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We present a simple Onsager type density functional theory (DFT) of a
two-dimensional system of hard needles and assume that it can be applied
to describe intensive and short range properties of a real system which, on
the other hand, on larger scales exhibits topological order. It is shown that
the transition point of the isotropic-nematic transformation and the state
equation obtained are almost the same as those predicted from the com-
puter simulations [Phys. Rev. A31, 1776 (1985)] for small and undistorted
system, which is never the case in liquid crystals, where these results are
shifted in the density and require rescalings like, for instance, the Parson–
Lee approach [Phys. Rev. A19, 1225 (1979); J. Chem. Phys. 87, 4972
(1987); J. Chem. Phys. 89, 7036 (1988).] Similar effect occurs for the
chemical potential. Such behavior is attributed to the presence of negative
values of higher virial coefficients, which may cancel the influence of the
other positive coefficients in such a way that the second virial approxima-
tion gives accurate predictions. The above conclusion coincides with the
Onsager idea that the second virial DFT theory for infinitely 3D hard par-
ticles is accurate. We notice that this coincidence comes from the fact that
the 3D and 2D interaction models are governed by the same theoretical
formulation. We also claim that the observed in the Monte Carlo simula-
tion the disclinations unbinding process does not mean the change from the
isotropic to the nematic phase (IN), as believed before, since the sponta-
neously drifting disclinations cannot be responsible for the changes of the
system symmetry. The IN transition, as usual, is driven by the molecu-
lar interactions and the disclination unbinding must undergo then in the
uniaxial phase. We also confirm that the chemical potential has a smooth
character as a function of pressure, whereas it has an abrupt change in the
slope at the point of transition while plotted versus density.

PACS numbers: 71.15.Mb, 64.70.Md, 61.30.–v
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1. Introduction

Hard needles are the system which has been widely studied so far, both
by the DFT approaches [2–5] and by the computer simulations [6–10]. A
direct benefit of using this model is the easiness to understand the mecha-
nisms that lead to different properties. Of special interest is the 2D system
since it forms the liquid crystalline phase. A detailed analysis of its basic
properties has been given in [9] on the basis of the Monte Carlo simulations.
In this paper Frenkel et al. have presented the typical order parameter in the
region, where the anisotropic phase has just set in, the equation of state, the
chemical potential, the orientational correlations and the virial coefficients.
The authors show that the higher than the second order virial coefficients
are nonzero, but the fifth virial coefficient is negative. This feature may have
its consequences as far as the Onsager theory [11] is concerned. As it will be
shown, the Onsager type theory provides almost perfect predictions. This
can be attributed to the fact that the higher than the second virial coeffi-
cients compensate each other in such a way that the second virial is strongly
dominant. One can recall here a similar feature of the second virial DFT
theories in 3D liquid crystals. Here, no matter what shape 3D molecules
have, the longer they become the better results of the second virial DFT
description are obtained.

In view of the above similarity it would be interesting to discuss in de-
tail the correspondence of the DFT models in 3D and 2D cases. First of
all one should mention that the only angle that is used in 2D description
corresponds directly to the main (polar) angle of 3D description. Moreover,
the interaction kernel, which corresponds to the excluded volume, for very
elongated molecules is exactly the same in both cases, i.e. it is described by
the function sin(φ1−φ2). As a result the DFT equations for these two cases
are almost the same. The differences in the properties arise solely from the
Jacobian: in 2D case the Jacobian is simply 1, in 3D case it is the function
sin(φ). In 3D case, also the transition from the isotropic to the nematic
phase is of the first order whereas in 2D case it is weakly second order.

The successful application of the second virial DFT descriptions for long
molecules in 2D as in 3D cases undoubtedly corresponds to the fact that the
interaction kernels are the same. If, for instance, the sum of the higher than
second virial terms, say

∑
3D

, is known from experience to be zero and can
be written as

∑

3D

=

π∫

0

h(φ) sin φdφ = 0 (1)
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then this fact means that h(φ) is antisymmetric with respect to the half of
the integral interval, φ = π/2, and, consequently also

∑

2D

=

π∫

0

h(φ)dφ = 0 . (2)

Although the scope of the present paper is limited to small systems, for
which we can use the assumption that the director is not distorted, we must
mention that there is still another problem with 2D hard needles, which
concerns the so-called topological order in large ensembles.

The topological order is the property of the system, in which the director
is not fixed in space, but attains a spontaneous pattern of distorted branches
with many disclinations. Such a picture is always obtained in the Monte
Carlo simulations of 2D hard needles. In this case the statistical average,
which is usually used to asses the order of the system (still called here the
order parameter) depends on the number of the particles and when the
system increases, its value systematically decreases (see [9]). However, on
the short range scale and with respect to the local director the particles are
very well ordered.

In the present paper we assume that these short range features can be re-
produced by the Onsager theory of an undistorted system. This assumption
gives very reasonable results if compared to the Monte Carlo data for a small
system. It leads also to the conclusion that the possible Kosterlitz–Thouless
(KT) unbinding transition [12] must undergo in the uniaxial phase. This un-
binding transition denotes the situation, when disclinations drift apart from
their companions, to which they were previously bound. What emerges from
the paper [9]), the unbinding mechanism is the main reason for the symme-
try change in the system (from anisotropic to isotropic), (similarly as in the
case of the 2D solid melting [13, 14]). This belief contradicts the fact that
the basic reason to change the symmetry of the liquid crystalline system are
the molecular (or external fields) interactions. Contrary to the solid of 2D
spherical particles, molecular interactions of 2D hard needles are anisotropic.
In fact, this anisotropy is the strongest of all the possible hard bodies.

Despite the fact that the obtained in this paper DFT results of the
thermodynamical properties refer to small systems, they are also relevant
for large ensembles. According to the data presented in the state equation
in Fig. 2, they give the major contributions to the total values. Moreover,
they can be very useful to test the kinetic theories [15] and to calculate
dynamical properties like relaxation times or diffusivities.

The paper is organized as follows. Section 2 presents the density func-
tional theory. In Section 3 we perform the bifurcation analysis which
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provides the bifurcation density at which the anisotropic phase starts to
grow. Section 4 presents the results obtained for the pressure, order param-
eter, chemical potentials and heat capacities.

2. Density functional theory (second virial approximation)

The total energy of the nematic system Ftot can be given as a sum of
the following terms:

Ftot = Funi + Felastic + Fexter + Fdefects , (3)

where Funi describes the energy of the uniform (undistorted) system, Felastic

is the elastic energy of the Frank type which comes from the director defor-
mations, Fexter corresponds to the energy contribution that originates from
the interactions with external fields including surface interactions. Fdefects

corresponds to the energy of the possible defects.
The first term is the most fundamental for liquid crystals and the focus

of the present paper is just an assessment of it for 2D hard needles on the
basis of the DFT Onsager theory. This term can be directly compared to the
simulation data if the simulated system is small enough to ensure that the
director is undeformed. At the end of the paper we also provide a prognosis
for the influence of the other two relevant terms, Felastic and Fdefects (Fexter

in our case is zero).
For the system of N hard bodies, the free energy of undistorted system

within the second virial approximation is given by

βF

N
=

βF0

N
+

∫
f1(φ1) [log df1(φ1) − 1 − βµ] dφ1

+
1

2
d

∫
Vexcl(φ1, φ2)f1(φ1)f2(φ2)dφ1dφ2 . (4)

In the above the excluded volume of two confined to a plane needles follows
a simple formula Vexcl = L2| sin(φ12)|, where L is the length of the needle,
d the density and φ12 is the angle between the particles; the orientational
distribution function, f(φ) ≡ ODF, is normalized as

∫
π

0
f(φ)dφ = 1 and F0

is a constant which can comprise as well the contribution from the de Broglie
wavelength term as any shift determined by the zero choice of the energy
level.

The equilibrium profile of the orientational distribution function f can
be obtained using the minimum condition of the free energy (4). It leads to
the self-consistency equation

log f(φ1) = −ρ∗
∫

sin(φ1 − φ2)f(φ2)dφ2 − log d + βµ , (5)

where the reduced density is ρ∗ = L2d.
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We solve the equations (5) in a standard iterative way. However, the
integration we use does not require any polynomial expansion neither to
the integral kernel (here, Vexcl) nor to the functions ODF. In particular, we
use the Gaussian quadrature scheme [16] with the total number of Gaussian
points per interval equal to 2× 16 = 32 with a temporal storage of the ODF
values at the last two iteration steps. As a result of the iterative procedure,
we obtain then the solution as a set of the ODF values at the Gaussian points
and the value of the chemical potential. Accuracy of the convergence is
calculated as a cumulative sum of the differences between subsequent values
of the ODF in the nearest two steps at all the Gaussian points and the
program is stopped when this accuracy is less than 10−8. The obtained set
of the values f(φi) (φi being the Gaussian point) is sufficient to calculate all
the needed thermodynamical properties such as order parameters, pressure,
free energy or characteristic heats. More detailed discussion about the above
method to solve the DFT equations one can find also in [17], where it has
been also adapted for the nematic in a slab geometry.

3. Bifurcation analysis

We will start our DFT investigations from finding the point of transition
by the use of the bifurcation analysis. Bifurcation analysis is the simplest and
the best tool by the use of which one can gain insight into the possibilities of
the structural changes and the symmetries of the new phases. In the case of
liquid crystals the recommended literature that provides the principles how
to perform bifurcation analysis is given in the papers [18–22].

Following the line of notation from [18], let us rewrite the free energy as

βF = 〈f, ln f〉 + 1

2
λ 〈f,K[f ]〉 − βµ , (6)

where 〈. . .〉 =
∫

. . . dφ, and K[f ] =
∫

K(φ1, φ2)f(φ2)dφ2. λ coincides with
the reduced density ρ∗.

The minimization condition together with the appropriate normalization
leads to the equation

f =
exp(−λK[f ])

〈1, exp(−λK[f ])〉
. (7)

In this form it is clearly visible that the kernel term K[f ] plays the role of
the self consistent “mean field”. Eq. (7) is the central object upon which
the bifurcation analysis operates. To proceed one needs now explicit forms
of the possible symmetry adapted functions and their relationship with
the elements from Eq. (7). For 2D nematic, they take simply a form of
∆

n = cos nφ, where n = 0, 2, 4 . . .. ∆
n’s obey the normalization condition

∫
∆

n
∆

n
′

dφ =
1

2
πδnn′ . (8)
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The interaction kernel can be cast as a series

K(φ̃) =
∑

n

2

π
kn∆

n(φ̃) . (9)

For the Onsager particles interacting accordingly to the formula K(φ̃) =

sin(φ̃), some examples of the needed coefficients are k2 = −2

3
, k4 = − 2

15
,

k6 = − 2

35
.

The next two formulas allow one to elaborate upon the interaction term
∫

∆
n(φ1)∆

n
′

(φ2 − φ1)dφ1 =
1

2
π∆

n(φ2)δnn′ , (10)

∫
K(φ2 − φ1)∆

n(φ1) =
∑

n′

∫
2

π
kn′∆

n
′

(φ2 − φ1)∆
n(φ1)dφ1

=
∑

n

kn∆
n(φ2) . (11)

The bifurcation analysis in the first step looks for the solutions that
branch off from the isotropic solution f0 = 1/π. In the vicinity of the bifur-
cation point one can express the elements of Eq. (7) as expansions in the
arbitrary small parameter ε:

f = f0 + εf1 + ε2f2 . . .

λ = λ0 + ελ1 + ε2λ2 . . . , (12)

where due to the normalization 〈1, fk〉 = 0 for k ≥ 1.
Applying (12) to Eq. (7) and equating terms of equal order in ε one finds:

f1 = −
λ0

π
K[f1] , (13)

f2 = −
1

π

[
λ0K[f2] + λ1K[f1]

−
1

2
λ2

0

{
K[f1]

2 −
1

π
〈1,K[f1]

2〉

}]
. (14)

The first equation (13) is commonly known as the bifurcation equation.
Using now (9), (10) and (11) one obtains the condition

λbif = −
π

k2

. (15)
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This gives the density of bifurcation as ρ∗ = π/2

3
= 4. 712 4, which is per-

fectly confirmed by the DFT results (see next section).
Now we attempt to justify that the phase transition predicted by the

DFT theory is of the second order. Let k∗ be an eigenvalue of the K[ ] with
the corresponding eigenvector χ

K[χ] = k∗χ . (16)

According to (13) any pair of [k∗, χ] solves the bifurcation equation. The
physical bifurcation is given then, as already shown above, by the absolutely
largest eigenvalue of k∗ (the smallest value of λbif = − π

k∗ ), in our case it is

k2 and the relevant eigenvector is simply χ = ∆
2.

The general solution is f1 = Sχ, where the condition for the coefficient
S must be assessed from the second equation (14). This can be done by
taking the inner product of (14) with χ:

〈χ, f2〉 = −
1

π

(
λ0〈χ,K[f2]〉 + λ1〈χ,K[f1]〉

−
1

2
λ2

0

{
〈χ,K[f1]

2〉 − 〈χ, 1〉
1

π
〈1,K[f1]

2〉

})
. (17)

The last term is zero, since 〈χ, 1〉 = 0. Let us note now:

〈χ, f2〉 = 1〈χ, f2〉 = −
λ0k2

π
〈χ, f2〉 ,

−
λ0

π
〈k2χ, f2〉 = −

λ0

π
〈K[χ], f2〉 = −

λ0

π
〈χ,K[f2]〉 . (18)

Using this property one obtains from (17)

−
1

π
(λ1〈χ,K[f1]〉 −

1

2
λ2

0〈χ,K[f1]
2〉) = 0 . (19)

For f1 = Sχ one derives next

λ1k2S〈χ, χ〉 −
1

2
λ2

0k
2
2S

2〈χ, χ2〉 = 0 . (20)

In contrast to the three-dimensional case, where the integral of three
Legendre polynomials of the same order is nonzero, here 〈χ, χ2〉 vanishes
(〈∆2,∆2

∆
2〉 = 0). This property together with (20) leads to a trivial con-

clusion that λ1 = 0. Vanishing of λ1, according to [18], has a nontrivial
consequence that the bifurcation is associated with the transition of higher
order than the first order. In [18] a similar situation (λ1 = 0) has been shown
for the isotropic-biaxial transition, which is known to be of the second order.
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4. Results

The DFT theory provides a sequence of properties which will be con-
fronted against the computer simulation results, mainly from [9]. We will
start our analysis from the properties of the orientational order. In Fig. 1
we present a profile of the order parameter obtained versus the density. It is
calculated due to the definition S =

∫
cos 2φf(φ)dφ, and presented as posi-

tive. The DFT results are given as white circles and the data obtained from
the molecular dynamics [7] as grey squares. The black circles correspond to
the Monte Carlo data of 200 needles from [9]. The order parameters above
the transition point, i.e. in the nematic phase, obtained from the simulations
and from the theory are more or less in coincidence. The parameters below
the transition point, which we identify due to the DFT results as ρ∗ = 4.7,
are different. The simulations do not predict such a sharp rise in the order as
the DFT theory does. It is not very clear what is the reason for such behav-
ior. What is meaningful is the fact that the shape of the order parameter is
a continuous curve that reminds of the letter ‘s’. Such a behavior indicates
the second order type of the transition. However, since at the same time the
rise of the order parameter is quite an abrupt one, it is similar also to the
first order transition behavior. Such character of the isotropic-nematic tran-
sition is quite typical for 2D systems. It has been already mentioned in the
case of the Onsager theory [2,9], also the 2D equivalent of the Maier–Saupe
theory [23] predicts a continuous IN transition.
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Fig. 1. Order parameter versus the density ρ∗. White circles are the data from the

present paper theory and grey squares are from the molecular dynamics [7]. The

black circles are the results of MC simulations of 200 needles from [9].
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We should, however, mention again that the MC data used in this picture
are only for 200 needles. Such a system is small enough to ensure that
the director is not deformed. Also the molecular dynamics results in [7]
have been obtained for undistorted system, which feature pertained within
the whole simulation due to the assumed undeformed director in the initial
configuration.

One should also realize that the picture of S will be much different if one
considers MC data for larger systems. Then, the calculated values of the
topological order parameter will form a curve similar in shape to the curve of
200 needles, but upon enlarging the system this curve will be systematically
“shifted” toward higher densities (see Fig. 4 in the paper of Frenkel and
Eppenga [9]) This feature is called as the finite size effect. Please note here
that this effect comes mainly from the director spontaneous distortions (the
S is an average calculated with respect to the laboratory frame).

The influence of the finite size effects on the order parameter seems to
have been the reason in [9] of disregarding the bend in the state equation
curve at about ρ∗ = 4.7 as the possible IN transition. The authors of [9]
have paid attention, on the other hand, to the change that takes place at
the density about ρ∗ = 7.0. They have observed that the decay of the
orientational correlations is algebraic at densities larger than ρ∗ = 7.0 and
faster than algebraic at densities ρ∗ < 7.0. Also, having developed a method
to identify disclinations in the system, they could have observed that around
ρ∗ = 7.0 there are still no free disclinations and below this density one can
encounter already unbound pairs. This process has been then interpreted as
the continuous transition of the Kosterlitz–Thouless type from the disordered
to the algebraically ordered state. It seems now that the state below ρ∗ = 7.0
(in fact between ρ∗ = 4.7 and ρ∗ = 7.0) is not disordered but rather 2D
uniaxial nematic.

In Fig. 2 we present the state equation ρ∗(P ∗), where the pressure is
calculated from

βP = −
∂βF

∂V
= d +

1

2
d2

∫
Vexclf1f2dφ1dφ2 (21)

and P ∗ = PL2.
The black dots represent the data from [9] and the solid line corresponds

to the DFT predictions. The agreement is very good save for few points
about the transition point where the DFT data underestimates the Monte
Carlo simulations. In this picture and in what follows we will consequently
use the MC data which are obtained for 200 particles. However, both ther-
modynamical variables here are of the intensive type and the MC data for
larger system like 800 particles (crosses) do not differ much from the MC
data for 200 needles. The difference can be well regarded as the statistical
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Fig. 2. The state equation, ρ∗(P ∗). The solid line is from the present DFT theory.

The dots come from [9] for the system of 200 needles, for which system size the

assumption of undistorted director still holds. The crosses are also from [9], but for

the system of 800 needles. One observes that the crosses coincide with the results

obtained for a small system. Because 800 needles already form certain distortions

in the director these results can be regarded as a strong argument for the fact that

the elastic energy and the energy of disclinations tend to cancel each other, see (3),

for the systems with topological order.

error. What is important is a rather sudden change in the curve ρ∗(P ∗),
which we attribute to the transition in the system structure. We call it the
phase transition but one should remember that it is the feature which is
driven by the presence of the local orientational order. Since this structural
transition occurs at each point of the mesoscopic space, this supports our
choice to call it the phase transition.

In [9], as already mentioned, the change of the slope at about P ∗ = 12
has not been attributed to the isotropic-nematic transition. The paper [9] is
focused on the disclination unbinding mechanism which is expected to have
the transition point about ρ∗ = 7.0. The authors have assumed that the
unbinding of disclinations leads directly to the formation of the isotropic
phase. Basing on the evidence of the so far presented data and on the next
figures we now know that the point (P ∗ = 11.65, ρ∗ = 4.7) is virtually the
transition point from the isotropic phase to the ordered phase and the discli-
nation unbinding transition takes place between two phases of the uniaxial
order.
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Fig. 3. (Upper panel): Chemical potential versus ρ∗ and (lower panel): Chemical

potential versus P ∗. The dots come from [9], the solid line is from the present DFT

theory and the dashed line is for the DFT results obtained for the purely isotropic

phase.

For denser systems the pressure P ∗ approaches the value of 2ρ∗. This
limit can be obtained from (21) by the following reasoning. Multiplying (21)
by L2 one has

pL2 = ρ∗ +
1

2
L2d2

∫
L2 sin(φ1 − φ2)f1f2dφ1dφ2 . (22)

We assume that the ODF functions f1 and f2 are of the Dirac delta type
and are peaked in such a way that the expression 〈sin(φ1 − φ2)〉 can be
cast simply as x/L, where x stands for the available distance across the
axis perpendicular to the needles, in which one can encounter two needles.
Dividing our volume into boxes of the sides equal to x and to L, we may
put forward a relation bounding the total particles number and the geo-
metrical dimensions. Let us denote D as the size of the simulation box.
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Particles are ordered along the Y direction, so the number of the possible
rows is proportional to D/L. The number of the needles in a single row is
determined by the size of the introduced x and follows: 2D/x. Altogether
one has N = 2D2/Lx. The integral term in the formula (22) is then trans-

formed into 1

2
L4 N

2

D4

2D
2

LN

1

L
= d L2 = ρ∗ and P ∗ = pL2 = 2ρ∗. This property

is perfectly reconstructed by the DFT data (see the right upper corner of
Fig. 2).

In Fig. 3 we present the chemical potential µ − π, where µ is calculated
on the basis of the self consistency equations (5). π is regarded to come
from F0. Fig. 3 consists of two panels. The black circles are the data from
the MC results and the curves are the DFT predictions. The comparison
is again very satisfactory. The upper panel presents the dependence on the
density whereas the lower one shows the dependence on the pressure. The
pictures look similar, however, there is an important qualitative difference.
The profile of µ as dependent on the density ρ∗ is bent at the transition
toward the ordered phase, whereas the curve which shows µ(P ∗) is a smooth
one and without any discontinuous change in the slope. The latter property
has already attracted some comments in [9]. Since the type of the transition
can be deduced not only from the behavior of the order, but also from other
thermodynamical properties, Frenkel et al. concluded from the smoothness
of the profile µ(P ∗) that the transition, if ever, cannot be the first order.
This, of course, is true. It is interesting, however, to realize that many
properties presented so far undergo abrupt changes, although continuous,
whereas the chemical potential µ as a function of P ∗ bears not even a shadow
of a change in the slope and this fact seems to be a general feature.

In search of another piece of evidence about the transitions in hard nee-
dles, Frenkel et al. have evoked an example of the heat capacities. In general,
there are two types of these quantities, the heat capacity at constant volume,
CV , and at constant pressure, CP , (for convenience we skip here writing “∗”,
since CP = CP ∗). The heat capacity at constant volume CV is not very
interesting, since it is equal to d/2, where d is the dimensionality of the
system, so here CV =1. In contrast, CP is bound to the state equation ρ(P )
through the relation

CP = 1 +
P 2

ρ2

[
∂ρ

∂P

]

T

. (23)

This equation remains, of course, the same if we use the reduced values
with “∗”.

In Fig. 4 we present a comparison of the CP –CV results that are obtained
from the DFT theory and MC simulations. Again, the black circles are the
data from the MC simulations and white circles are the DFT results.
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Fig. 4. CP –CV of a system of 2D hard needles as a function of ρ∗. Black circles are

the data for the system of 200 needles from [9], white circles are the DFT results.

The Monte Carlo data have been discussed in [9] with much caution, since
their character seemed to be a bit noisy. It has lead the authors, however, to
the idea that “CP has a finite and rather broad peak around ρ∗ = 5.5–6.0”
and that “the peak in CP occurs at a higher density than the point where
2D Onsager model has its second-order phase transition (ρ∗0 = 4.71)”. Then,
considering this profile of CP , the behavior of µ(P ) and the state equation
ρ(P ), Frenkel et al. drew a conclusion that “the thermodynamic properties
of the hard needle fluid are not very sensitive to the onset of orientational
order”. Now, looking at Fig. 4 all can agree that the noisy data fits quite
well to the theoretical scenario and that the peak-like structure in the MC
results occurs on the slope that arises just at the isotropic-nematic transition
at the density ρ∗ = 4.7. It makes an impression to be a peak structure due
to the softening effect in the vicinity of the transition. The reason for such
softening is not completely clear. One can observe it, however, also in the
state equation (Fig. 2) and even more visibly in the order parameter itself
(Fig. 1).

Since the possibility of the KT transition in the anisotropic phase is a
novel idea we feel obliged to add more argument to back it up. Therefore for a
moment we skip the assumption of small systems and take into consideration
the ensemble with topological order, namely the system of 3200 needles.
On the basis of the configurations obtained by us from the Monte Carlo
simulations we have calculated the orientational correlation function g2(r) =
〈cos(2φ−2φ0)〉 for different pressures. In a genuine nematic the long tail of g2
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takes on the form of the parallel to the X-axis line, whose hight corresponds
to S2. In the nematic with topological order it systematically declines. This
case is observed in the Monte Carlo simulation, see Fig. 5. The thick line
marks here the region where the DFT theory predicts the isotropic-nematic
transition. The last curve (for P ∗ = 15) is obtained for the vicinity, where,
according to [9], the Kosterlitz–Thouless transition exists. There is a striking
difference in the behavior of g2 below and above the pressure P ∗ = 11.65
(the density ρ∗ = 4.7), where the DFT theory predicts transition. The
phase above this density is characterized by the well observed growth and
presence of the orientational order. By no means one can regard it as the
same isotropic phase, for which the long tails of g2 remain almost on the zero
level. The change of the g2 character below and above the DFT transition
point is even more visible in Fig. 6, where we present the behavior of g2 on
the more accurate logarithmic scale. We hope that these two pictures are
a sufficient argument to support our idea that the KT transition (ρ∗ = 7.0)
takes place within the anisotropic phase.
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Fig. 5. The orientational correlation g2 obtained for different pressures from the

Monte Carlo simulations performed on the system of 3200 neddles. The thick line

(for P ∗ = 12) lies in the vicinity of the transition point predicted by the Onsager

theory (for P ∗ = 11.65). There is a striking difference of the behavior of g2 in the

isotropic phase, below P ∗ = 11.65, and above this point.



On the Application of the Onsager DFT Theory . . . 3177

0 0.1 0.2 0.3 0.4 0.5 0.6
distance

0.1

1

lo
g 

(g
2)

P
*
=7

P
*
=8

P
*
=9

P
*
=10

P
*
=11

P
*
=12

P
*
=13

P
*
=14

P
*
=15

Fig. 6. The same as in Fig. 5, but on the more accurate logarithmic scale.
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