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It is pointed out that the moments of phase-space particle density
at freeze-out can be determined from the coincidence probabilities of the
events observed in multiparticle production. A method to measure the
coincidence probabilities is described and its validity examined.

PACS numbers: 25.75.Gz, 13.65.+i

Recently we have proposed [1] a method for measuring the average of
the particle density in multiparticle phase-space. Generalizing the approach
used by Bertsch [2] for single particle phase-space densities, we defined the
average density for a final state consisting of M particles as

〈DM 〉 = M

∫

dXdK W 2(K,X) . (1)

Here W (K,X) is the M -particle distribution function and the integrations
are over the 3M components of the position vectors and over the 3M com-
ponents of the momentum vectors of the particles. Following Bertsch we
replaced the emission function depending on the four-vectors K and X by
a function depending on the three-vectors K and X at some representa-
tive time t0 which does not need to be specified. This density distribution
represents the situation at freeze-out.
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In the present paper the method of measurement is generalized to arbi-
trary integer moments (l) of the phase-space density

〈Dl
M 〉 = M l

∫

dXdK W l+1(K,X) . (2)

As our argument follows closely that of [1], we shall be very brief. For details
the reader can consult [1].

The method uses the coincidence probabilities defined as follows. An
M -particle final state could be characterized by specifying the momenta of
the M particles p1, . . . ,pM . Then, however, with continuous p’s, no two
observed events would be identical. It has been proposed instead [3–7],
to introduce momentum bins of finite width and to consider two events as
identical, if they have the same distribution of particles among the bins. Let
us denote the total number of events by N and the number of states which
occurred l times by Nl. If a state occurs k > l times it contributes to Nl its
weight

(

k
l

)

. Then the number of l-fold coincidences is defined by

Cexp
M (l) =

(

N

l

)

−1

Nl . (3)

Cexp
M (l) is the ratio of the number of sets of l events with equivalent final

states to the total number of sets of l events. Thus, for large N , it is
the probability of an l-fold coincidence. The special case l = 2 had been
considered, in a different context, by Ma [8]. The coincidence probability
depends, of course, on the binning. For a given binning it is in principle not
difficult to find from a data sample the coincidence probabilities. In practice
the limiting factor is statistics.

We will now show that for suitably defined bins the effective coincidence
probabilities

ĈM (l + 1) ≡
(

(2π)3M

M

)l
〈

Dl
M

〉

, (4)

can be approximated by Cexp
M (l + 1)1.

To see that, we first express the measured l-fold coincidences (3) by the
3M -dimensional distribution of momenta

w(K) =

∫

dX W (K,X) . (5)

Let us denote the 3M -dimensional momentum bins by j = 1, . . . , J and their
volumes by ωj. Then the probability that an event corresponds to a point
in bin j is

1 The power of 2π in (4) appears because for M free particles there is one quantum
state per volume (2π)3M in phase-space.
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Pj =

∫

ωj

dK w(K) (6)

and the average density in bin j

wj =
Pj

ωj
. (7)

The probability that l events chosen at random correspond each to a point
in bin j is P l

j . Therefore, the probability that l events chosen at random are
the same is

Cexp
M (l) =

∑

j

P l
j =

∑

j

(ωj)
l(wj)

l . (8)

Next, we observe that, as seen from (2)

〈

Dl
〉

= M l
∑

j

∫

ωj

dK

∫

dX W l+1(K,X) . (9)

In order to proceed further, following [1], we restrict ourselves to the
phase-space distributions of the general form

W (K,X) =
1

(LxLyLz)M
G

(

X

L

)

w(K) . (10)

Here X/L is a 3M -dimensional vector with components (X1 −X1)/Lx, . . . ,
(Z1 −ZM )/Lz . The parameters Lx, Ly, Lz,X1, . . . , ZM are in general func-
tions of K. They could also be different for different kinds of particles.
Function G(u) satisfies the conditions

∫

du G(u) = 1 ,

∫

du uG(u) = 0 ,

∫

du u2G(u) = 1 , (11)

where all the integrations are 3M -fold. These relations imply
∫

dX G

(

X

L

)

= (LxLyLz)
M , (12)

〈X1〉 = X1, . . . , 〈ZM 〉 = ZM , (13)

σ2(Xi) = L2
x , σ2(Yi) = L2

y , σ2(Zi) = L2
z , (14)

for i = 1, . . . ,M . The first condition ensures that w(K) is the observed
3M -dimensional momentum distribution. The other two yield the physical
interpretation of the parameters X i, Y i, Zi, Lx, Ly, Lz.
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Using the Ansatz (10) and the definition (4) one finds

ĈM (l + 1) = (2πgl+1)
3Ml

∑

j

(

M
∏

m=1

(LxLyLz)
(m)
j

)

−l
∫

ωj

dK wl+1(K) , (15)

with (gl+1)
3Ml ≡

∫

du Gl+1(u).
Comparing this formula with formula (8) it is seen that if the bin sizes

are

ωj =

M
∏

m=1

(2πgl)
3

(LxLyLz)
(m)
j

, (16)

we obtain

ĈM (l) = Cexp
M (l)

∑

j

1
ωj

∫

ωj

dK [w(K)]l

∑

j

[

1
ωj

∫

ωj

dKw(K)

]l
. (17)

Eq. (16) is rather general and can be applied to an entirely arbitrary
discretization procedure. In the simple (but probably most practical) case

when LxLyLz does not depend on ~K, one can choose bins of constant lengths
∆x,∆y,∆z along the axes Kx,Ky,Kz, respectively. Then the condition for
the size of the bin is

∆x∆y∆z =
(2πgl)

3

LxLyLz
(18)

and ωj = [∆x∆y∆z]
M .

These results, being very similar to that of [1], invite several comments
which were elaborated there at length. Here we only repeat the main points.

As a first approximation we may omit the ratio of averages in the square
bracket, giving ĈM (l) = Cexp

M (l). This approximation becomes exact when
function w(K) is constant within each bin j. The condition is on the vol-
ume of the bin, but does not constrain its shape. This freedom can be used
to improve the approximation. Bins should be chosen narrow in directions
where function w(K) changes rapidly and broad in directions with little
or no variation of w(K). For given variability of w(K) our approximation
improves when the bins become smaller, i.e. when the product LxLyLz in-
creases. Thus we expect the method to work much better for central heavy
ion collisions than e.g. for e+e− annihilations. With very good statistics, or
a reliable Monte Carlo event generator, one could estimate the term, which
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here we replaced by unity, and thus improve the approximation. In order
to find the bin size it is necessary to know the volume in coordinate space
(LxLyLz) and the integral

∫

du Gl(u). Information about the volume may
be provided by interferometric measurements. The integral is not very sen-
sitive to the shape of the distribution. For a rectangular box 2πgl = π/

√
3.

For Gaussians 2πgl =
√

2π/[
√

l]1/(l−1).
In conclusion, we have generalized the results of [1] to measurements

of the higher moments of the phase-space density of particles produced in
high-energy collisions. It turns out that these moments can be approximated
by the measured coincidence probabilities of the appropriately discretized
events. The optimal discretization is suggested and shown to depend criti-
cally on the volume of the system in configuration space. Thus the actual
measurements would require this additional information to be effective.

Discussions with Robi Peschanski and Jacek Wosiek are highly appreci-
ated.
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