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The previously derived expressions for the real part of the single particle
potential of a Σ hyperon in nuclear matter, VΣ , are applied to investigate
the dependence of VΣ on the nuclear matter density and Σ momentum.
Results for VΣ , in particular its isospin, spin, and spin-isospin dependent
parts, obtained for four models of the Nijmegen baryon–baryon interaction
are presented and discussed.

PACS numbers: 21.80.+a

1. Introduction

The single particle (s.p.) potential VΣ of the Σ hyperon in nuclear
matter, in particular its isospin and spin dependence, was discussed in [1],
and [2]. Let us consider a Σ hyperon moving in nuclear matter of density
ρ composed of Z↑(Z↓) protons with spin up (down), and N↑(N↓) neutrons
with spin up (down). As discussed in [1, 2], the s.p. potential of a Σ+

hyperon with spin up/down and momentum kΣ has the form (in the linear
approximation in the α parameters):

VΣ(ρ; ↑/↓, Σ+, kΣ)

= V0(ρ; kΣ) + 1
2ατVτ (ρ; kΣ) ± 1

4ασVσ(ρ; kΣ) ± 1
2αστVστ (ρ; kΣ) , (1)

where the proton or isospin excess parameter ατ = (Z↑ + Z↓ −N↑ −N↓)/A,
the spin excess parameter ασ = (Z↑ + N↑ − Z↓ − N↓)/A, and the spin-
isospin excess parameter αστ = (Z↑ + N↓ − Z↓ − N↑)/A. For the as-
sumed charge independence of the baryon–baryon interaction, the expres-
sion for VΣ(↑/↓, Σ−, kΣ) differs from (1) only by the sign at the τ and
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στ terms, whose coefficients become −ατ and ∓αστ . The expression for
VΣ(↑/↓, Σ0, kΣ) differs from (1) by the absence of the τ and στ terms1.

Results for V0 and Vx, x = τ, σ, στ , presented in [1] and [2], obtained
with four models of the Nijmegen baryon–baryon interaction, were calcu-
lated at the equilibrium density of nuclear matter ρ = ρ0 = 0.166 fm−3

(kF = 1.35 fm−1). However, values of VΣ not only at densities ρ = ρ0 are
important in describing the behavior of Σ hyperons in various situations:
in Σ nuclear production processes [the strangeness exchange (K−, π) and
associated production (π,K+) processes], in Σ− atoms (see, e.g., [3]), and
probably also in astrophysical systems like neutron stars (see, e.g., [4, 5]).

In the present paper we present the results obtained for V0 and Vx as
functions of the nuclear matter density ρ. Furthermore, the dependence of V0

and Vx on the Σ momentum kΣ is also considered. The present discussion,
similarly as the discussion in [1] and [2], is restricted to the real Σ potential.

2. Results and discussion

We apply the expressions for V0 and Vx in terms of the effective ΣN
interaction in nuclear matter, derived in [1], and [2]. We use the YNG
effective ΣN interaction of Yamamoto et al. [6]. It is a configuration space
representation of the G-matrix calculated in the low order Brueckner (LOB)
theory for four models of the Nijmegen baryon–baryon interaction: model
D [7], model F [8], the soft-core (SC) model [9], and the new soft-core (NSC)
model of Rijken et al. [10].

Our results for V0 as function of ρ obtained with models D, F, and SC of
the Nijmegen baryon–baryon interaction are shown in Fig. 1. Solid, broken,
and dotted curves represent results obtained respectively for Σ momentum
kΣ = 0, kΣ = 1, and kΣ = 2 fm−1. We do not show our results obtained for
V0 with the NSC model, because they would make Fig. 1 less transparent.
The NSC, kΣ = 0 curve would almost coincide with the D, kΣ = 1 fm−1

curve, and the dependence of the NSC results on kΣ is similar to this de-
pendence of our SC results.

Notice that at densities ρ of the order of the nuclear matter equilibrium
density ρ0 = 0.166 fm−3, model F leads to a repulsive V0 whereas all the
remaining models lead to an attractive V0. This repulsive character of the
Σ potential has been suggested by the analyses [11, 12] of the Brookhaven
(K−, π) experiments on 9Be [15] and of the KEK (π,K+) experiments on
28Si [13, 14], and also by the phenomenological analysis of Σ− atoms [16].
The attractive character of the Σ potential at low densities (relevant in Σ−

atoms) revealed by the model F curves in Fig. 1 guarantees that it leads to

1 We consider the case of pure central ΣN effective interaction for which the possible
dependence of Vσ and Vστ on the direction of kΣ does not appear.



Single Particle Potential of a Σ Hyperon in Nuclear Matter . . . 3065

the strong-interaction energy shifts in Σ− atoms towards increased binding
of the atomic levels, in agreement with the experiment (see [3]).
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Fig. 1. Potential V0 as function of ρ obtained with models F, D, and SC of the

Nijmegen interaction. Solid curves were calculated for Σ momentum kΣ = 0, and

broken (dotted) curves for kΣ = 1(2) fm−1.

The difference between the broken kΣ = 1 fm−1 curves and the solid
kΣ = 0 curves is relatively small and is decreasing with decreasing density
ρ. The average Σ momentum in the lowest observed Σ− atomic state in Pb2

is k̄Σ ≃ 0.4 fm−1, and the density ρ relevant in Σ− atoms is about an order
of magnitude smaller than ρ0. Consequently, assuming zero Σ momentum in
calculating V0 in Σ− atoms, as it was done in [3], appears to be a reasonable
approximation.

Our results for Vτ , Vσ, and Vστ as functions of ρ obtained with models D,
F, SC, and NSC of the baryon–baryon interactions are shown in Figs 2–4.
Solid, broken, and dotted curves represent results obtained for kΣ = 0,
kΣ = 1, and kΣ = 2 fm−1. In Fig. 3 for Vσ, we do not show our D,
kΣ = 2 fm−1 results which partly coincide with our F, kΣ = 2 fm−1 results.

As is seen in Figs 2–4, the dependence of Vx, x = τ, σ, στ , on the Σ mo-
mentum kΣ is relatively weak, compared to the case of V0. Consequently, the
comparison of the calculated values of Vx at kΣ with experimental data pre-
sented in [1,2], is valid also at kΣ > 0. It appears that only the Lane potential
Vτ may be directly related to existing experimental data. As pointed out

2 In other (lighter) observed Σ− atoms k̄Σ is smaller than in Pb atoms.
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Fig. 2. Potential Vτ as function of ρ obtained with models F, D, SC, and NSC of

the Nijmegen interaction. Solid curves were calculated for Σ momentum kΣ = 0,

and broken (dotted) curves for kΣ = 1(2) fm−1.
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Fig. 3. Similar as Fig. 2 but for Vσ.
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Fig. 4. Similar as Fig. 2 but for Vστ .

in [1], a comparison between the pion spectra measured in Brookhaven [15]
in the (K−, π+) and the (K−, π−) reactions on 9Be suggests a strong Vτ > 0,
similar to our F model result. This conclusion, supported also by the anal-
ysis of Σ− atoms [3, 16], favors model F, and eliminates the NSC model as
a realistic representation of the Σ–N interaction.

Let us point out that to calculate Vx, we need the effective ΣN interac-
tion which depends on two densities, e.g., ρn and ρp in the case of Vτ . This
intrinsic dependence of the effective ΣN interaction on two densities leads

to a contribution to Vx, denoted in [1,2] as V
(I)
x . In our present calculations,

similarly as in [1, 2], in calculating V
(I)
x , we applied the assumption (the

single density approximation), that the effect of nuclear matter on the in-
teraction between Σ and nucleons with given spin and isospin is dominated
by the density of these nucleons. Although it is a plausible approximation,
its accuracy is hard to estimate. At equilibrium density ρ = ρ0, values of

V
(I)
x are listed in Table I of Ref. [2]. A particular case is our SC result for

Vσ: without the V
(I)
σ contribution Vσ would increase monotonically with

increasing ρ. In the remaining cases the effect of V
(I)
x is only quantita-

tive. In general, the potentials Vx without the V
(I)
x contribution are roughly

proportional to the density ρ.
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So far we considered the s.p. potential VΣ defined in [1,2] in terms of the
effective ΣN interaction. This s.p. potential which appears in calculating
the energy of the system is often called the model potential. It should
be distinguished from the s.p. potential UΣ(kΣ) of a Σ hyperon, defined
together with its kinetic energy ~

2k2
Σ/2MΣ as the removal energy. The s.p.

potential UΣ differs from VΣ by the rearrangement potential. The potential
UΣ may be decomposed into U0 and Ux, x = τ, σ, στ , similarly as VΣ in
Eq.(1). According to the estimates in [17], we have:

U0(ρ, kΣ) = (1 − κ̄(ρ))V0(ρ, kΣ), Ux(ρ, kΣ) = (1 − κ̄(ρ))Vx(ρ, kΣ), (2)

where κ̄(ρ) is the ΣN “wound integral” or correlation volume (divided by
the volume per nucleon in nuclear matter) defined in [17]. If we assume a
linear3 dependence of κ̄(ρ) on ρ,

κ̄(ρ) ≃ (ρ/ρ0)κ̄(ρ0), (3)

and use for κ̄(ρ0) the value 0.15 discussed in [17], the connection between
the potentials U and V takes the simple form:

U0(ρ, kΣ) = [1 − 0.15(ρ/ρ0)]V0(ρ, kΣ) ,

and
Ux(ρ, kΣ) = [1 − 0.15(ρ/ρ0)]Vx(ρ, kΣ) .

Since κ(ρ) is the small parameter of the Brueckner theory, the approxi-
mate expression (3) enables us to estimate the upper limit for the density ρ
for which our results based on this theory are reliable.
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