A(z•i)

n−n1
∏

i=1

1
∫

τ ′
i−1

dτ ′
i

1
∫

0

dz′iA(z′i)

w(τ (τ •, τ ′),z(τ •; τ ′, z•, z′)) , (91)

where w(τ ,z) is an arbitrary “test function” ensuring that Eq. (91) is in-
deed a differential identity, and not an obvious multiplication rule of ex-
ponential functions. The mapping (relabelling) τi = τi(τ

•, τ ′) and zi =
zi(τ

•; τ ′, z•, z′) is nothing more than a permutation of the integration vari-
ables, which is “guided” by the ordering of the τ variables, much as in the
explicit example above. Note that the above identity is still valid if the
integrand involves any additional factor, symmetric with respect to the per-
mutation of the integrand variables τi and zi.

The above formula is a kind of generalization of the Newton binomial
formula in which an n-dimension simplex in τ variables is decomposed into
a sum over the Cartesian product of the two simplexes in n1 and n − n1

dimensions. From this exercise it is also clear that this identity implicitly
involves a relabelling of z variables depending on the ordering of τ variables.
This is exactly what we have to do in the Monte Carlo if we generate A(z)

3022 S. Jadach, M. Skrzypek

and B(z) independently, but we want to have the distribution A(z)+B(z) at
the end of the algorithm. Note that a similar MC procedure with relabelling
of the integration variables was done in the context of the ISR and FSR
photon radiation in the YFS3 algorithm of KKMC, before adding the ISR–
FSR interference [20].

REFERENCES

[1] S. Catani et al., CERN-TH/2000-131 in the CERN report on the “1999 CERN
Workshop on SM Physics (and more) at the LHC” [hep-ph/0005025].

[2] S. Frixione, B.R. Webber, J. High Energy Phys. 06, 029 (2002)
[hep-ph/0204244].

[3] P. Nason, J. High Energy Phys. 11, 040 (2004) [hep-ph/0409146].

[4] L.N. Lipatov, Sov. J. Nucl. Phys. 20, 95 (1975); V.N. Gribov, L.N. Lipatov,
Sov. J. Nucl. Phys. 15, 438 (1972); G. Altarelli, G. Parisi, Nucl. Phys. 126,
298 (1977); Yu.L. Dokshitzer, Sov. Phys. JETP 46, 64 (1977).

[5] T. Sjöstrand, Phys. Lett. B157, 321 (1985).

[6] G. Marchesini, B.R. Webber, Nucl. Phys. B310, 461 (1988).

[7] S. Jadach, M. Skrzypek, Nucl. Phys. Proc. Suppl. 135, 338 (2004).

[8] S. Jadach, M. Skrzypek, Acta Phys. Pol. B35, 745 (2004) .

[9] K. Golec-Biernat, S. Jadach, M. Skrzypek, W. Płaczek, Report IFJPAN-
V-04-08.

[10] S. Jadach, M. Skrzypek, Report IFJPAN-V-04-07.

[11] R. Ellis, W. Stirling, B. Webber, QCD and Collider Physics, Cambridge Uni-
versity Press, 1996.

[12] M. Botje, ZEUS Note 97-066, http://www.nikhef.nl/ h24/qcdcode/.

[13] S. Jadach, MPI-PAE/PTh 6/87, preprint of MPI Munich, unpublished.

[14] S. Jadach, M. Skrzypek, Z. Wąs, Report IFJPAN-V-04-09.

[15] S. Jadach, eprint physics/9906056 (unpublished), also available from
http://home.cern.ch/∼jadach .

[16] S. Jadach, Comput. Phys. Commun. 130, 244 (2000) [physics/9910004].

[17] S. Jadach, Comput. Phys. Commun. 152, 55 (2003) [physics/0203033].

[18] H. Kharraziha, L. Lonnblad, J. High Energy Phys. 03, 006 (1998)
[hep-ph/9709424].

[19] M. Ciafaloni, Nucl. Phys. B296, 49 (1988); S. Catani, F. Fiorani, G. March-
esini, Phys. Lett. B234, 339; Nucl. Phys. B336, 18 (1990).

[20] S. Jadach, B.F.L. Ward, Z. Wąs, Phys. Rev. D63, 113009 (2001).

