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The main aspects of the phenomenology of absolute neutrino masses
are reviewed, focusing on the limits on neutrino masses obtained in tritium
β decay experiments, cosmological observations and neutrinoless double-β
decay experiments.
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1. Introduction

Neutrino oscillation experiments have shown that neutrinos are massive
and mixed particles, i.e. the left-handed components ναL of flavor neutrinos
(α = e, µ, τ) are linear combinations of the left-handed components νkL of
neutrinos with masses mk:

ναL =
∑

k

Uαk νkL , (1.1)

where U is the mixing matrix (see Refs. [1–3]). Neutrino oscillations depend
on the elements of the mixing matrix U , which determine the amplitude
of the oscillations, and on the squared-mass differences ∆m2

kj ≡ m2
k − m2

j ,
which determine the oscillation length.

The results of solar neutrino experiments (Homestake [4], Kamiokande [5],
SAGE [6], GALLEX [7], GNO [8], SuperKamiokande [9] and SNO [10])
and the reactor long-baseline experiment KamLAND [11] imply that there
are large νe → νµ, ντ transitions with a squared-mass difference ∆m2

SUN
≃

8 × 10−5 eV2.
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Atmospheric neutrino experiments (Kamiokande [12], IMB [13], Super-
Kamiokande [14], Soudan-2 [15] and MACRO [16]) and the accelerator K2K
experiment [17], together with the negative results of the CHOOZ exper-
iment [18], have shown that there are large νµ → ντ transitions with a
squared-mass difference ∆m2

ATM
≃ 2.5 × 10−3 eV2.

Since ∆m2
ATM

≫ ∆m2
SUN

, at least two independent squared-mass dif-
ferences are needed in order to explain the results of neutrino oscillation
experiments. This requirement is satisfied in the simplest case of three-
neutrino mixing, in which the number of massive neutrinos in Eq. (1.1) is
three (see Refs. [1–3]). In such a framework, there are two types of possible
schemes, which are shown in Fig. 1. We labeled the massive neutrinos in
order to have ∆m2

21
= ∆m2

SUN
and |∆m2

31
| = ∆m2

ATM
, with ∆m2

32
≃ ∆m2

31
.

In the normal scheme, which is so-called because it allows a mass hierarchy
m1 ≪ m2 ≪ m3, the squared-mass difference ∆m2

31 is positive, whereas in
the inverted scheme it is negative.

�m2ATM

m

�m2SUN�2�1

�3 m

�3
�m2ATM

�m2SUN �1�2

normal inverted

Fig. 1. The two three-neutrino schemes allowed by the hierarchy ∆m2
SUN

≪
∆m2

ATM
.

A global fit of the oscillation data [19] gives the best-fits and 3σ ranges
for the three-neutrino oscillation parameters listed in Table I. The mixing
angles ϑ12, ϑ13, ϑ23 belong to the standard parameterization of the mixing
matrix [20], in which, with good approximation, ϑ12 is the solar mixing
angle, ϑ23 is the atmospheric mixing angle, and ϑ13 is the CHOOZ mixing
angle [21, 22]. In Table I we give only the values of ϑ12 and ϑ13, which
are sufficient for the following discussion on the phenomenology of absolute
neutrino masses.
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TABLE I

Best-fit and 3σ range for the three-neutrino oscillation parameters obtained in the
global fit of Ref. [19].

Parameter
Best-fit
3σ range

∆m2
21

8.3 × 10−5 eV2

7.4 × 10−5 − 9.3 × 10−5 eV2

sin2 ϑ12

0.28
0.22 − 0.37

|∆m2
31|

2.4 × 10−3 eV2

1.8 × 10−3 − 3.2 × 10−3 eV2

sin2 ϑ13

0.01
0 − 0.05

Neutrino oscillations depend on the differences of neutrino masses, not on
their absolute values. As we will see in the following, other experiments are
able to give information on the absolute values of neutrino masses. Figure 2
shows the values of the neutrino masses obtained from ∆m2

21
and |∆m2

31
|

in Table I as functions of the unknown value of the lightest mass, which is
m1 in the normal scheme and m3 in the inverted scheme. As shown in the
figure, the case m3 ≪ m1 . m2 is conventionally called “inverted hierarchy”,
whereas in both normal and inverted schemes we have quasi-degeneracy of

neutrino masses for m1 ≃ m2 ≃ m3 ≫
√

∆m2
ATM

≃ 5 × 10−2 eV. In the

inverted scheme ν1 and ν2 are quasi-degenerate for any value of m3 and their
best-fits values and 3σ ranges are practically superimposed in figure 2.
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Fig. 2. Values of neutrino masses as functions of the lightest mass m1 in the normal

scheme and m3 in the inverted scheme. Solid lines correspond to the best-fit in

Table I. Dashed lines enclose 3σ ranges.
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In the following, we review the phenomenology of absolute neutrino
masses in tritium β decay (Section 2), cosmological measurements (Sec-
tion 3) and neutrinoless double-β decay (Section 4).

2. Tritium β decay

The measurement of the electron spectrum in β decays provides a ro-
bust direct determination of the values of neutrino masses. In practice, the
most sensitive experiments use tritium β decay, because it is a super-allowed
transition with a low Q-value. Information on neutrino masses is obtained
by measuring the Kurie function K(T ), given by [23–25]

K2(T ) = (Q − T )
∑

k

|Uek|
2

√

(Q − T )2 − m2
k , (2.1)

where T is the electron kinetic energy. The effect of neutrino masses can be
observed near the end point of the electron spectrum, where Q − T ∼ mk.
A low Q-value is important, because the relative number of events occurring
in an interval of energy ∆T near the end-point is proportional to (∆T/Q)3.

In the case of three-neutrino mixing, the Kurie function in Eq. (2.1)
depends on three neutrino masses and two mixing parameters (the unitarity
of the mixing matrix implies that

∑

k |Uek|
2 = 1). However, since so far

tritium β decay experiments did not see any effect due to neutrino masses,
it is possible to approximate mk ≪ Q − T and obtain

K2(T ) ≃ (Q − T )
√

(Q − T )2 − m2
β . (2.2)

This is a function of only one parameter, the effective neutrino mass mβ,
given by [23–29]

m2
β =

∑

k

|Uek|
2m2

k . (2.3)

The current best upper bounds on mβ have been obtained in the Mainz
and Troitsk experiments (see Ref. [30]):

mβ < 2.2 eV (95%CL) . (2.4)

In the near future, the KATRIN experiment [31] will reach a sensitivity of
about 0.2 eV.

In the standard parameterization of the mixing matrix we have (cij ≡
cos ϑij and sij ≡ sinϑij)

m2
β = c2

12 c2
13 m2

1 + s2
12 c2

13 m2
2 + s2

13 m2
3 . (2.5)
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Since the values of ∆m2
21, |∆m2

31|, ϑ12 and ϑ13 are determined by neutrino
oscillation experiments, there is only one unknown quantity in Eq. (2.5),
which corresponds to the absolute scale of neutrino masses. Figure 3 shows
the value of mβ as a function of the unknown value of the lightest mass
(m1 in the normal scheme and m3 in the inverted scheme), using the values
of the oscillation parameters in Table I. The middle solid lines correspond
to the best fit and the extreme solid lines delimit the 3σ allowed range.
We have also shown with dashed lines the 3σ ranges of the neutrino masses
(same as in Fig. 2), which help to understand their contribution to mβ. One
can see that, in the case of a normal mass hierarchy (normal scheme with
m1 ≪ m2 ≪ m3), the main contribution to mβ is due to m2 or m3 or both,
because the upper limit for mβ is larger than the upper limit for m2. In the
case of an inverted mass hierarchy (inverted scheme with m3 ≪ m1 . m2),
mβ has practically the same value as m1 and m2.

Figure 3 shows that the Mainz and Troitsk experiments and the near-
future KATRIN experiment give information on the absolute values of neu-
trino masses in the quasi-degenerate region in both normal and inverted
schemes. In the far future, the inverted scheme could be excluded if exper-
iments with a sensitivity of about 4 × 10−2 eV will not find any effect of
neutrino masses.
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Fig. 3. Effective neutrino mass mβ in tritium β-decay experiments as a function of

the lightest mass m1 in the normal scheme and m3 in the inverted scheme. Middle

solid lines correspond to the best-fit in Table I. Extreme solid lines enclose 3σ

ranges. Dashed lines delimit 3σ ranges of individual masses.
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3. Cosmological measurements

If neutrinos have masses of the order of 1 eV, they constitute a so-called
“hot dark matter”, which suppresses the power spectrum of density fluctua-
tions in the early universe at “small” scales, of the order of 1–10 Mpc (see
Ref. [32]). The suppression depends on the sum of neutrino masses

∑

k mk.

Recent high precision measurements of density fluctuations in the Cos-
mic Microwave Background (WMAP) and in the Large Scale Structure dis-
tribution of galaxies (2dFGRS, SDSS), combined with other cosmological
data, have allowed to put stringent upper limits on

∑

k mk, of the order of
1 eV [19,33–38]. However, different authors have obtained significantly dif-
ferent upper bounds, mainly because of the different sets of data considered.
The most crucial type of data are the so-called Lyman-α forests, which are
constituted by absorption lines in the spectra of high-redshift quasars due
to intergalactic hydrogen clouds. Since these clouds have dimensions of the
order of 1–10 Mpc, the Lyman-α data are crucial in order to push the upper
bound on

∑

k mk below 1 eV. Unfortunately, the interpretation of Lyman-α
data may suffer from large systematic uncertainties. Summarizing the dif-
ferent limits obtained in Refs. [19, 33–38], we estimate the approximate 2σ
upper bounds as

∑

k

mk . 0.5 eV (with Lyα) ,
∑

k

mk . 1 eV (without Lyα) . (3.1)
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Fig. 4. Sum of neutrino masses as a function of the lightest mass m1 in the normal

scheme and m3 in the inverted scheme. Middle solid lines correspond to the best-fit

in Table I. Extreme solid lines enclose 3σ ranges. Dashed lines show the best-fit

values of individual masses.
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These limits are shown in Fig. 4, where we have plotted the value of
∑

k mk

as a function of the unknown value of the lightest mass (m1 in the normal
scheme and m3 in the inverted scheme), using the values of the squared-mass
differences in Table I. One can see that both limits in Eq. (3.1) constrain the
neutrino masses in the quasi-degenerate region, where the upper bound on
each individual mass is one third of the bound on the sum. In the future, the
inverted scheme can be excluded by an upper bound of about 8 × 10−2 eV
on the sum of neutrino masses.

4. Neutrinoless double-β decay

Neutrinoless double-β decay is a very important process, because it is not
only sensitive to the absolute value of neutrino masses, but mainly because it
is allowed only if neutrinos are Majorana particles [39,40]. A positive result
in neutrinoless double-β decay would represent a discovery of a new type of
particles, Majorana particles. This would be a fundamental improvement in
our understanding of nature.

Neutrinoless double-β decays are processes of type N (A,Z)→N (A,Z±2)
+e∓ +e∓, in which no neutrino is emitted, with a change of two units of the
total lepton number. These processes, which are forbidden in the Standard
Model, have half-lives given by (see Refs. [41, 42])

T 0ν
1/2

=
(

G0ν |M0ν |
2 |mββ|

2
)−1

, (4.1)

where G0ν is the phase-space factor, M0ν is the nuclear matrix element and

mββ =
∑

k

U2
ek mk (4.2)

is the effective Majorana mass.
A possible indication of neutrinoless double-β decay of 76Ge with half-life

T 0ν
1/2

(76Ge) = (0.69 − 4.18) × 1025 y (3σ) (4.3)

has been found by the authors of Ref. [43]. Other experiments did not find
any indication of neutrinoless double-β decay. The most stringent lower
bound on T 0ν

1/2
(76Ge) has been obtained in the Heidelberg–Moscow experi-

ment [44]:
T 0ν

1/2
(76Ge) > 1.9 × 1025 y (90%CL) . (4.4)

The IGEX experiment [45] obtained the comparable limit T 0ν
1/2

(76Ge) >

1.57 × 1025 y (90% CL). Hence, the status of the experimental search for
neutrinoless double-β decays is presently uncertain and new experiments
which can check the indication (4.3) are needed (see Ref. [42]).
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The extraction of the value of |mββ | from the data has unfortunately a
large systematic uncertainty, which is due to the large theoretical uncertainty
in the evaluation of the nuclear matrix element M0ν (see Refs. [41, 42]). In
the following, we will use as a 3σ range for the nuclear matrix element |M0ν |
the interval which covers the results of reliable calculations listed in Table 2
of Ref. [42] (other approaches are discussed in Refs. [19, 46–48]):

0.41 . |M0ν | . 1.24 , (4.5)

which corresponds to a 3σ uncertainty of a factor of 3 for the determination
of |mββ| from T 0ν

1/2
(76Ge). Using the range (4.5), the indication (4.3) implies

0.22 eV . |mββ| . 1.6 eV , (4.6)

and the most stringent upper bound (4.4) implies

|mββ | . 0.32 − 1.0 eV . (4.7)

In the standard parameterization of the mixing matrix, the effective Ma-
jorana mass is given by

mββ = c2
12 c2

13 m1 + s2
12 c2

13 eiα21 m2 + s2
13 eiα31 m3 , (4.8)

where α21 and α31 are Majorana phases (see Refs. [1–3]), whose values are
unknown.

Figure 5 shows the allowed range for |mββ | as a function of the unknown
value of the lightest mass (m1 in the normal scheme and m3 in the inverted
scheme), using the values of the oscillation parameters in Table I (see also
Refs. [3,47,49–53]). One can see that, in the region where the lightest mass is
very small, the allowed ranges for |mββ | in the normal and inverted schemes
are dramatically different. This is due to the fact that in the normal scheme
strong cancellations between the contributions of m2 and m3 are possible,
whereas in the inverted scheme the contributions of m1 and m2 cannot
cancel, because maximal mixing in the 1–2 sector is excluded by solar data
(ϑ12 < π/4 at 5.8σ [54]). On the other hand, there is no difference between
the normal and inverted schemes in the quasi-degenerate region, which is
probed by the present data. From Fig. 5 one can see that, in the future, the
normal and inverted schemes may be distinguished by reaching a sensitivity
of about 10−2 eV.

In Fig. 6 we have enlarged the region of quasi-degenerate masses, which
is practically the same in the normal and inverted schemes, in order to assess
the compatibility of the indication of neutrinoless double-β decay with the
half-life in Eq. (4.3), oscillation data and cosmological measurements. One
can see that there is a tension among these sets of data, especially if the
cosmological limit with Lyman-α data is considered (see also Ref. [19]).
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Fig. 5. Effective Majorana mass |mββ | in neutrinoless double-β decay experiments

as a function of the lightest mass m1 in the normal scheme and m3 in the inverted

scheme. The white areas in the strips need CP violation. The horizontal dotted

lines show the interval (4.7) of uncertainty of the current experimental upper bound

due to the estimated uncertainty (4.5) of the value of the nuclear matrix element.

The horizontal dash-dotted lines delimit the range (4.6) obtained from the indica-

tion (4.3). The vertical dotted lines correspond to the cosmological upper bounds

on individual neutrino masses in Fig. 4.
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lines) and cosmological measurements (upper bounds in Eq. (3.1) represented by

the vertical dashed lines). The abscissa mν ≃ m1 ≃ m2 ≃ m3 is the scale of

quasi-degenerate masses in both normal and inverted schemes.
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5. Conclusions

The results of neutrino oscillation experiments have shown that neutrinos
are massive particles. However, so far we do not know which is the value of
the absolute scale of neutrino masses, except that it is smaller than about
1 eV. Moreover, we do not know if neutrinos are Dirac or Majorana particles.
The solution of these fundamental mysteries is one of the hot topics in
experimental and theoretical high-energy physics research.
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