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Leptogenesis is a cosmological consequence of the seesaw mechanism
and provides a link between the observed baryon asymmetry and neutrino
masses. We show which information can be inferred from leptogenesis on
neutrino masses and on those high energy seesaw parameters that represent
a sort of ‘dark side’ for conventional experiments. We also report on a new
scenario of leptogenesis that opens new opportunities for leptogenesis to be
tested.
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1. Introduction

Current cosmological observations support the idea that the observed
matter–anti-matter asymmetry of the Universe is the relic trace of a dy-
namical generation process [1], so called baryogenesis, occurred during the
very early Universe history. The asymmetry is measured in the form of a
baryon to photon number ratio at the time of recombination. A combination
of WMAP and SLOAN data gives [2]

ηCMB
B = (6.3 ± 0.3) × 10−10 . (1)

Even though all three Sakharov’s conditions for successful baryogenesis are
satisfied in the Standard Model, the final predicted asymmetry would fall
by far below the observed value. Therefore, an explanation of the observed
asymmetry requires ‘new physics’. The discovery of neutrino masses is a
strong indication of physics beyond the Standard Model. It is thus remark-
able that the most elegant way to understand neutrino masses, the seesaw
mechanism, can also provide a simple explanation of the matter–anti-matter
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asymmetry of the Universe known as Leptogenesis [3]. Conversely Leptoge-
nesis can be also regarded as a powerful cosmological tool to test the seesaw
mechanism, together with the other more conventional phenomenologies,
such as neutrino mixing and, hopefully to be observed in the next years,
ββ0ν decay and CP violation in neutrino mixing. Here we will concentrate
our attention on leptogenesis, showing the information that can be derived
on the seesaw parameters.

2. From seesaw to leptogenesis

Adding to the Standard Model Lagrangian three right handed (RH)
neutrinos with Yukawa couplings h and a Majorana mass term M , after
spontaneous symmetry breaking, a Dirac neutrino mass term, mD = h v,
is generated by the vacuum expectation value of the Higgs boson and the
whole neutrino mass term can be written 1 as

Lν
mass = −

1

2

[
(ν̄c

L, ν̄R)

(
0 mT

D
mD MR

)(
νL

νc
R

)]
+ h.c. (2)

Assuming that the eigenvalues of M are much higher than those of mD, then
one has a splitting between 3 heavy eigenstates with masses M1 ≤ M2 ≤ M3,
approximately coinciding with the eigenvalues of M , and 3 light eigenstates
with masses m1 ≤ m2 ≤ m3 given by the seesaw formula

mν = −mD
1

M
mT

D . (3)

All matrices are in general complex and this provides a natural source of
CP violation, one of the three Sakharov necessary conditions for successful
baryogenesis. Indeed, considering the decays of the RH neutrinos Ni, one
has that these can proceed with a different rate into leptons (Ni → l φ†) and
anti-leptons (Ni → l̄ φ). The difference can be expressed in terms of the CP
asymmetry parameter defined as

εi ≡ −
(Γ i − Γ̄i)

(Γi + Γ̄i)
. (4)

If the mass differences |Mi − Mj | are not too small compared to the rate
differences, then εi can be calculated from the interference between tree
level and one loop graphs, self energy plus vertex correction [4]. It has been
pointed out [5] that, working in a basis where the Majorana mass term is
diagonal, such that M → DM ≡ diag(M1,M2,M3), the seesaw formula is

1 We consider the case where a triplet Higgs term is absent.
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equivalent to an orthogonality condition for a matrix Ω through which the
Dirac mass matrix can be parameterized as

mD = U D1/2
m Ω D

1/2
M . (5)

Here U is the matrix that diagonalizes mν , such that

Dm ≡ diag(m1,m2,m3) = −U⋆ mν U † . (6)

It can be identified with the MNS neutrino mixing matrix in a basis where
charged leptons are diagonal. This parametrization is particularly useful
for leptogenesis. First of all it shows that there are 18 parameters: 9 ‘low
energy parameters’ (the 3 light neutrino masses mi and the 6 parameters
in the MNS mixing matrix U) and 9 ‘high energy parameters’ (the 3 RH
neutrino masses Mi and the 6 parameters in the orthogonal matrix Ω). From
neutrino mixing experiments we have information on some of the parameters
in U , in particular we measure two mass squared differences:

(m2
3 − m2

1)
1/2 = matm ≃ 0.05 eV (7)

and
(m2

2(3) − m2
1(2))

1/2 = msol ≃ 0.009 eV (8)

for a normal (inverted) scheme. We still miss a determination of the absolute

neutrino mass scale, that we will indicate in terms of the lightest neutrino

mass m1. The CP asymmetries εi depend only on the m†
D mD entries, and

from (5) one can see that the mixing matrix U cancels out, implying that
the \CP responsible for leptogenesis stems uniquely from Ω and is in general

not dependent on U . Vice versa the high energy parameters do not enter
the neutrino mass matrix mν and thus \CP in neutrino mixing can only arise
from U . Thus, the orthogonal parametrization shows a full disentanglement
of \CP in neutrino mixing and in leptogenesis. An important consequence
is that it is not possible to prove or disprove leptogenesis by measuring or
constraining \CP in neutrino mixing.

On the other hand many possible connections between the leptogenesis
CP asymmetry and \CP in neutrino mixing have been worked out within spe-
cific frameworks: this is not in contradiction with the previous conclusion.
Indeed suppose one adds, to the general framework, some extra theoretical
input or phenomenological information that specifies or measures a subset
X of the seesaw parameters in terms of which one can replace part or all the
Ω parameters through a non trivial transformation Ω = Ω(mi,Mi, U ;X).
This brings to a new parametrization (Mi,mi, U,X), where now the X’s
have to be regarded as known parameters. In this way one has a reduction
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of the number of parameters that allows to express Ω as a (non trivial) func-
tion Ω(mi,Mi, U). When this is plugged into the εi’s, the CP asymmetry
responsible for leptogenesis becomes a function of U . Thus a measurement
of \CP in neutrino mixing, more than a test of leptogenesis, will provide a
test of the specific ‘X-framework’. However, common sense suggests that ‘if
there are phases in U , then why not also in Ω ’ and so the existence of such
a framework is quite reasonable, Therefore, a detection of \CP in neutrino
mixing, if not a smoking gun, will certainly provide an additional piece in
support of leptogenesis.

The orthogonal parametrization (cf. (5)) is also a useful technical tool
to solve different problems in leptogenesis. The final asymmetry can be
in general written as the sum of the contributions from the decays of all
three Ni,

ηB = d
∑

i

εi κi , (9)

where d = asph/f ≃ 10−2 takes into account both that only a fraction
asph ≃ 1/3 of the B–L asymmetry ends up into a baryon asymmetry through
sphaleron conversion and the dilution of the asymmetry f ≃ 35 due to the
photon production from the time of leptogenesis till recombination. Each
κi is the efficiency factor associated with the asymmetry production from
the decays of Ni. In general the baryon asymmetry will thus depend on
10 unknown seesaw parameters: the absolute neutrino mass scale m1, the
three Mi and the 6 parameters in Ω . However, assuming a mild heavy

neutrino mass hierarchy, M2
>
∼ 5M1, and assuming that the inverse decays

of the lightest RH neutrino N1 strongly wash-out the asymmetry generated
from the two heavier ones, then one has a simplified picture where the final
asymmetry is produced only from N1 decays and ηB ≃ 10−2 ε1 κ1. For
values of M1 ≪ 1014 GeV m2

atm/
∑

i m2
i , the main contribution to the wash-

out comes from inverse decays [6,7] and κ1 is a function just of the effective

neutrino mass m̃1 defined as m̃1 ≡ (m†
D mD)11/M1. The assumption of

strong wash-out holds for m̃1
>
∼ m⋆ ≃ 10−3 eV, where m⋆ is the equilibrium

neutrino mass. The effective neutrino mass can be conveniently expressed in
terms of the Ω matrix as m̃1 =

∑
i mi |Ω

2
j1| and from the Ω orthogonality

it easily follows that m̃1 ≥ m1 [8]. This is the only model independent

information on m̃1, quite relevant if m1
>
∼ m⋆, since in this case one can

conclude that the strong wash-out condition is always realized. If m1
<
∼ m⋆,

then m̃1 can also lie in the weak-wash out regime. However, now, for fully
normal (inverted) hierarchical neutrinos, one has

m̃1 ≃ m1 |Ω
2
11| + msol (matm) |Ω2

21| + matm |Ω2
31| , (10)
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and one can easily understand that the condition m̃1 ≪ m⋆ ≪ msol holds
only when [9]

Ω ≃




1 0 0

0 Ω22

√
1 − Ω2

22

0 −
√

1 − Ω2
22 Ω22


 , (11)

such that |Ω2
21| ≪ m1/m2 and |Ω2

31| ≪ m1/matm.

If M1
>
∼ 1014 GeV m2

atm/
∑

i m2
i , then off-shell ∆L = 2 processes gives a

non negligible contribution to the wash-out such that

κ1 ≃ κ1(m̃1) e
−

M1

1014 GeV

P

i m
2
i

m2
atm . (12)

Another nice consequence of assuming a hierarchical heavy neutrino spec-
trum is that it allows to write down an approximate expression for ε1,

ε1 ≃ ε1(M1,m1, m̃1,Ω
2
j1) ≡ ε(M1) β(m1, m̃1,Ω

2
j1) , (13)

where ε(M1) ≡ 3M1 matm/(16π v2). Therefore, we can see that within the
simplified picture where the dominant contribution to the final asymmetry
arises from N1 decays, one has that ηB = ηB(M1,m1, m̃1,Ω

2
j1) depends just

on 6 parameters. One can find interesting constraints imposing that the
predicted asymmetry explains the observed value. Interestingly, the function
ε1(M1,m1, m̃1,Ω

2
j1) has an upper bound that can be found maximizing β

over the Ω
2
j1’s [10, 11]. This is saturated for fully hierarchical neutrinos

(m1 = 0) and when Ω
2
21 = Re(Ω2

31) = 0, such that β = 1 and ε1 = ε(M1).
The upper bound on ε1 implies a lower bound on M1 [11, 12]

M1 & 4.2 × 108 GeV × [k1(m̃1)]
−1 (M1 ≪ 1014 GeV) , (14)

and consequently a lower bound on the reheating temperature [7] Treh
>
∼ M1

5 .
For non-zero values of m1, the upper bound on ε1 becomes more restrictive
[11, 13],

ε1 ≤ ε(M1,m1, m̃1) ≡ ε(M1)
matm

m1 + m3
f(m1, m̃1) . (15)

The bound is still saturated for Ω
2
21 = 0 but this time X ≡ Re(Ω2

31) 6= 0 [14].
The function f(m1, m̃1) ∈ [0, 1] vanishes for m̃1 = m1 and is equal to 1
in the limit m1/m̃1 → 0. For generic values of m1 it can be calculated
simply finding the maximum of Y ≡ Im(Ω2

31) for fixed m̃1 and with the
orthogonality implying Ω

2
11 + Ω

2
31 = 1 and then f = (m1 + m3)Y/m̃1 [9].

For m1 ≪ matm the function f is well approximated by [9, 13]

f(m1, m̃1) =

m3 − m1

√
1 +

m2
3
−m2

1

em2
1

m3 − m1
, (16)
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while in the limit of quasi-degenerate neutrinos one has [9, 14]

f =

√

1 −

(
m1

m̃1

)2

. (17)

It is quite remarkable that, accounting also for the suppression of the effi-
ciency factor (cf.(12)), the final baryon asymmetry is strongly suppressed
for m1 ≫ matm. This results in a stringent upper bound on the neutrino
masses mi ≤ 0.1 eV [13]. For a generic choice of the seesaw parameters, the
CP asymmetry can be written as

ε1 = ε(M1,m1, m̃1) sin δL(m1, m̃1,Ω
2
j1) , (18)

where the effective leptogenesis phase sin δL takes into account the suppres-
sion of the asymmetry compared to the case when the upper bound is sat-
urated and sin δL = 1. The exponential suppression of κ1 for large M1

(cf. (12)) yields a lower bound on sin δL given by [9]

sin δL & 4 × 10−2 (m̃1/eV) (m̃1 & 10−3 eV) . (19)

All the derived bounds are valid under a set of minimal assumptions and it
is actually non trivial that the final asymmetry can be explained within
such a minimal picture. In particular it is interesting that this is pos-
sible only because the atmospheric neutrino mass scale lies in the range

10−3 eV
<
∼ matm

<
∼ 1 eV [15], a result to be regarded as a successful test for

the minimal leptogenesis scenario.
On the other hand the existence of the constraints on neutrino masses,

the lower bound on the reheating temperature of the Universe and the up-
per bound on the neutrino masses, can potentially disprove the minimal
scenario. In particular the first is a problem when leptogenesis is embedded
within the minimal supersymmetric standard model scenario where an up-
per bound on Treh is necessary to avoid a gravitino over-production. The
second is, of course, a problem if neutrino masses larger than 0.1 eV will
be found. At the moment it is intriguing that the most restrictive upper
bound from a combined analysis of the CMB acoustic peaks and of large
scale structure gives m1 < 0.14 eV and thus it is in agreement with the
bound from leptogenesis. Therefore, at the moment, the minimal picture
cannot be ruled out.

3. A new scenario of leptogenesis

In the weak wash-out regime, for m̃1 . m⋆, the minimal picture where
the asymmetry is produced by the N1’s, encounters two serious obstacles.
The first is that the CP asymmetry ε1 vanishes in the limit m̃1 → m1,



Leptogenesis 3241

implying that one has to tune m̃1 such that it is lower than m⋆ ≃ 10−3 eV
but much larger than m1. The second problem is that, in the weak wash-
out regime, the final asymmetry depends on the initial asymmetry and,
more importantly, on the initial N1 abundance and a calculation of the final
asymmetry becomes very model dependent [7].

These two problems are both solved considering another possibility: that
the asymmetry is produced from the decays of N2, the next-to-lightest
RH neutrino. Indeed if m̃1 . m⋆, as we are assuming, then necessarily
m̃2 & msol ≫ m⋆ and thus the generation occurs in the strong wash-
out regime, solving the problem of the initial conditions. Moreover now
if m̃1 = m1, when Ω is given by the Eq. (11), the CP asymmetry ε2 does
not vanish. Therefore one does not need to fine tune Ω , it is enough that
this is close to the form given by Eq. (11) and, of course, that the phase of
Ω22 is large enough.

Another attractive feature is that N1 does not play any role and thus
the lower bound on M1 disappears and is replaced by an analogous lower
bound on M2, still implying a lower bound on Treh & M2/5. It is intriguing
to speculate about possible phenomenological implications of a light N1. The
first is to think whether this can be light enough to be produced in the Large
Hadron Collider. However, the N1 Yukawa coupling upper bound, U †h11 .
10−7

√
M1/1TeV, gives no hopes, unless new extra-gauge interactions are

assumed.

4. Beyond the minimal picture

The new scenario described in the previous section is an interesting logi-
cal completion of the minimal picture. However, the possibility to evade the
lower bound on the reheating temperature and the upper bound on the neu-
trino masses requires more drastic departures from the minimal scenario. A
large variety of models have been proposed. They can be classified in three
categories.

Leptogenesis from type II seesaw formula [16]. A first class of mod-
els is based on modifications of the minimal seesaw formula. The most
popular is the account of the triplet Higgs term in the neutrino mass
term (cf. (2)). In this, the simple seesaw formula (cf. (3) gets gener-
alized into

mν = −mD
1

M
mT

D − hT v2

MT
. (20)

The dominant wash-out processes constraints mainly the first term but
not the second and in this way the upper bound on the neutrino masses
can be easily evaded. Moreover, the CP asymmetry receives additional
contributions making possible also to evade the lower bounds on M1

and on Treh.
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Degenerate heavy neutrino spectrum [9, 13, 14, 17]. If M2 . 5M1

one expects deviations from the constraints obtained in the minimal
picture, even in the strong wash-out regime for m̃1 ≫ m⋆. There are
two effects to consider: one is that the asymmetry and the wash-out
from the N2,3 decays and inverse decays can give a non negligible con-
tribution and so one has to consider the general expression (9) for the
final asymmetry. The second effect is that there can be significant
deviations from the approximate expression for ε1 (cf. (13)). Defining
ξε ≡ ε1/ε(M1), one has that for M2 . 5M1 values ξε & 1.1 are pos-
sible, with a consequent relaxation of the neutrino mass constraints.
However, the possibility of a significant evasion of the bounds, espe-
cially the upper bound on the neutrino masses, is possible if the CP
asymmetry undergoes a resonant enhancement, such that ε1 ∼ 0.1
independently on the values of M1 and m1 [14, 17].

Non thermal leptogenesis [18]. If the temperature Treh . M1/5, a ther-
mal production of the N1 is inefficient. Different mechanisms of non
thermal production have been proposed, all associated to the occur-
rence of an inflationary stage. The bounds of the minimal picture can
be easily evaded.

Within all these three categories of non minimal models, neutrino mass
bounds can be easily evaded. However, at the same time the correlation
between the neutrino mixing mass scales and the baryon asymmetry, the
leptogenesis conspiracy, gets lost or in other words is like ‘to throw away
the baby with the bath water’. Therefore, until data will not disprove the
minimal picture, this appears the most appealing way to realize leptogenesis.
In the near future the most important experimental tests for the minimal
picture are represented by the measurement of the absolute neutrino mass
scale to be compared with the upper bound mi < 0.1 eV and a test of
the supersymmetric models in LHC, that could confirm the gravitino upper
bound on Treh at variance with the minimal leptogenesis lower bound.
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