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MIXING IN QUANTUM FIELD THEORY∗

M. Blasone, A. Capolupo, G. Vitiello

Dipartimento di Fisica “E.R. Caianiello” and INFN, Università di Salerno

84100 Salerno, Italy

(Received October 4, 2005)

We report on recent results on the particle mixing and oscillations in
Quantum Field Theory, in particular we discuss the proper definition of
flavor charge and states in field mixing.

PACS numbers: 14.60.Pq, 03.70.+k

1. Introduction

In the context of Quantum Field Theory (QFT), the non-perturbative
vacuum structure associated with the field mixing [1–14] leads to a modifi-
cation of flavor oscillation formulas [2,7,9–11], exhibiting new features with
respect to the usual ones in (Quantum Mechanics) QM [15–18]. Moreover,
the non-perturbative field theory effects may contribute in a crucial way in
other physical contexts as shown in Ref. [19], where the neutrino mixing
contribution to the dark energy is computed.

In this report we present the main results on the neutrino mixing and
oscillations in Quantum Field Theory. In Sec. 2, we introduce the formalism
of the fermion mixing in QFT. Sec. 3, is devoted to the study of the currents
and charges for the flavor mixing and to the discussion of the proper defini-
tion of flavor charges and states. In Sec. 4, we discuss neutrino oscillations
and in Sec. 5, we compute the neutrino mixing contribution to the dark
energy. Sec. 6, is devoted to the conclusions.

2. Fermion mixing

For simplicity, we consider two Dirac neutrino fields. The Pontecorvo
mixing transformations are [15]

νe(x) = ν1(x) cos θ + ν2(x) sin θ ,

νµ(x) = −ν1(x) sin θ + ν2(x) cos θ , (1)
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where νe(x) and νµ(x) are the fields with definite flavors, θ is the mixing
angle and ν1 and ν2 are the fields with definite masses m1 6= m2. Explicitly
ν1 and ν2 are given by

νi(x) =
1√
V

∑

k,r

[

ur
k,i(t) αr

k,i + vr
−k,i(t) βr†

−k,i

]

eik·x , i = 1, 2 , (2)

with ur
k,i(t) = e−iωk,itur

k,i(0), vr
k,i(t) = eiωk,itvr

k,i(0) and ωk,i =
√

k
2 + m2

i .

The vacuum for the αi and βi operators is denoted by |0〉1,2: αr
k,i|0〉12 =

βr
k,i|0〉12 = 0. The anticommutation relations are the usual ones (see [1]).

The orthonormality and completeness relations are: ur†
k,iu

s
k,i= vvr†

k,iv
s
k,i =δrs,

ur†
k,iv

s
−k,i = vr†

−k,iu
s
k,i = 0 and

∑

r(u
r
k,iu

r†
k,i + vr

−k,iv
r†
−k,i) = 1 .

The flavor fields can be expanded as (we use (σ, i) = (e, 1), (µ, 2)):

νσ(x) = G−1
θ (t)νi(x)Gθ(t)

=
1√
V

∑

k,r

[

ur
k,i(t) αr

k,νσ
(t) + vr

−k,i(t) βr†
−k,νσ

(t)
]

eik·x , (3)

where Gθ(t) is the generator of the mixing transformations (1) given by

Gθ(t) = exp

[

θ

∫

d3
x

(

ν†
1(x)ν2(x) − ν†

2(x)ν1(x)
)

]

. (4)

The flavor fields νe and νµ in Eq. (3) are expanded in the same basis of
ν1 and ν2. By introducing the operators

S+(t) ≡
∫

d3
x ν†

1(x)ν2(x) , S−(t) ≡
∫

d3
x ν†

2(x)ν1(x) = (S+)† , (5)

Gθ(t) can be written as Gθ(t) = exp [θ(S+ − S−)] .
Introducing S3 and the Casimir operator S0 (proportional to the total

charge) as follows

S3 ≡ 1

2

∫

d3
x

(

ν†
1(x)ν1(x) − ν†

2(x)ν2(x)
)

, (6)

S0 ≡ 1

2

∫

d3
x

(

ν†
1(x)ν1(x) + ν†

2(x)ν2(x)
)

, (7)

the su(2) algebra is closed: [S+(t), S−(t)] = 2S3, [S3, S±(t)] = ±S±(t),
[S0, S3] = [S0, S±(t)] = 0. Then the generator Gθ(t) is an element of the
SU(2) group.
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The flavor annihilation operators and the flavor vacuum are defined as
(

αr
k,νσ

(t)

βr†
−k,νσ

(t)

)

= G−1
θ (t)

(

αr
k,i

βr†
−k,i

)

Gθ(t) . (8)

|0(t)〉e,µ ≡ G−1
θ (t) |0〉1,2 . (9)

|0(t)〉e,µ is an SU(2) generalized coherent state and it turns out to be or-
thogonal to the vacuum for the mass eigenstates |0〉1,2 in the infinite volume
limit. Note the time dependence of |0(t)〉e,µ. In the following we will denote
the flavor vacuum state at the reference time t = 0 as |0〉e,µ.

The explicit expression of the flavor annihilation/creation operators for
k = (0, 0, |k|) is:

αr
k,νe

(t) = cos θ αr
k,1 + sin θ

(

U∗
k(t) αr

k,2 + εr Vk(t) βr†
−k,2

)

,

αr
k,νµ

(t) = cos θ αr
k,2 − sin θ

(

Uk(t) αr
k,1 − εr Vk(t) βr†

−k,1

)

,

βr
−k,νe

(t) = cos θ βr
−k,1 + sin θ

(

U∗
k(t) βr

−k,2 − εr Vk(t) αr†
k,2

)

,

βr
−k,νµ

(t) = cos θ βr
−k,2 − sin θ

(

Uk(t) βr
−k,1 + εr Vk(t) αr†

k,1

)

, (10)

with εr = (−1)r and

Uk(t) ≡ ur†
k,2(t)u

r
k,1(t) = vr†

−k,1(t)v
r
−k,2(t) , (11)

Vk(t) ≡ εr ur†
k,1(t)v

r
−k,2(t) = −εr ur†

k,2(t)v
r
−k,1(t) . (12)

We have:

Uk(t) = |Uk|ei(ωk,2−ωk,1)t , Vk(t) = |Vk|ei(ωk,2+ωk,1)t , (13)

|Uk| =

(

ωk,1+m1

2ωk,1

)
1

2

(

ωk,2+m2

2ωk,2

)
1

2

(

1+
|k|2

(ωk,1+m1)(ωk,2 + m2)

)

,

|Vk| =

(

ωk,1+m1

2ωk,1

)
1

2

(

ωk,2+m2

2ωk,2

)
1

2

( |k|
(ωk,2+m2)

− |k|
(ωk,1+m1)

)

, (14)

|Uk|2 + |Vk|2 = 1 . (15)

The condensation density is given by

e,µ〈0|αr†
k,iα

r
k,i|0〉e,µ = e,µ〈0|βr†

k,iβ
r
k,i|0〉e,µ = sin2 θ |Vk|2, i = 1, 2. (16)
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Fig. 1. The fermion condensation density |Vk|2 as a function of |k| for m1 = 1,

m2 = 100 (solid line) and m1 = 10, m2 = 100 (dashed line).

3. Flavor charges and states

In this Section we report the analysis of the transformations acting on
a doublet of free fields with different masses and discuss the proper definition
of flavor charges and states.

Let us consider the Lagrangian describing two free Dirac fields with
masses m1 and m2:

L(x) = ν̄m(x) (i 6∂ − Md) νm(x) , (17)

where νT
m = (ν1, ν2) and Md = diag(m1,m2).

The Lagrangian L(x) is invariant under global U(1) phase transforma-

tions of the type ν
′

m(x) = eiανm(x), as a result, we have the conservation of
the Noether charge Q =

∫

I0(x)d3
x (with Iµ(x) = ν̄m(x)γµνm(x)) which is

indeed the total charge of the system, i.e. the total lepton number.
Consider then the global SU(2) transformation [3]:

ν ′
m(x) = eiαj ·τjνm(x) , j = 1, 2, 3 . (18)

with αj real constants, τj = σj/2 with σj being the Pauli matrices.
Since m1 6= m2, the Lagrangian is not invariant under the transforma-

tions (18) and, by use of the equations of motion, we obtain the variation of
the Lagrangian:

δL = iαj ν̄m(x) [τj, Md] νm(x) = −αj∂µJµ
m,j(x) , (19)

where the currents are given by:

Jµ
m,j(x) = ν̄m(x) γµ τj νm(x) , j = 1, 2, 3 . (20)
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The related charges Qm,j(t) =
∫

d3
xJ0

m,j(x), satisfy the su(2) algebra:

[Qm,i(t), Qm,j(t)] = iεijkQm,k(t).
Note that the Casimir operator is proportional to the total (conserved)

charge: Qm,0 = 1/2Q.
Also Qm,3 is conserved, due to the fact that the mass matrix Md is

diagonal and this implies the conservation of charge separately for ν1 and ν2.
The U(1) Noether charges associated with ν1 and ν2 can be then expressed as

Q1 ≡ 1

2
Q + Qm,3 , Q2 ≡ 1

2
Q − Qm,3 . (21)

with Q total (conserved) charge. The normal ordered charge operators are:

: Qi :≡
∫

d3
x : ν†

i (x) νi(x) :=
∑

r

∫

d3
k

(

αr†
k,iα

r
k,i − βr†

−k,iβ
r
−k,i

)

, (22)

where i = 1, 2 and the : ... : denotes normal ordering with respect to the
vacuum |0〉1,2.

The neutrino states with definite masses defined as

|νr
k,i〉 = αr†

k,i|0〉1,2 , i = 1, 2 , (23)

are then eigenstates of Q1 and Q2, which can be identified with the lepton
charges in the absence of mixing.

Let us now consider the Lagrangian written in the flavor basis

L(x) = ν̄f (x) (i 6∂ − M) νf (x) , (24)

where νT
f = (νe, νµ) and M =

(

me meµ

meµ mµ

)

.

The variation of the Lagrangian (24) under the SU(2) transformation

ν
′

f (x) = eiαj ·τjνf (x) , j = 1, 2, 3 , (25)

is given by

δL(x) = iαj ν̄f (x) [τj,M] νf (x) = −αj∂µJµ
f,j(x) , (26)

Jµ
f,j(x) = ν̄f (x) γµ τj νf (x) , j = 1, 2, 3 . (27)

Again, the charges Qf,j(t) =
∫

d3
xJ0

f,j(x) close the su(2) algebra.

Note that, because of the off-diagonal (mixing) terms in M, Qf,3(t) is
time dependent. This implies an exchange of charge between νe and νµ,
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resulting in the phenomenon of neutrino oscillations. The flavor charges for
mixed fields are defined as [3]

Qνe(t) =
1

2
Q + Qf,3(t) , Qνµ(t) =

1

2
Q − Qf,3(t) . (28)

The normal ordered charge operators are

:: Qνσ(t) :: ≡
∫

d3
x :: ν†

σ(x) νσ(x) ::

=
∑

r

∫

d3
k

(

αr†
k,νσ

(t)αr
k,νσ

(t)−βr†
−k,νσ

(t)βr
−k,νσ

(t)
)

, (29)

where σ = e, µ, and :: ... :: denotes normal ordering with respect to |0〉e,µ.
The definition for any operator A, is

:: A ::≡ A − e,µ〈0|A|0〉e,µ . (30)

Note that :: Qνσ(t) ::= G−1
θ (t) : Qj : Gθ(t), with (σ, j) = (e, 1), (µ, 2) and

:: Q ::=:: Qνe(t) :: + :: Qνµ(t) ::=: Q1 : + : Q2 : = : Q : . (31)

The flavor states are defined as eigenstates of the flavor charges Qνσ at
a reference time t = 0

|νr
k,σ〉 ≡ αr†

k,νσ
(0)|0(0)〉e,µ, σ = e, µ (32)

and similar ones for antiparticles. We have

:: Qνe(0) :: |νr
k,e〉 = |νr

k,e〉 ,

:: Qνµ(0) :: |νr
k,µ〉 = |νr

k,µ〉 , (33)

:: Qνe(0) :: |νr
k,µ〉 = :: Qνµ(0) :: |νr

k,e〉 = 0 ,

:: Qνσ(0) :: |0〉e,µ = 0 . (34)

These results are not trivial since the usual Pontecorvo states [15]

|νr
k,e〉P = cos θ |νr

k,1〉 + sin θ |νr
k,2〉 , (35)

|νr
k,µ〉P = − sin θ |νr

k,1〉 + cos θ |νr
k,2〉 , (36)

are not eigenstates of the flavor charges [20]. Indeed the expectation values
of the flavor charges on the Pontecorvo states are

P〈νr
k,e| :: Qνe(0) :: |νr

k,e〉P = cos4 θ + sin4 θ

+ 2|Uk| sin2 θ cos2 θ +
∑

r

∫

d3
k , (37)
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and

1,2〈0| :: Qνe(0) :: |0〉1,2 =
∑

r

∫

d3
k, (38)

which are both infinite.
Although the infinities in Eqs. (37) and (38) may be removed by normal

ordering with respect to the mass vacuum, we have that

1,2〈0|(: Qνe(0) :)2|0〉1,2 = 4 sin2 θ cos2 θ

∫

d3
k|Vk|2, (39)

P〈νr
k,e

∣

∣

∣
(: Qνe(0) :)2

∣

∣

∣
νr

k,e〉P = cos6 θ + sin6 θ (40)

+ sin2 θ cos2 θ

[

2|Uk|+|Uk|2+4

∫

d3
k|Vk|2

]

,

are both infinite, making the corresponding quantum fluctuations divergent.
Thus, the correct flavor state and normal ordered operators are those defined
in Eqs. (32) and (30), respectively.

4. Neutrino oscillations

In the standard QM treatment [15], the Pontecorvo states (35)–(36) are
usually assumed to be produced in a charged current weak interaction pro-
cess, together with the respective charged (anti-) leptons. However, as we
have shown above, such states are not eigenstates of the (neutrino) lepton
charges when mixing is present.

In other words, using such states produces a violation of lepton charge

conservation both in the production and in the detection vertices. Indeed,
in presence of mixing, the lepton charge is violated (for a given family), but
this violation occurs during time evolution (flavor oscillations), whereas the
lepton number is conserved in a charged current vertex due to the form of
the weak interaction.

To be more specific, let us define the following quantities

A0 ≡ P〈νr
k,e| : Qνe(0) : |νr

k,e〉P

= cos4 θ + sin4 θ + 2|Uk| sin2 θ cos2 θ < 1, (41)

1 − A0 ≡ P〈νr
k,e| : Qνµ(0) : |νr

k,e〉P

= 2 sin2 θ cos2 θ − 2|Uk| sin2 θ cos2 θ > 0 , (42)
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for any θ 6= 0, k 6= 0 and for m1 6= m2. We have

P〈νr
k,e| : Qνe(0) : |νr

k,e〉P + P〈νr
k,e| : Qνµ(0) : |νr

k,e〉P = 1 . (43)

Let us now consider an ideal experiment in which neutrinos are created
and detected by means of some charged weak interaction process. What is
measured in the experiment is the number of charged leptons, say (anti-)
electrons, both in the source and in the detector. Indicating with NS

e such
a number at the neutrino source and with ND

e (t) the number at the detector,
in the usual treatment one assumes that NS

νe
= NS

e and ND
νe

(t) = ND
e (t),

where NS
νe

and ND
νe

(t) are the neutrinos produced in the source and in the
detector, respectively.

The usual Pontecorvo formulas are then given by

ND
e (t)

NS
e

=
ND

νe
(t)

NS
νe

= 1 − sin2 2θ sin2

(

∆ω

2
t

)

= 1 − P (t) , (44)

ND
µ (t)

NS
e

=
ND

νµ
(t)

NS
νe

= sin2 2θ sin2

(

∆ω

2
t

)

= P (t) . (45)

However, considering Eqs. (41), (42), we know that Pontecorvo states
violate the lepton charge. Thus, if we assume that the source produces the
Pontecorvo states (35), (36) the conservation of leptonic charge both in the
production and in the detection vertices implies that only a fraction of the
electron neutrinos produced, is accompanied by an anti-electron: we denote
these quantities with a tilde. We have then

ÑS
e = A0N

S
νe

, (46)

ÑD
e (t) = A0N

D
νe

(t) + (1 − A0)N
D
νµ

(t) . (47)

Thus the oscillation formula becomes

ÑD
e (t)

ÑS
e

=
A0N

D
νe

(t) + (1 − A0)N
D
νµ

(t)

A0NS
νe

= 1 − 2A0 − 1

A0
P (t) . (48)

Eq. (48) is clearly different from the usual Pontecorvo formula (44) which
is, however, recovered in the relativistic limit. Indeed, for |k| ≫ √

m1m2 we
have |Uk| −→ 1 and A0 = 1.

5. Neutrino mixing contribution to the dark energy

In this section, we show that the non-perturbative vacuum structure
associated with neutrino mixing leads to a non zero contribution to the
value of the dark energy. In order to compute the vacuum energy density
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〈ρvac〉 we use the (0,0) component of the energy-momentum tensor density
T00(x) in flat space time

: T00(x) :=
i

2
:
(

ν̄m(x) γ0

↔

∂ 0 νm(x)
)

: (49)

In terms of the annihilation and creation operators of fields ν1 and ν2,
the (0,0) component of the energy-momentum tensor T00 =

∫

d3xT00(x) is

: T
(i)
00 :=

∑

r

∫

d3
k ωk,i

(

αr†
k,iα

r
k,i + βr†

−k,iβ
r
−k,i

)

, (50)

with i = 1, 2. Note that T
(i)
00 is time independent.

The expectation value of T
(i)
00 in the flavor vacuum |0〉e,µ, gives the con-

tribution 〈ρmix
vac 〉 of the neutrino mixing to the vacuum energy density

e,µ〈0|
∑

i

: T
(i)
00 (0) : |0〉e,µ = 〈ρmix

vac 〉η00 . (51)

Since e,µ〈0| : T
(i)
00 : |0〉e,µ = e,µ〈0(t)| : T

(i)
00 : |0(t)〉e,µ for any t, we obtain

〈ρmix
vac 〉 =

∑

i,r

∫

d3
k ωk,i

(

e,µ〈0|αr†
k,iα

r
k,i|0〉e,µ + e,µ〈0|βr†

k,iβ
r
k,i|0〉e,µ

)

= 8 sin2 θ

∫

d3
k (ωk,1 + ωk,2) |Vk|2 , (52)

i.e.

〈ρmix
vac 〉 = 32π2 sin2 θ

K
∫

0

dk k2(ωk,1 + ωk,2)|Vk
|2 , (53)

where the cut-off K has been introduced. Choosing the cut-off proportional
to the natural scale appearing in the mixing phenomenon, K ≃ √

m1m2 or
the cut-off scale given by the sum of the two neutrino masses, K = m1 +m2

[21], we have 〈ρmix
vac 〉 = 0.4 × 10−47 GeV4, which is in agreement with the

estimated value of the dark energy.

6. Conclusions

In this report we have discussed some aspects of the neutrino mixing and
oscillations in the context of Quantum Field Theory.



3254 M. Blasone, A. Capolupo, G. Vitiello

We have reported the study of the algebraic structures of field mixing
and discussed the proper definition of flavor charge and states.

Moreover, we have shown that the non-perturbative field theory effects
may contribute in a specific way in other physical phenomena, in particular
the neutrino mixing may contribute to the value of the dark energy exactly
because of the non-perturbative effects.

We thank the organizers of the XXIX International Conference of Theo-
retical Physics, “Matter to the Deepest”, Ustroń, Poland. We also acknowl-
edge ESF network COSLAB, INFN and MIUR.
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