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A novel powerful mathematical method is presented, which allows us
to find an analytical solution of a simplified version of the statistical mul-
tifragmentation model with the restriction that the largest fragment size
cannot exceed the finite volume of the system. A complete analysis of the
isobaric partition singularities is done for finite system volumes. The finite
size effects for large fragments and the role of metastable (unstable) states
are discussed. These results allow us, for the first time, to exactly describe
the finite volume analog of the bulk nuclear liquid phase and understand
completely its contribution to the grand canonical partition.

PACS numbers: 25.70.Pq, 21.65.+f, 24.10.Pa

1. Introduction

Exactly solvable models with phase transitions play a special role in the
statistical physics — they are the benchmarks of our understanding of crit-
ical phenomena that occur in more complicated substances. They are our
theoretical laboratories, where we can study the most fundamental problems
of critical phenomena which cannot be studied elsewhere. A great deal of
progress was recently achieved in our understanding of the multifragmen-
tation phenomenon [1–4] when an exact analytical solution of a simplified
version of the statistical multifragmentation model (SMM) [5,6] was found in
Refs. [7,8]. This exact solution allowed us to elucidate the role of the Fisher
exponent τ on the properties of (tri)critical point and to show explicitly [9]
that in the SMM the relations between τ and other critical indices differ
from the corresponding relations of a well known Fisher droplet model [10].
Note that these questions in principle cannot be clarified either within the
widely used mean-filed approach or numerically.

(3083)



3084 K.A. Bugaev

Despite this success, the application of the exact solution [7–9] to the de-
scription of experimental data is limited because this solution corresponds
to an infinite system volume. Therefore, from a practical point of view it
is necessary to extend the formalism for finite volumes. Such an extension
is also necessary because, despite a general success in the understanding of
the nuclear multifragmentation, there is a lack of a systematic and rigorous
theoretical approach to study the phase transition phenomena in finite sys-
tems. For instance, even the best formulation of the statistical mechanics
and thermodynamics of finite systems by Hill [11] is not rigorous while dis-
cussing the phase transitions. Exactly solvable models of phase transitions
applied to finite systems may provide us with the first principle results un-
spoiled by the additional simplifying assumptions. Here we present a finite
volume extension of the SMM.

To have a more realistic model for finite volumes, we would like to ac-
count for the finite size and geometrical shape of the largest fragments, when
they are comparable with the system volume. For this we will abandon the
arbitrary size of the largest fragment and consider the constrained SMM
(CSMM) in which the largest fragment size is explicitly related to the vol-
ume V of the system. A similar model, but with the fixed size of the largest
fragment, was recently analyzed in Ref. [12].

In this work we will: solve the CSMM analytically at finite volumes us-
ing a new powerful method; consider how the first order phase transition
develops from the singularities of the SMM isobaric partition [13] in ther-
modynamic limit; study the finite volume analogs of phases; and discuss the
finite size effects for large fragments.

2. Laplace–Fourier transformation

The system states in the SMM are specified by the multiplicity sets {nk}
(nk = 0, 1, 2, . . .) of k-nucleon fragments. The partition function of a single

fragment with k nucleons is [1] V φk(T ) = V (mTk/2π)3/2 zk, where k =
1, 2, . . . , A (A is the total number of nucleons in the system), V and T are,
respectively, the volume and the temperature of the system, m is the nucleon
mass. The first two factors on the right-hand side (r.h.s.) of the single
fragment partition originate from the non-relativistic thermal motion and
the last factor, zk, represents the intrinsic partition function of the k-nucleon
fragment. Therefore, the function φk(T ) is a phase space density of the
k-nucleon fragment. For k = 1 (nucleon) we take z1 = 4 (4 internal spin-
isospin states) and for fragments with k > 1 we use the expression motivated
by the liquid drop model (see details in Ref. [1]): zk = exp(−fk/T ), with
fragment free energy

fk = −W (T ) k + σ(T ) k2/3 +

(

τ +
3

2

)

T ln k , (1)
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with W (T ) = W0 + T 2/ε0. Here W0 = 16 MeV is the bulk binding en-
ergy per nucleon. T 2/ε0 is the contribution of the excited states taken
in the Fermi-gas approximation (ε0 = 16 MeV). σ(T ) is the temperature
dependent surface tension parametrized in the following relation: σ(T ) =
σ0[(T

2
c − T 2)/(T 2

c + T 2)]5/4, with σ0 = 18 MeV and Tc = 18 MeV (σ = 0
at T ≥ Tc). The last contribution in Eq. (1) involves the famous Fisher’s
term with dimensionless parameter τ .

The canonical partition function (CPF) of nuclear fragments in the SMM
has the following form:

Z id
A (V, T ) =

∑

{nk}

[

A
∏

k=1

[V φk(T )]nk

nk!

]

δ(A −
∑

k

knk) . (2)

In Eq. (2) the nuclear fragments are treated as point-like objects. However,
these fragments have non-zero proper volumes and they should not overlap
in the coordinate space. In the excluded volume (Van der Waals) approxi-
mation this is achieved by substituting the total volume V in Eq. (2) by the
free (available) volume Vf ≡ V − b

∑

k knk, where b = 1/ρ0 (ρ0 = 0.16 fm−3

is the normal nuclear density). Therefore, the corrected CPF becomes:
ZA(V, T ) = Z id

A (V − bA, T ). The SMM defined by Eq. (2) was studied
numerically in Refs. [5,6]. This is a simplified version of the SMM, e.g. the
symmetry and Coulomb contributions are neglected. However, its investi-
gation appears to be of principal importance for studies of the liquid–gas
phase transition.

The calculation of ZA(V, T ) is difficult due to the constraint
∑

k knk = A. This difficulty can be partly avoided by evaluating the grand
canonical partition (GCP)

Z(V, T, µ) ≡
∞
∑

A=0

exp
(

µA
T

)

ZA(V, T ) Θ(V − bA) , (3)

where µ denotes a chemical potential. The calculation of Z is still rather
difficult. The summation over {nk} sets in ZA cannot be performed ana-
lytically because of additional A-dependence in the free volume Vf and the
restriction Vf > 0. This problem was resolved [7,8] by the Laplace transfor-
mation method to the so-called isobaric ensemble [13].

In this work we would like to consider a more strict constraint
∑K(V )

k k nk = A, where the size of the largest fragment K(V ) = αV/b
cannot exceed the total volume of the system (the parameter α ≤ 1 is in-
troduced for convenience). A similar restriction should be also applied to
the upper limit of the product in all partitions Z id

A (V, T ), ZA(V, T ) and
Z(V, T, µ) introduced above (how to deal with the real values of αV/b,
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see later). Then the model with this constraint, the CSMM, cannot be
solved by the Laplace transform method, because the volume integrals can-
not be evaluated due to a complicated functional V -dependence. However,
the CSMM can be solved analytically with the help of the following identity

G(V ) =

+∞
∫

−∞

dξ

+∞
∫

−∞

dη

2π
eiη(V −ξ) G(ξ) , (4)

which is based on the Fourier representation of the Dirac δ-function. The
representation (4) allows us to decouple the additional volume dependence
and reduce it to the exponential one, which can be dealt with by the usual
Laplace transformation in the following sequence of steps

Ẑ(λ, T, µ) ≡

∞
∫

0

dV e−λV Z(V, T, µ) =

∞
∫

0

dV ′

+∞
∫

−∞

dξ

+∞
∫

−∞

dη

2π
eiη(V ′−ξ)−λV ′

×
∑

{nk}





K(ξ)
∏

k=1

1

nk!

{

V ′ φk(T ) e
(µ−(λ−iη)bT )k

T

}nk



 Θ(V ′)

=

∞
∫

0

dV ′

+∞
∫

−∞

dξ

+∞
∫

−∞

dη

2π
eiη(V ′−ξ)−λV ′+V ′F(ξ,λ−iη) . (5)

After changing the integration variable V → V ′ = V − b
∑K(ξ)

k k nk, the
constraint of Θ-function has disappeared. Then all nk were summed inde-
pendently leading to the exponential function. Now the integration over V ′

in Eq. (5) can be straightforwardly done resulting in

Ẑ(λ, T, µ) =

+∞
∫

−∞

dξ

+∞
∫

−∞

dη

2π

e−iηξ

λ − iη − F(ξ, λ − iη)
, (6)

where the function F(ξ, λ̃) is defined as follows

F(ξ, λ̃) =

K(ξ)
∑

k=1

φk(T ) e
(µ−λ̃bT )k

T

=

(

mT

2π

)
3
2



z1 e
µ−λ̃bT

T +

K(ξ)
∑

k=2

k−τe
(µ+W−λ̃bT )k−σk2/3

T



 . (7)

As usual, in order to find the GCP by the inverse Laplace transforma-
tion, it is necessary to study the structure of singularities of the isobaric
partition (7).
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3. Isobaric partition singularities

The isobaric partition (7) of the CSMM is, of course, more complicated
than its SMM analog [7, 8] because for finite volumes the structure of sin-
gularities in the CSMM is much richer than in the SMM, and they match
in the limit V → ∞ only. To see this let us first make the inverse Laplace
transform:

Z(V, T, µ) =

χ+i∞
∫

χ−i∞

dλ

2πi
Ẑ(λ, T, µ) eλV

=

+∞
∫

−∞

dξ

+∞
∫

−∞

dη

2π

χ+i∞
∫

χ−i∞

dλ

2πi

eλ V −iηξ

λ − iη − F(ξ, λ − iη)

=

+∞
∫

−∞

dξ

+∞
∫

−∞

dη

2π
eiη(V −ξ)

∑

{λn}

eλn V
[

1 − ∂F(ξ,λn)
∂λn

]−1
, (8)

where the contour λ-integral is reduced to the sum over the residues of
all singular points λ = λn + iη with n = 1, 2, . . ., since this contour in
the complex λ-plane obeys the inequality χ > max(Re{λn}). Now both
remaining integrations in (8) can be done, and the GCP becomes

Z(V, T, µ) =
∑

{λn}

eλn V
[

1 − ∂F(V,λn)
∂λn

]−1
, (9)

i.e. the double integral in (8) simply reduces to the substitution ξ → V in the
sum over singularities. This is a remarkable result which can be formulated
as the following theorem: if the Laplace–Fourier image of the excluded volume
GCP exists, then for any additional V -dependence of F(V, λn) or φk(T ) the
GCP can be identically represented by Eq. (9).

The simple poles in (8) are defined by the equation

λn = F(V, λn) . (10)

In contrast to the usual SMM [7, 8] the singularities λn are (i) functions of
volume V , and (ii) they can have a non-zero imaginary part, but in this case
there exist pairs of complex conjugate roots of (10) because the GCP is real.

Introducing the real Rn and imaginary In parts of λn = Rn + iIn, we
can rewrite Eq. (10) as a system of coupled transcendental equations
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Rn =

K(V )
∑

k=1

φ̃k(T ) e
Re(ν) k

T cos(Inbk) , (11)

In = −

K(V )
∑

k=1

φ̃k(T )e
Re(ν) k

T sin(Inbk) , (12)

where we have introduced the effective chemical potential ν = µ + W (T ) −

λnb T , and the reduced distributions φ̃1(T ) = z1 exp(−W (T )/T ) and

φ̃k>1(T ) = k−τ exp(−σ(T ) k2/3/T ) for convenience.
Consider the real root (R1 > 0, I1 = 0), first. For In = I1 = 0 the

real root R1 exists for any T and µ. Comparing R1 with the expression
for vapor pressure of the analytical SMM solution [7, 8] shows that TR1 is
a constrained grand canonical pressure of the gas. Eq. (12) shows that for
In>1 6= 0 the inequality cos(Inbk) ≤ 1 never become the equality for all
k-values simultaneously. Then from Eq. (11) one obtains (n > 1)

Rn <

K(V )
∑

k=1

φ̃k(T ) e
Re(ν) k

T ⇒ Rn < R1 , (13)

where the second inequality (13) immediately follows from the first one. In
other words, the gas singularity is always the rightmost one. This fact plays
a decisive role in the thermodynamic limit V → ∞.

It is instructive to use the effective chemical potential ν(λ) as an in-
dependent variable instead of µ. Like in the usual SMM [7, 8], for infinite
volume the effective chemical potential must be real and non-positive, ν ≤ 0,
because otherwise the function F(V, λ) (7) diverges and the formal manip-
ulations in (5) to establish (6) cannot be used. The limiting value ν = 0
defines the liquid phase singularity of the isobaric partition which gives the
liquid pressure pl(T, µ) = R1T = (µ+W (T ))/b [7,8]. But for finite volumes
and finite K(V ) the effective chemical potential can be complex (with either
sign for its real part) and its value defines the number and position of the
imaginary roots {λn>1} in the complex plane. Positive and negative val-
ues of the effective chemical potential for finite systems were considered [14]
within the Fisher droplet model, but, to our knowledge, its complex values
have never been discussed. From the definition of the effective chemical po-
tential ν(λ) it is evident that its complex values for finite systems exist only
because of the excluded volume interaction, which is not taken into account
in the Fisher droplet model [10].

Consider the natural values of K(V ), first. As it is seen from Fig. 1, the
r.h.s. of (12) is the amplitude and frequency modulated sine-like function of
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dimensionless parameter In b. Therefore, depending on T and Re(ν) values,
there may exist either zero, or finite, or infinite number of complex roots
{λn>1}. In Fig. 1 we show a special case which corresponds to exactly three
roots of Eq. (10) for each value of K(V ): the real root (I1 = 0) and two
complex conjugate roots (±I2). Since the r.h.s. of (12) is monotonously
increasing function of Re(ν), when the former is positive, then it is possible
to map the T−Re(ν) plane into regions of a fixed number of roots of Eq. (10).

0.0 0.2 0.4 0.6 0.8 1.0
 I2b

−1.0

−0.5

0.0

0.5

1.0

 I
2b

 K(V) = 10
 K(V) = 20
 K(V) = 30

Fig. 1. A graphical solution of Eq. (12) for T = 10 MeV and τ = 1.825. The

l.h.s. (straight line) and r.h.s. of Eq. (12) (all dashed curves) are shown as the

function of dimensionless parameter I2 b for the three values of the largest fragment

size K(V ). The intersection point at (0; 0) corresponds to a real root of Eq. (10).

Each tangent point with the straight line generates two complex roots of (10).

Each curve in Fig. 2 divides the T − Re(ν) plane into three parts: for
Re(ν)-values below the curve there is only a real root (gaseous phase), for
points on the curve there exist three roots, and above the curve there are
five or more roots of Eq. (10) which represent the finite volume analog of
the mixed phase (for more details see next section).

A similar situation occurs for the real values of K(V ). In this case
all sums in Eqs. (10)–(13) should be expressed via the Euler–MacLaurin
formula

K(V )
∑

k=1

fk = f(1) +

K(V )
∫

2

dk f(k) + f(K(V ))+f(2)
2 + ∆f (K(V )) − ∆f (2) , (14)
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Fig. 2. Each curve separates the T−Re(ν) region of one real root of Eq. (10) (below

the curve), three complex roots (at the curve) and five and more roots (above the

curve) for three values of αV/b and the same parameters as in Fig. 1.

where

∆f (K) =
∑

n=1

B2n

(2n)!

d2nf(x)

dx2n

∣

∣

∣

∣

x=K

. (15)

Here B2n are the Bernoulli numbers. The representation (15) allows one to
study the effect of finite volume (FV) on the GCP (9).

4. Finite volume thermodynamics

In the CSMM there are two different ways of how the finite volume
affects thermodynamical functions: it can be shown that for finite V and µ
there is always a finite number of simple poles with Rn > 0 in (9) and all
of them contribute to thermodynamic quantities; also the parameter α < 1
describes a difference between the geometrical shape of the volume under
consideration and that one of the largest fragment (assumed to be spherical).
To see this, let us study the mechanical pressure which corresponds to the
GCP (9):

p(T, µ, V ) = T
∂ lnZ(V, T, µ)

∂V
(16)

= T
Z(V,T,µ)

∑

{λn}

[

λn eλn V

1 − ∂F(V,λn)
∂λn

+
eλn V

[

1 − ∂F(V,λn)
∂λn

]2
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×

{

b2 ∂λn

∂V

K(V )
∑

k=1

φ̃k(T ) k2 e
ν k
T + φ̃K(V )(T )e

ν K(V )
T K(V )

×
[

(1 − α) +
ν

T

(

1
2 − α

)

]

+ o(K(V ))

}]

,

where we give the main term for each λn and leading FV corrections ex-
plicitly for Re(ν)/T < 1, whereas o(K(V )) accumulates the higher order
corrections due to the Euler–MacLaurin Eq. (15). In evaluation of (16) we
used an explicit representation of the derivative ∂λn/∂V which can be found
from Eqs. (10) and (15). The first term in the r.h.s. of (16) describes the
partial pressure generated by the simple pole λn weighted with the “probabil-
ity” eλn V /Z(V, T, µ), whereas the second and third terms appear due to the
volume dependence of K(V ). Note that, instead of the FV corrections, the
usage of natural values for K(V ) would generate the artificial delta-function
terms in (16) for the volume derivatives.

As one can see from (16), for finite volumes the corrections can give
a non-negligible contribution to the pressure because in this case Re(ν) > 0
can be positive. The real parts of the partial pressures Tλn may have either
sign. Therefore, according to (13) the positive pressures TRn>1 > 0 are
metastable and the negative ones TRn>1 < 0 are mechanically unstable
compared to the gas pressure TR1. The pair of complex conjugate roots
with the same value of TRn>1 corresponds to a formation and decay of
those states in thermodynamical system at finite volumes. Taking all this
into account, we conclude that the partial pressures Tλn>1 contributions to
the total pressure (16) correspond to the finite volume analog of the mixed
phase which is metastable or unstable for finite values of µ.

Using Eqs. (11) and (12), one can show that the finite volume analog of
the liquid phase corresponds to the densest possible state, which is defined by
the inequality Re(ν) ≫ T or, equivalently, by µ ≫ T . Indeed, for Re(ν) ≫ T
the leading contribution to the r.h.s. of (12) corresponds to the harmonic
with k = K(V ), and, consequently, an exponentially large amplitude of this
term can be only compensated by a vanishing value of sin (In>1 bK(V )), i.e.
In>1 bK(V ) ≈ π(n − 1). For this result Eq. (11) gives

Rn ≈
pl(T, µ)

T
−

1

K(V )b
ln

∣

∣

∣

∣

Rn

φ̃K(T )

∣

∣

∣

∣

→
pl(T, µ)

T
(17)

for µ ≫ T and K(V ) → ∞. Since the partial pressure TRn of (17) corre-
sponds to a single fragment of largest size, we should identify it as a liquid
phase for finite volumes.

When V increases, the number of simple poles with Rn > 0 in (8) also
increases and imaginary part of the closest to the real λ-axis poles becomes
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very small. This can be seen for Re(ν) ≫ T from the above derivation
of Eq. (17), for which we showed that In>1 ≈ π(n − 1)/bK(V ) → 0. For
infinite volume the infinite number of simple poles moves toward the real
λ-axis to the vicinity of liquid phase singularity pl(T, µ)/T and, thus, gen-
erates an essential singularity of function F(V, pl/T ) in (7). In this case the
contribution of any remote poles from the real λ-axis to the GCP vanishes.
Then it can be shown that the FV corrections in (16) become negligible
because of the inequality Re(ν) ≤ 0, and, consequently, the reduced dis-

tribution of largest fragment φ̃K(V )(T ) = K(V )−τ exp(−σ(T ) K(V )2/3/T )
and the derivative ∂λn/∂V vanish for all T -values, and we obtain the usual
SMM solution [7, 8]. Its thermodynamics is governed by the farthest right
singularity in the complex λ-plane.

5. Conclusions

In this work we presented an exact analytical solution of the grand canon-
ical formulation of the CSMM for finite volumes. This was achieved with
the help of a powerful mathematical method, the Laplace–Fourier trans-
form, developed here. Using this method we were able to solve exactly three
statistical models of surface partition [15]. The Laplace–Fourier transform
allows one to identically rewrite the grand canonical partition in terms of
the simple poles λn of the isobaric partition and study their behavior when
the system volume increases to infinity.

As we showed, for finite volumes the gas singularity λ1 is the only real
singularity and the rightmost one, i.e. λ1 > Re(λn>1). The latter inequality
means that the gaseous state has the largest pressure Tλ1 for given T and
µ, and, consequently, the gaseous phase is mechanically stable compared to
other λn>1 states of the same GCP. Therefore, the λn>1 singularities describe
mechanically metastable states for Re(λn>1) > 0 and unstable states for
Re(λn>1) ≤ 0.

We proved that the complex λn>1 states consist of pairs of complex conju-
gate numbers, which automatically generate only the real values of the GCP.
The complex λn>1 values lead to complex values of the effective chemical
potential ν for finite volumes. To the best of our knowledge such a possibility
has never been discussed in the literature on nuclear multifragmentation.

A detailed analysis of the isobaric partition singularities in the T −Re(ν)
plane allowed us to define the finite volume analogs of phases and study
the behavior of these singularities in the limit V → ∞. Such an analysis
opens a possibility to study rigorously the nuclear liquid–gas phase transition
directly from the finite volume partition. This may help to extract the phase
diagram of the nuclear liquid–gas phase transition from the experiments on
finite systems (nuclei) with more confidence.
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