
Vol. 36 (2005) ACTA PHYSICA POLONICA B No 10

ON MULTISTEP DIRECT EMISSION OF ONE AND

TWO NUCLEONS AND THE GRADUAL ABSORPTION

THAT FOLLOWS

Andrzej Marcinkowski

The Andrzej Sołtan Institute for Nuclear Studies
Hoża 69, 00-681 Warszawa, Poland

Andrzej.Marcinkowski@fuw.edu.pl

(Received May 20, 2005)

The multistep direct reaction theory of Feshbach, Kerman and Koonin
(FKK) is used with the enhanced non-DWBA matrix elements and with
both the coherent vibrations and the incoherent particle–hole excitations,
included. Distinction between bound and unbound final particle–hole states
is made, since only the former determine genuine one-step cross sections
that observe the energy weighted sum rule limits and can be convoluted to
obtain the multistep cross sections for emission of one particle. The cross
sections to unbound final states describe more complicated direct processes.
Only the very specific of such processes can be evaluated in terms of the
FKK theory. These novelties are verified in analyses of a representative
series of reactions.

PACS numbers: 25.40.Fq, 25.40.Ep, 25.40.Kv, 24.60.Gv

1. Introduction

The concept of statistical multistep collisions [1] is common in quantum
mechanical descriptions of the mechanism of the pre-equilibrium nuclear re-
actions in the continuum [2–4]. Especially the nucleon induced reactions
have been widely described by the theory of Feshbach, Kerman and Koonin
(FKK) [2], who distinguished between the multistep direct (MSD) reactions
that involve a chain of states of increasing complexity, each including only
one virtual unbound particle, and the multistep compound (MSC) reactions
involving a chain of quasi-bound states that develop towards the compound
nucleus. In the following only the former MSD reactions are discussed, al-
though the two reaction chains are not independent but linked together by
transitions that damp the unbound particles of low energy into the com-
pound states at each reaction stage. The damping transitions give rise to
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gradual absorption [5] instead of the one-step absorption into the quasi-
bound 2p1h doorway states [2]. On the other hand, gradual absorption to be
effective requires enhanced transition matrix elements originally included in
the FKK theory [6,7]. Both the gradual absorption and the enhanced MSD
reactions reflect the interference of the strong nonelastic direct processes
with the intensive compound nucleus background [8]. The FKK theory al-
lows of only one particle in the continuum and therefore it can describe only
one-particle emission. The calculation of the cross sections for the one-step,
one-particle emission is described in Chapters 2 and 3. In Chapter 4 the
multistep cross sections follow. In Chapter 5 it is shown that some very spe-
cific ones of the more complicated direct processes, e.g. two-particle emission
followed by multistep scattering or one-particle emission associated with the
damping of the other continuum particle, can be evaluated in the framework
of FKK [9,10].

2. The one-step direct emission of one particle

Recently it was found that in case of low multipolarities λ=L≤4 , the
correlations that bring the particle–hole (ph) pairs into a collective motion
dominate over the incoherent spatial motions, contrary to the ph pairs with
L>4 that are governed by the incoherent spatial motions. This finding,
which followed the analysis of the cross sections in terms of the energy
weighted sum rules (EWSR’s) [11,12], led to the following expression for
the cross section of a one-step direct reaction to both the bound and the
unbound final states [12–14]

1SD =

one−phonon
∑

λ≤4

σλ(vib) +
∑

L>4

σL(ph) . (1)

Later, the incoherent excitations of the bound ph states were distin-
guished from the unbound ones, and this resulted in a suitable formula for
the cross section of one-step emission of one particle leading to the excitation
of bound final states only [10,15],

1SDbound =

one−phonon
∑

λ≤4

σλ(vib) +

one−step
∑

L>4

σL(ph)bound . (2)

The latter is a genuine one-step, one-particle cross section that observes
the EWSR’s limits and is appropriate for folding into the multistep direct
cross sections (MSDbound) of the FKK theory. Both the collective and the
incoherent double-differential ph cross sections in Eq. (2), are expressed in
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terms of the DWBA angular distributions by,

σλ(vib) =
∑

nλ,τ=0,1

ea,b × β2
nλ,τ

(

J0,τ

J0,0

)2

×

(

dσ

dΩ

)DWBA−macr

nλ,τ

× f [~ωnλ,τ
, Γ ] , (3)

with U0,τ/U0,0 = J0,τ/J0,0, and the ratio of the volume integrals of the
terms in the nucleon–nucleon effective interaction J0,1/J0,0 ≈ 1/2. The
quantity ea,a = 1 for nucleon scattering and ea,b = 2 for charge-exchange
reactions [16], and

σL(ph)bound =
∑

a,b

(2L + 1) × ρ1pa1hb
(U,P,L,Ba, ǫ

b
F)

×V 2
a,b

〈

(

dσ

dΩ

)DWBA−micr

1pa1hb

〉

. (4)

Here, both indices a and b denote either a neutron (n) or a proton (p). Thus,
the sum in (4) includes two terms that describe nucleon scattering to the
neutron particle–hole, 1pn1hn, and the proton-particle–hole, 1pp1hp, final
states. In case of a charge-exchange reaction, the sum in (4) includes only
one term corresponding to, either the mixed neutron-particle–proton-hole,
1pn1hp, or the proton-particle–neutron-hole, 1pp1hn, final states [12].

The macroscopic DWBA angular distributions in Eq. (3) are calculated
with the form factors ff= −R∂U0,0/∂R obtained from the deformed opti-
cal potential. For nucleon scattering, the summations in Eqs. (1) to (3)
practically extend over the known isoscalar nλ,0, one-phonon 2+, 3− and 4+

final states with βnλ,0
, the phenomenological deformation parameters, see

e.g. [15]. The dipole (GDR), quadrupole (GQR) and low energy component
of the octupole (LEOR) giant resonances are also included. The LEOR
exhausts 30% of the total octupole strength [17]. The strengths of the reso-
nances are obtained by depleting the EWSR’s. fλ is the energy distribution
function, assumed to be Gaussian with a width adjusted to the experimen-
tal energy resolution for the low-energy levels, or Lorentzian with a width
typical of the giant resonances. In case of a charge-exchange reaction, the
deformation parameters βnλ,1

of the low energy collective levels in Eq. (3)
are usually unknown, since these levels are weakly populated, except for the
isobaric analogue state. Therefore, we assume that the collective excitations
are dominated by the isovector giant resonances which, except for the dipole
resonance, have widths of 10 MeV or more [17]. These wide collective struc-
tures are approximated by the smooth σL(ph)bound cross sections calculated
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with λ=L≤ 4. The resulting smooth cross sections are subsequently reduced
according to the EWSR’s limits [15,18], see also Chapter 3.

The microscopic DWBA angular distributions in (4) are calculated with
a real effective interaction of Yukawa form with 1 fm range and strength re-
duced to unity. The standard values of the strength Vp,p = Vn,n = 12.7 MeV
and Vp,n = Vn,p = 43.1 MeV are used [19] and their dependence on the
incident energy is accounted for [20]. The microscopic cross sections are
averaged over the final particle–hole states (jpj

−1
h )LM of the shell model [21]

contained in 1 MeV intervals. However, when no states with given L are
found in the 1 MeV bin, the latter is increased until the state is found. This
allows one also to use the standard DWBA code DWUCK-4 [22] to obtain
approximate cross sections to final continuum states by making the unbound
particle quasi-bound. Both the macroscopic and the microscopic cross sec-
tions are calculated with the DWUCK-4 code. The spectroscopic amplitude
(2j h+1)1/2 is used in the microscopic option of DWUCK-4.

The level density ρ1pa1hb
in (4) reads,

ρ1pa1hb
(U,P,L,Ba, ε

b
F) = P × R1,1(L) × ω1pa1hb

(U,Ba, ε
b
F) , (5)

where P = 1/2 is the parity distribution and R1,1(L) the usual angular
momentum distribution of Wigner type with the spin cut-off parameter σ2 =
0.56A2/3 [23]. The bound particle–hole state density ω1pa1hb

(U,Ba, ε
b
F) is

taken from [24],

ω1pa,1hb
(U,Ba, ε

b
F) = gagb[U − (U − Ba)Θ(U − Ba) − (U − εb

F)Θ(U − εb
F)

+(U − Ba − εb
F)Θ(U − Ba − εb

F)] , (6)

with a = b = p for pp = hp = 1 and pn = hn = 0; a = b = n for pn = hn = 1
and pp = hp = 0; a = n,b = p for pn = hp = 1 and pp = hn = 0; a = p,b = n
for pp = hn = 1 and pn = hp = 0. The state density of (6) is restricted to
particle energies below the binding energy Ba and hole energies that do not
exceed the Fermi energy εb

F, with Θ being the Heaviside step function. The
standard equidistant single-particle state densities for protons, gp = Z/13,
and neutrons, gn = N/13, are used. Taking P=1/2 is an approximation that
implies the contributions from spin–flip (∆s=1) transitions to be negligible
[25]. In this way, it is possible to compensate for the fact that in the above-
mentioned averaging of microscopic DWBA angular distributions over final
ph states of the shell model (the angular brackets in Eq. (4)), only the non-
spin-flip (∆s = 0) reactions to natural parity states are considered.
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In the state density ω1pa1hb
in the second r.h.s. term of Eq. (1), the

restriction of particle energies below the binding energy is removed [26,27],

ω1pa,1hb

(

U, εb
F

)

= gagb

[

U − (U − εb
F)Θ

(

U − εb
F

)]

. (7)

The indices a and b are the same as in (6).
The isospin is omitted in the incoherent ph cross sections of (1), (2)

and (4), which implies complete isospin mixing. This assumption may not
be adequate at incident energies around 100 MeV, although a likely impact
of isospin within the FKK approach is assessed to be small [25].

3. The one-step cross sections in terms of the EWSR’s

The one-phonon collective vibrations of energy εnλ,τ
(including the giant

resonances) observe the EWSR’s by definition, i.e.

one−phonon
∑

nλ,τ

εnλ,τ
× β2

nλ,τ
= Sλ,τ , (8)

where S0,0 = 10π~
2/(3mAR2) for monopole, S1,1 = π~

2/(2mNZR2) for
dipole and Sλ≥2,τ = SL≥2 = 2π~

2L(2L + 1)/(3mAR2) for multipole phon-
ons [28].

To evaluate the incoherent cross sections, the method of Tamura et al. [3]
is applied. These authors have shown that the microscopic DWBA form
factors, averaged over a number of shell model ph pairs, always peak at the
nuclear surface and therefore may be approximated by the derivative of the
optical potential as in analyses of inelastic scattering to low-energy collective
states. This enables us to assign an equivalent strength parameter β̂L,τ to
the cross section for the incoherent excitation of ph pairs of given L and
energy [29]. By integrating the calculated σL(ph)bound cross sections within

∆U=1 MeV bins for each L>4, one extracts the β̂L,τ in accordance with the
macroscopic DWBA model,

U+∆U
∫

U

∫

σL(ph)bounddΩdU =
∑

τ=0,1
ea,b × β̂2

L,τ

(

J0,τ

J0,0

)2

×
∫ (

dσ
dΩ

)DWBA−macr

L,U+ 1

2
∆U

dΩ , (9)

for the fictitious states corresponding to an energy of U + ∆U/2 in each
successive 1 MeV bin [11,12]. The strength parameters obtained from (9)



3046 A. Marcinkowski

are then subjected to the sum rule limits SL,τ as follows

Einc+Q−1
∑

U=0

(

U +
1

2
∆U

)

∑

τ=0,1

ea,b × β̂2
L,τ

(

J0,τ

J0,0

)2

= RL × ea,b

∑

τ=0,1

(

J0,τ

J0,0

)2

× SL,τ . (10)

E.g. for nucleon scattering,

Einc−1
∑

U=0

(

U +
1

2
∆U

)

(

β̂2
L>4,0 + 0.25β̂2

L>4,1

)

= RL × 1.25SL>4 , (11)

and for charge-exchange reactions,

Einc+Q−1
∑

U=0

(

U +
1

2
∆U

)

× β̂2
L>4,1 = RL × SL>4 . (12)

In practice, the calculated one-step cross sections to the bound 1p1h states
observe the limits for L > 4, provided that RL ≤ 2 allowing for the approx-
imate nature of the EWSR’s limits [30].

The parameters β̂L≤4,1, obtained from (9) with the smooth σL≤4(ph)bound

cross sections are also subjected to the EWSR’s limits SL≤4 in (12). It is
worth recalling that the smooth cross sections are used to approximate the
isovector collective σλ≤4(vib) term, in Eqs. (1) and (2), in the case of the
charge-exchange reaction stages (pn) or (np), (see Chapter 2). In this case
the reduction factors R−1

L are applied to both sides of (12).

4. The multistep direct emission of one particle

The multistep cross sections of the FKK theory are obtained by multiple
folding of the one-step cross sections [2,31],

MSDbound =

∫

m1E1

(2π)2~2
dE1dΩ1...

∫

mM−1EM−1

(2π)2~2
dEM−1dΩM−1

× (1SDbound)M × S−2 (1SDbound)M−1 ...S−2 (1SDbound)1 .

(13)

EM−1 and mM−1 are the energy and mass of the scattered nucleon after
the M -th stage of the reaction. The final states in the (ph) components of
the 1SDbound cross sections in Eq. (13) are assumed to be 1p1h states inde-
pendent of the reaction stage M . Thus, all ph pairs excited at the reaction
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stages preceding stage M act as spectators only. On the other hand, each
phonon in the (vib) cross section in Eq. (13) results in multi-phonon states
[32] built on the final phonon states of the preceding reaction stage. The
energies of the multi-phonon states are sums of energies of the constituent
phonons. Therefore, it is important to include into the (vib) component
only one-phonon states. The successive double-differential cross sections
(1SDbound)M−1, except the last M -th one are enhanced due to the biorthog-
onality of the outgoing distorted waves < χ̂(+) |= S−1 < χ(−) | in the
non-normal DWBA matrix elements [6]. For a given outgoing distorted
wave ℓM−2, in the incident channel and orbital angular momentum transfer
L, a number of partial waves ℓM−1 (triangle rule) contribute to the incom-
ing distorted waves in the outgoing channel. The latter waves are enhanced
by the corresponding S−1

ℓM−1
. The elastic scattering matrix elements SℓM−1

are related to the partial wave transmission coefficients T ℓ of the optical
potential, S2

ℓM−1
=1−T ℓM−1

[33]. The enhanced transition matrix elements

are averaged over energy [12,34]. The overall effect of the energy averaging
is approximated by using an effective average enhancing factor 〈S−1

L 〉 acting

on all partial waves ℓM−1 for a specific L. The average 〈S−1
L 〉 is free of the

fluctuations or singularities that arise at the energies of the single particle
resonances, where TL ≈1. The averaged enhancing factors apply not only to
the excitation of the incoherent ph pairs but also to those that add coherently
to a collective vibration, since the distorted waves < χ(+) |, whether the ex-
cited states are single-particle ones or collective, are the same eigenfunctions
of the complex optical potential and form a complete set with the adjoint
distorted waves 〈χ̂(+) |. Thus, according to Eq. (2), the (M−1) out of the
M 1SDbound cross sections in equation (13), contain a sum of the enhanced
(S−2

vib) =
∑

λ≤4〈S
−1
λ 〉2σλ(vib) and (S−2phb)=

∑

L>4<S−1
L

>2σL(phb) cross

sections. As a result, the multistep cross section of equation (13) contains
the following combinations of the above two terms [13,35]:
1SDbound, (vib) + (phb) ,
2SDbound, (S−2vib,vib) + (S−2phb,vib) + (S−2vib,phb) + (S−2phb,phb),
3SDbound, (S−2vib,S−2vib,vib) + (S−2phb,S

−2vib,vib) + (S−2vib,S−2phb,vib)
+ (S−2vib,S−2vib,phb) + (S−2phb,S

−2phb,vib) + (S−2phb,S
−2vib,phb)

+ (S−2vib,S−2phb,phb) + (S−2phb,S
−2phb,phb),

4SDbound, etc.,
where for simplicity the summations over λ=L are omitted and the index b
stands for “bound”.

When distinction between proton or neutron leading particle in the con-
tinuum is made, a number of different sequences of one-step reaction stages
can contribute to a given MSDbound reaction [25]. In order to reduce the
number of terms describing the MSDbound cross section the (S2vib)M−1 and
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(S2phb)M−1 terms, (vib)M and (phb)M are lumped together to give the
1SDbound cross sections for the single reaction stage: (nn), (np), (pn) and
(pp). These allow one to distinguish between the different sequences of the
above-mentioned reaction stages that result from the M collisions of the
continuum nucleon with the nucleons of the target nucleus. Eq. (13) is used
separately for each sequence, e.g. the sequences that contribute to the (p,p’)
reaction are the following [36]:

1SDbound, (pp),
2SDbound, (S−2pp,pp) + (S−2pn,np),
3SDbound, (S−2pp,S−2pp,pp) + (S−2pp,S−2pn,np)
+ (S−2pn,S−2np,pp) + (S−2pn,S−2nn,np),
4SDbound, etc.

In Fig. 1, the contributions due to excitation of the one-phonon collective
states vib and the incoherent particle–hole ph states are included in the 1SD
cross section for the neutron scattering (nn) stage of the 93Nb(n,n’)93Nb
reaction. The maximum at medium excitation energies (10÷15 MeV) in

Fig. 1. The calculated 1SD cross section of the 93Nb(n,n′)93Nb reaction at an

incident neutron energy of 26 MeV [37], (thick solid line). The contributions due

to excitation of one-phonon collective vibrations (vib) of multipolarity λ ≤4 and

to incoherent excitation of particle–hole-pairs (ph), of transferred orbital angular

momenta l>4 are shown separately as thin lines.

Fig. 1, corresponds to the giant resonances. The structure at the highest
outgoing energies is due to the individual one-phonon states described by
Gaussians with a width of Γ = 2 MeV. The latter structure survives the
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energy smearing from the convolution of three successive neutron scattering
stages, (S−2nn,S−2nn,nn), and appears, although weaker, as a three-phonon
structure at trice higher excitation energy in the 3SD spectrum of Fig. 2. The
latter figure shows the contributions of all four sequences of reaction stages.
The 1SDbound +

∑

M>1MSDbound describe adequately the one-particle emis-
sion according to the theory of FKK. This is shown in Fig. 3, where the MSD
cross sections are compared with the inclusive neutron spectrum measured
at an incident energy of 25.7 MeV [38]. Fig. 3 clearly shows how the one-
phonon maximum in the 1SD spectrum developes into the two-, three-, and
four-phonon maxima at twice, trice and four times higher excitation energy
in the 2SD, 3SD and 4SD spectra, respectively. The partial cross sections,
obtained at an incident energy of 14 MeV, after integration over angle and
outgoing energy, are included in Table I [39].

Fig. 2. The same as in figure 1 but for the 3SD. The contributions from the four

sequences of reaction stage are also shown (sum of the four contributions is indis-

tinctive from the strongest one). The enhancing factors are omitted for simplicity.

The cross sections for the 93Nb(n,xn)93Nb reaction have also been de-
scribed using the RPA basis of collective states. Due to the complexity of
the calculations involved, only the first two steps of the reaction were cal-
culated [40]. The results obtained for the 1SD and 2SD reactions are in
excellent agreement with the results of [37,39] that are included in Table I.
The shapes of the emission spectra in [40] also resemble the ones obtained
in [37,39]. One could therefore argue that the new 1SD cross section of
equations (2) through (4), in conjunction with (13), present a closed-form
approximation of the RPA cross sections.
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TABLE I

The decomposition of the MSD cross sections for the 93Nb(n,n’)93Nb reaction at
14 MeV, obtained with the non-normal DWBA matrix elements. The MSD reaction
stages include only neutrons.

σ(1SD) (mb) σ(2SD) (mb) σ(3SD) (mb)

(ph) 82 (S−2vib,vib) 29 (S−2vib,S−2vib,vib) 6.8

(vib) 119 (S−2vib,ph) 13 (S−2vib,S−2vib,ph) 2.0

(S−2ph,vib) 9 (S−2ph,S−2vib,vib) 1.6

(S−2ph,ph) 3 (S−2vib,S−2ph,vib) 1.2

(S−2ph,S−2vib,ph) 0.3

(S−2vib,S−2ph,ph) 0.2

(S−2ph,S−2ph,vib) 0.2

(S−2ph,S−2ph,ph) 0.03

Total 201 54 12.3

Fig. 3. Comparison of the calculated cross sections with the spectrum of neutrons

from the 93Nb(n,xn)93Nb reaction measured at incident energy of 25.7 MeV [38].

The thick line is the sum of all contributions. CN1 to CN3 denote the primary

to tertiary neutrons evaporated from the compound nucleus, respectively. CPN

denotes secondary neutrons preceded by evaporation of a proton and MSC labels

the emission from three steps of the compound reaction.
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Fig. 2 shows that in the case of neutron scattering, the sequences of
reaction stages including only neutrons dominate markedly over the other
ones including also protons. However, in the case of proton scattering or
charge-exchange reactions one cannot foresee if and which sequences can
be neglected. Therefore, all sequences are calculated and summed in or-
der to obtain reliable MSD cross sections for the 54Fe(p,p’)54Fe and the
90Zr(p,n)90Nb reactions considered in the following chapter. The cross sec-
tions for the sequences that contribute to the (p,n) reactions are shown in
Table II [15]. For a comparison of angular distributions see [13,18,39].

TABLE II

The decomposition of the MSD cross sections for the 90Zr(p,n)90Nb reaction at
45 MeV, obtained with the non-normal DWBA matrix elements.

σ(1SD)bound (mb) σ(2SD)bound (mb) σ(3SD)bound (mb)

(pn) 57 (S−2pn,nn) 58 (S−2pn,S−2nn,nn) 32

(S−2pp,pn) 9 (S−2pp,S−2pn,nn) 4

(S−2pn,S−2np,pn) 3

(S−2pp,S−2pp,pn) 2

Total 57 67 41

σ(4SD)bound (mb)

(S−2pn,S−2nn,S−2nn,nn) 10.2

(S−2pn,S−2np,S−2pn,nn) 1.1

(S−2pp,S−2pn,S−2nn,nn) 0.9

(S−2pn,S−2nn,S−2np,pn) 0.9

(S−2pp,S−2pp,S−2pn,nn) 0.7

(S−2pn,S−2np,S−2pp,pn) 0.4

(S−2pp,S−2pp,S−2pp,pn) 0.2

(S−2pp,S−2pn,S−2np,pn) 0.1

Total 15

5. The more complicated direct processes

The cross section 1SDunbound to unbound particle–hole final states can
be obtained by simple subtraction [15],

1SDunbound = 1SD − 1SDbound =
∑

L>4
σL(ph)unbound . (14)
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The quantity σL(ph)unbound includes the difference between the state densi-
ties (7) and (6), i.e. ω1pa1hb

(U ,εb
F)−ω1pa1hb

(U ,Ba,ε
b
F). The collective σλ(vib)

terms in 1SD and 1SDbound cancel in 1SDunbound even with the approxima-
tion assumed for the charge-exchange reactions (see Chapters 2 and 3). The
1SDunbound involves processes that go beyond the scope of the FKK theory.

At incident energies below the depth of the potential well, i.e. below
40 MeV, 1SDunbound describes the emission of one particle, followed by damp-
ing of the other continuum particle of lower energy into a final quasi-bound
compound state embedded in the continuum. Such processes contribute
to absorption of the flux into the npnh compound states of the A nucleus
[10]. This is shown in the reaction scheme of Fig. 4 by the long solid ar-
rows connecting the continuum 1p0h entrance state (in Fig. 4(a)) with the
compound states (in Fig. 4(c)), via the two-particle continuum states (in
Fig. 4(b)), from which only one particle (the upper short 1SDunbound ar-
row) is emitted. These reactions complete the gradual absorption into the
(n+1)pnh states of the composite (A+1) nucleus [5,7]. The latter transitions
are shown by the long solid arrows that connect the successive continuum
states (in Fig. 4(a)) with the compound states (in Fig. 4(b)). The one-step
absorption into the quasi-bound 2p1h compound doorway state, assumed in
the original FKK [2], is shown by the first l. h. s. long solid arrow.

At incident energies higher than 40 MeV, 1SDunbound gives rise to the
emission of two particles, since both particles of the two-particle continuum
state can escape the nucleus, even after a few collisions of one of them with
the bound nucleons. Thus, the two particles are emitted in a one-step or
in a multistep reaction. Only simultaneous emission is important, since
the alternative scenario of the emission of a secondary particle after one
or a few rescattering collisions following the primary particle emission is
relatively unimportant [41,42]. The double-differential 1SDunbound describes
the emission of one of the two emitted particles.

Although the coexistence of one-particle emission followed by damping
and two-particle emission is likely to occur over a wider energy region, we
assume in what follows a sharp limit of 40 MeV, for sake of clarity. Thus,
only the one-step emission of two particles and the multistep rescattering
processes that follow are included in 1SDunbound, above 40 MeV, and repre-
sented by the pairs of short arrows (1SDunbound, MSD2) from the chain of the
two-particle continuum states connected by the horizontal and the inclined
line in Fig. 4(b). A more rigorous treatment of two-particle emission in the
continuum is proposed by the theory of knock-out reactions, (a,ab), of Cian-
garu [43], who has applied statistical postulates similar to those of the FKK
theory. The resulting formalism has not been implemented so far in practi-
cal calculations. However, some contributions to the multistep two-particle
emission and/or contributions to gradual absorption from damping that fol-
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Fig.4b

Fig.4c

Fig.4a(a)

(b)

(c)

Fig. 4. Scheme of multistep direct reactions. Short arrows (MSDbound in Fig. 4(a))

show the original multistep one-particle emission of FKK. Long solid arrows show

gradual absorption of the continuum particle (if of energy lower than ≈ 40 MeV)

into quasi-bound states of the multistep compound (MSC) reaction chain (in Fig.

4(b)), except the one to the two-particle continuum state (in Fig. 4(b)), that gives

rise to emission of one particle (short arrows 1SDunb) followed by damping of the

other one (long arrows from MSD2 to the quasi-bound states in Fig. 4(c)), or to

one-step or multistep emission of two particles (pairs of short arrows, 1SDunb and

MSD2), depending on energy.
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lows the multistep emission of one particle (dashed arrows in Fig. 4) can be
estimated in the framework of the FKK theory with the help of MSDunbound

obtained by generalizing Eq. (14) to obtain MSDunbound=MSD−MSDbound

[10]. The MSD cross section here, involves the convolution of (M−1) en-
hanced S−2(1SDbound) cross sections, just as in the convolution integral of
(13). However, contrary to (13), the last M -th reaction step 1SDM is not
restricted by particle binding but includes both the bound and unbound
final states. On the other hand, according to the approximate method of
[9], the double-differential 1SD cross section is used as input to the calcu-
lation of the cross section (1SD(2)) for the other particle in two-particle
emission. This method takes no account of the influence of energy dissi-
pation due to the rescattering collisions of the second continuum particle
(1SD2, 2SD2, 3SD2,...etc. in Fig. 4(b)) on the 1SD(2) spectrum, although
1SD(2)=1SD2+2SD2+3SD2+... etc. is obeyed. Therefore, the double-
differential 1SDunbound and the complementary 1SD(2) determine only an
approximate spectral distribution of the two particles. One has to bear in
mind that according to the assumption of a sharp 40 MeV limit, the inte-
grated 1SDunbound = 1SD(2) above 40 MeV. Here the two sides of the equa-
tion may include nucleons of different kind, e.g. in case of a (p,n) reaction the
(p,np) two-particle emission may follow. However, only nucleons of the same
kind (neutrons in this case) are compared with experiment and this involves
two source reactions, the (p,n) and the (p,p’) with the latter contributing
via the (p,pn) two-particle emission. The 1SDunbound, integrated over angle
and energy, gives the total cross section for two-particles in the continuum.
The latter increases with increasing energy, although in the case of a (p,n)
reaction it remains practically constant compared to the total one-particle
emission cross section of FKK (integrated 1SDbound +

∑

M>1MSDbound).
This is shown in Table III for the 90Zr(p,n)90Nb reaction [10]. The to-
tal one-particle emission amounts to approximately 65% (third row) of the
direct reactions, independent of the incident energy. The remaining 35%
(fourth and fifth rows) corresponds to the 1SDunbound, which is one-particle
emission associated with damping of the other continuum particle at low
incident energies, but with increasing energy it includes increasingly more
two-particle emission. It thus turns out, that 35% of the total (p,n) reaction
cross section corresponding to the more complicated direct processes is not
accounted for in the FKK theory.

Nucleon scattering is different. The slowly varying contribution from
the collective isoscalar vibrations to 1SDbound (Eq. (3)), increases the one-
particle emission of the FKK theory considerably. The 1SDbound cross sec-
tion itself becomes two to three times greater than the one for a charge-
exchange reaction (compare the first rows in Tables III and IV). This makes
one-particle emission dominant at incident energies below ≈ 40 MeV and
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TABLE III

The integrated cross sections for the 90Zr(p,n)90Zr reaction including the enhanced
MSDbound contributions calculated with the non-DWBA matrix elements. The
cross sections are verified by comparison with experiment as in Figs. 7 and 8 and
given in mb.

Incident energy 25 MeV 45 MeV 80 MeV 120 MeV

Cross section Emission

1SDbound 60 57 34 24 one particle

MSDbound 13 123 456 355 one particle
∑

M≥1
MSDbound 73 180 490 379 one particle

1SDunbound 39 one particle + damping

1SDunbound 89 199 232 two particles

TABLE IV

The integrated cross sections for the 54Fe(p,p’)54Fe reaction including the enhanced
MSDbound contributions calculated with non-DWBA matrix elements. The cross
sections are verified by comparison with experiment as in Figs. 5 and 6, and given
in mb.

Incident energy 29 MeV 39 MeV 62 MeV

Cross section Emission

1SDbound 118 116 108 one particle

MSDbound 69 164 267 one particle
∑

M≥1
MSDbound 187 280 375 one particle

1SDunbound 16 40 one particle + damping

1SDunbound 92 two particles

allows one to conclude that nucleon scattering at low energies is the princi-
pal field of application of the FKK theory. At higher energies, the increase
of one-particle emission to bound final states is compensated by the fast
increase of 1SDunbound. As can be seen in Table IV already at 62 MeV the
1SDunbound rises to 20% (fifth row) of the total flux involved (fourth or fifth
plus third rows).

In Figs. 5 through 8, the calculated cross sections are compared with ex-
perimental data. The cut-off of the low-energy part of the 1SDbound spectra
is a result of considering only bound final 1p1h states. Hence, the 1SDbound

spectra extend over a constant energy interval that is approximately equal
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to the depth of the nuclear potential well and therefore, observe the EWSR’s
limits independent of incident energy. At incident energies below 30 MeV,
only 1SD and 2SD cross sections are important for the charge-exchange
(p,n) reactions. The 3SD contribution appears non-negligible for nucleon
scattering. On the other hand, at the highest energies of 80–120 MeV, up to
6SD–8SD cross sections are important. At 120 MeV, the MSD cross sections
appear to converge only at the 7th reaction stage, as is shown in Fig. 8.
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Fig. 5. Comparison of the MSD cross sections calculated with the non-DWBA ma-

trix elements with inclusive spectrum of protons from the 54Fe(p,xp)54Fe reaction,

measured at 38.8 MeV [44]. The thick line is the sum of all contributions. CP1

to CP3 are protons evaporated successively from the compound nucleus. CNP1 to

CNP3 denote successive protons preceded by evaporation of a neutron and MSC

labels the sum of emissions from three steps of the pre-equilibrium compound reac-

tion. The 1SD cross section is split into the 1SDbound and 1SDunbound components.

Only the former are folded into the MSD cross sections.

The cross sections for multiple evaporation of nucleons from the com-
pound nucleus are calculated according to the theory of Hauser and
Feshbach. The multistep compound (MSC) reaction cross sections are cal-
culated in the framework of the FKK theory [2,5], allowing for a gradual
absorption of incident flux into the quasi-bound (n+1)pnh states of the
MSC reaction chain [5]. The radial overlap integral of the single-particle
wave functions in the MSC cross section is calculated with constant wave
functions within the nuclear volume. The overlap integral was subsequently
reduced by 0.5 in order to approximate the result of the microscopic calcu-
lation [47]. The resulting cross sections constitute thus about 0.25 of those
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Fig. 6. The same as in Fig. 5 but at incident energy of 61.7 MeV [44].

Fig. 7. Comparison of the calculated cross sections with neutrons emitted from the
90Zr(p,xn)90Nb reaction measured at incident energy of 80 MeV [45]. The thick

line is a sum of all contributions shown. The labels CN1 to CN4 denote successive

neutrons evaporated from the compound nucleus, respectively. MSC labels the sum

of emissions from the three steps of the preequilibrium compound reaction. The

1SD cross section is split into the 1SDbound and 1SDunbound components. Only the

former ones are folded into the MSD cross sections [15].
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Fig. 8. The same as in Fig. 7 but at incident energy of 120 MeV [46]. The MSD

cross sections converge only at the 7SD stage [15].

obtained in standard analyses. The MSC cross sections are non-negligible
only at low incident energies. However, even at energies below 30 MeV,
the MSC component plays no significant role in comparison with the MSD
one. This is partly due to the reduced microscopic radial overlap integral
and partly due to the gradual absorption, which by feeding directly the
compound states of increasing complexity weakens the usually strong 1SC
emission from the quasi-bound 2p1h state. The optical model absorption
cross section that feeds the compound nucleus is appropriately reduced to
account for the direct non-elastic reactions considered [12].

In all the above described calculations, the optical potentials of [48]
and [49,50] were used for low-energy neutrons and protons, respectively.
At energies above 50 MeV, the optical potentials of [51,52] were used for
neutrons and those of [50,51] for protons.

6. Conclusions

The MSD cross sections calculated in the framework of the FKK the-
ory, using (i) the 1SDbound cross sections to bound final states of Eq. (2)
[10,15] and (ii) the enhanced non-DWBA matrix elements in the convolution
integral (13) are able to reproduce the cross sections of nucleon-induced re-
actions very well without resorting to free parameters. Although at very low
incident energies, e.g. at 14 MeV, the convolution of the 1SD cross sections
(including bound and unbound final states) instead of the 1SDbound cross
sections makes little difference, in a rigorous approach the 1SD cross sections
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cannot be considered as genuine one-step cross sections since they involve
a low energy unbound particle in the final state, which undergoes prefer-
ably damping transitions. On the other hand, 1SDbound is a well defined
one-step one-particle cross section that observes the EWSR’s limits, inde-
pendent of incident energy. Using the smoothed enhancing factors 〈S−1

L 〉 in
the non-DWBA matrix elements together with the restricted 1SDbound cross
sections enables us to avoid the divergence of MSD cross sections at ener-
gies above 50 MeV [15,36,53]. The average enhancement of the MSD cross
sections with respect to the normal DWBA ones is (3.5–3.9)M−1, almost
independent of the type of reaction and incident energy [15].

The 1SDunbound describes either the emission of one particle followed by
damping transitions of the other continuum particle at lower energies or the
emission of two particles. Thus, multistep two-particle emission just like
the multistep one-particle emission of FKK, is accompanied by gradual ab-
sorption of the continuum nucleons into the quasi-bound states that develop
towards the equilibration of the compound A and (A + 1) nuclei [5,7,10],
respectively.

The author acknowledges the long-lasting fruitful cooperation of
Drs. P. Demetriou and B. Mariański.
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