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We discuss the issue of Lorentz invariance for neutrino oscillations by
resorting to the properties of flavor charges and currents. It turns out that
oscillation formulas are sensitive to the effects of a boost on the source
(detector), resulting in a possibly measurable effect.
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1. Introduction

Neutrino mixing and oscillations [1] are nowadays regarded as one of the
most promising fields where to search for new Physics. On one hand, indeed,
their experimental discovery [2] represents the first step beyond the Standard
Model of Particle Physics; on the other, the peculiar nature of these particles,
poses a whole series of questions [3] which are likely to require radically new
ideas in order to be answered.

As a matter of fact, it is only recently [4] that a rich non-perturbative
structure of the vacuum for the mixed fields was discovered, in the attempt
of a (canonical) field theoretical treatment of particle mixing. This result
has led to a series of developments [5–13], including the refinement of os-
cillation formulas, both for fermions and for bosons, exhibiting corrections
with respect to the usual Quantum Mechanical ones.

Also at a more conceptual level, the above discovery has consequences,
since the inequivalence of the flavor and mass representations implies that
the fundamental entities are the flavor states, rather than the mass states, as
usually assumed. Thus it is natural to ask what is the meaning of Lorentz in-
variance for such states which exhibit non-standard dispersion relations [14].
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In this paper we consider the same problem under a different angle,
namely the Lorentz invariance properties of the oscillation formulas. Such
an analysis has been carried out in the context of the usual QM framework
by Giunti et al. [15, 16]: it was proved that the usual oscillation formulas
are indeed Lorentz invariant, at least in the relativistic limit.

We consider this problem in the context of QFT and show that the flavor
charges for mixed fields are indeed not Lorentz invariant. It follows that,
in the case of source and detector in relative motion with each other, the
oscillation formulas gain a correction term, which however vanishes in the
extreme relativistic limit, in agreement with the QM result of Ref. [16].

We review in Section 2 some elements of QFT treatment for mixed fields
which are necessary for the discussion of Section 3, where we derive the
oscillation formula in the case of a boosted source (detector). Some useful
relations are given in Appendix.

2. Neutrino oscillations in QFT

In Ref. [6], it was shown that flavor oscillations can be consistently de-
scribed in QFT by considering expectation values of the flavor charges on
states of the flavor Hilbert space. The oscillation formulas thus obtained
reproduce the usual QM formulas in the relativistic limit.

More general formulas including the full space-time dependence, can be
derived by using the 4-component flavor currents and wave packets, as shown
in Ref. [7].

To be specific, let us consider the case of two flavor mixing with Dirac
neutrinos and introduce the following Lagrangian

L(x) = Ψ̄f (x) (i 6∂ − M) Ψf (x) , (1)

where ΨT
f = (νe, νµ) and M =

(

me meµ

meµ mµ

)

. The mixing transforma-

tions

νe(x) = cos θ ν1(x) + sin θ ν2(x) ,

νµ(x) = − sin θ ν1(x) + cos θ ν2(x) (2)

with θ being the mixing angle, reduce the quadratic form of Eq. (1) to the
Lagrangian for two free Dirac fields, with masses m1 and m2:

L(x) = Ψ̄m(x) (i 6∂ − Md)Ψm(x) , (3)

where ΨT
m = (ν1, ν2) and Md = diag(m1,m2). One also has me = m1 cos2 θ+

m2 sin2 θ , mµ = m1 sin2 θ+m2 cos2 θ , meµ = (m2−m1) sin θ cos θ . Without
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loss of generality we take θ ranging from 0 to π
4 (maximal mixing) and

m2 > m1.
The above mixing transformations can be also implemented in the fol-

lowing way [4]:

νσ(x) ≡ G−1
θ (t) νi(x)Gθ(t) , (4)

Gθ(t) = exp

[

θ

∫

d3
x

(

ν†
1(x)ν2(x) − ν†

2(x)ν1(x)
)

]

. (5)

with (σ, i) = (e, 1), (µ, 2) and t ≡ x0. The generator Gθ(t) allows to define
flavor ladder operators and the flavor vacuum as [4]:

αr
k,σ(t) ≡ G−1

θ (t)αr
k,i(t)Gθ(t) ; βr†

−k,σ(t) ≡ G−1
θ (t)βr†

−k,i(t)Gθ(t) , (6)

|0(t)〉e,µ ≡ G−1
θ (t) |0〉1,2 . (7)

with (σ, i) = (e, 1), (µ, 2).
Following the discussion of Ref. [6], we study the symmetry properties of

the above Lagrangian. L is clearly invariant under U(1). We then consider
the SU(2) transformation:

Ψ ′
f (x) = eiαjτj Ψf (x), (8)

δL(x) = iαj Ψ̄f (x) [τj ,M ]Ψf (x) = −αj ∂µJµ
f,j(x) , (9)

Jµ
f,j(x) = Ψ̄f (x) γµ τj Ψf (x), j = 1, 2, 3. (10)

The charges Qf,j(t) ≡
∫

d3
xJ0

f,j(x) satisfy the su(2) algebra.
We define the flavor charges for mixed fields as

Qe(t) ≡
∫

d3
x ν†

e(x)νe(x) =
1

2
Q + Qf,3(t) , (11)

Qµ(t) ≡
∫

d3
x ν†

µ(x)νµ(x) =
1

2
Q − Qf,3(t) , (12)

where Qe(t) + Qµ(t) = Q. They are related to the Noether charges1 Qi as

Qσ(t) = G−1
θ (t)Qi Gθ(t) (13)

with (σ, i) = (e, 1), (µ, 2).

1 The conserved charges Qi, i = 1, 2 are related to the invariance of the Lagrangian
(3) under U(1) transformations acting on ν1 and ν2 separately.
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From Eq. (13), it follows that the flavor charges are diagonal in the flavor
ladder operators:

Qσ(t) =
∑

r

∫

d3
k

(

αr†
k,σ(t)αr

k,σ(t) − βr†
−k,σ(t)βr

−k,σ(t)
)

, (14)

with σ = e, µ. We work in the Heisenberg picture and define the state for a
particle with definite (electron) flavor, spin and momentum as:

|αr
k,e〉 ≡ αr†

k,e(0)|0〉e,µ = G−1
θ (0)αr†

k,1|0〉1,2
, (15)

where |0〉e,µ ≡ |0(0)〉e,µ. Note that the |αr
k,e〉 is an eigenstate of Qe(t), at

t = 0: Qe(0)|αr
k,e〉 = |αr

k,e〉. We thus have e,µ〈0|Qσ(t)|0〉e,µ = 0 and

Qk,σ(t) ≡ 〈αr
k,e|Qσ(t)|αr

k,e〉

=
∣

∣

∣

{

αr
k,σ(t), αr†

k,ρ(0)
}

∣

∣

∣

2
+

∣

∣

∣

{

βr†
−k,σ(t), αr†

k,ρ(0)
}

∣

∣

∣

2
. (16)

Charge conservation is ensured at any time: Qk,e(t) + Qk,µ(t) = 1. The
oscillation formulas for the flavor charges are then [5]

Qk,e(t) = 1 − sin2(2θ) |Uk|2 sin2

(

ωk,2 − ωk,1

2
t

)

+ sin2(2θ) |Vk|2 sin2

(

ωk,2 + ωk,1

2
t

)

, (17)

Qk,µ(t) = sin2(2θ) |Uk|2 sin2

(

ωk,2 − ωk,1

2
t

)

+ sin2(2θ) |Vk|2 sin2

(

ωk,2 + ωk,1

2
t

)

. (18)

This result is exact. There are two differences with respect to the usual
formula for neutrino oscillations: the amplitudes are energy dependent, and
there is an additional oscillating term.

3. Neutrino oscillations and Lorentz invariance

We now consider the situation in which there are two inertial observers,
O and O′, related by a Lorentz transformation and relate the flavor charges
defined by both of them.

We observe that the flavor currents have non-zero divergence:

∂ρJσ
ρ (x) = ∂ρ [G−1(t)J i

ρ(x)G(t)] = Ġ−1(t)J i
0(x)G(t) + G−1(t)J i

0(x)Ġ(t)

= [Jσ
0 (x), G−1(t)Ġ(t)] , (19)



Lorentz Invariance and Neutrino Oscillations 3259

where we denoted by a dot the time derivative and have used the fact that
G−1Ġ = −Ġ−1G.

The above term can be calculated explicitly:

∂ρJe
ρ(x) = i(m2 − m1) sin θ cos θ [ν̄2(x)ν1(x) − ν̄1(x)ν2(x)]

= −∂ρJµ
ρ (x) . (20)

Let us denote with Qe(t) the (electron neutrino) charge defined in a
reference frame at a given time and by Q′

e(t
′) the corresponding quantity

defined in the transformed frame. We obtain

Qe(t) =

∫

Σ

Je
ρ(x)dΣρ =

∫

Σ′

J ′e
ρ (x′)dΣ′ρ +

∫

Ω

d4x∂ρJe
ρ(x)

= Q′
e(t

′) +

∫

Ω

d4x∂ρJe
ρ(x) , (21)

where Σ and Σ′ are two space-like hypersurfaces defined by t = const. and
t′ = const., respectively. Ω is the 4-volume delimited by them.

A similar relation is valid for the muon charge:

Qµ(t) = Q′
µ(t′) +

∫

Ω

d4x∂ρJµ
ρ (x) . (22)

The above expressions are to be compared with the corresponding rela-
tions for the Noether charges Q1 and Q2, which represent the flavor charges
in absence of mixing: to such quantities correspond divergenceless currents
and therefore they are time-independent and Lorentz scalars.

Adding Eqs. (21) and (22), and using Eq. (20), we get the (time-indepen-
dent) total charge Q, which is a Lorentz scalar. Thus the total charge,
measured on a flavor neutrino state, is a Lorentz invariant quantity and all
inertial observers agree on its value. On the other hand, the flavor charges
do not need to have the same value in every inertial frame, as shown by
Eqs. (21) and (22).

Let us then calculate the correction to the oscillation formula for a neu-
trino coming from a moving (boosted) source:

〈αr
k,e|Q′

e(t
′) |αr

k,e〉 = 〈αr
k,e|Qe(t) |αr

k,e〉 −
∫

Ω

d4x 〈αr
k,e| ∂µJe

µ(x) |αr
k,e〉

= 〈αr
k,e|Qe(t) |αr

k,e〉

− i(m2 − m1) sin θ cos θ

∫

Ω

d4x 〈αr
k,e|

[

ν̄2(x)ν1(x) − ν̄1(x)ν2(x)
]

|αr
k,e〉

(23)
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The expectation value can be calculated giving

〈αr
k,e|

[

ν̄2(x)ν1(x) − ν̄1(x)ν2(x)
]

|αr
k,e〉

= − 2i

(2π)3
sin θ cos θ

{

Fk sin [(ωk,2 − ωk,1)t] + Gk sin [(ωk,2 + ωk,1)t]
}

,

(24)

where we have defined Fk ≡ |Uk||Wk| and Gk ≡ −|Vk||Yk|. For a definition
of the functions |Wk| and |Yk| see Appendix.

Eq. (24) shows that the second term in Eq. (23) is, in general, different
from zero, thus implying a correction to the oscillation formula coming from
the boosted source (or detector). A quantitative analysis of such a correction
term will be given elsewhere.

A plot of the functions Fk and Gk is given in Fig. (1) for sample values
of the masses. From their behavior, we see that the above correction term
disappears in the extreme relativistic limit |k| ≫ √

m1m2, thus recovering
the result of Ref. [16].
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Fig. 1. Fk and Gk as functions of |k| for m1 = 1, m2 = 100 (solid line) and

m1 = 10, m2 = 100 (dashed line).

Finally, we note that:

e,µ〈0|
[

ν̄2(x)ν1(x) − ν̄1(x)ν2(x)
]

|0〉e,µ = 0 (25)

thus ensuring that e,µ〈0|Qe(t) |0〉e,µ =e,µ 〈0|Q′
e(t

′) |0〉e,µ = 0 .
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4. Conclusions

We have discussed some aspects of the issue of Lorentz invariance for
mixed particles (neutrinos). This discussion is motivated by the recent dis-
covery of the inequivalence of mass and flavor representations, in the context
of Quantum Field Theory [4]. Thus the basic entities turn out to be the flavor
states (eigenstates of the flavor charges) rather than the mass eigenstates,
as it is usually assumed. In Ref. [14] it was investigated the meaning of
dispersion relations for mixed particles and its consequences on the Lorentz
invariance.

In the present paper, we have shown that the concept of flavor charge for
mixed particles is not Lorentz invariant, a fact which may have phenomeno-
logical consequences. In particular, we have shown that the oscillation for-
mula for mixed neutrinos (two flavors) gets an additional contribution due
to the relative (inertial) motion of source and detector. The Lorentz invari-
ance of flavor oscillations is however recovered in the relativistic limit, in
agreement with the conclusions of Ref. [16].

Effects of the Lorentz violation on neutrino oscillations have been re-
cently discussed also in different contexts [17–19], where the Lorentz (and
CPT) invariance breakdown occurs at the level of effective theory, implying
a slight deformations of the standard dispersion relations of the particles
propagating in the vacuum [19,20].

M.B. thanks the organizers of the XXIX Conference of Theoretical
Physics, Ustroń 2005, Poland. We also acknowledge the ESF network
COSLAB, INFN and MIUR.

Appendix: Some useful formulas

∫

d3x ν̄i(x)νj(x) =
∑

k,r,s

(

ūr
k,i(t)u

s
k,j(t)α

r†
k,iα

s
k,j

+̄vr
−k,i(t)v

s
−k,j(t)β

r
−k,iβ

s†
−k,j+v̄r

−k,i(t)u
s
k,j(t)β

r
−k,iα

s
k,j

+ūr
k,i(t)v

s
−k,j(t)α

r†
k,iβ

s†
−k,j

)

(26)

and, for k = (0, 0, |k|), we get:
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∫

d3xν̄1(x)ν2(x) =
∑

k,r

(

W ∗
k(t)αr†

k,1α
r
k,2 + ǫr Y ∗

k (t) βr
−k,1α

r
k,2

+ǫrYk(t)αr†
k,1β

r†
−k,2 − Wk(t)βr

−k,1β
r†
−k,2

)

, (27)

where we have defined:

Wk(t) ≡ (ūr
k,2u

r
k,1) = −(v̄r

−k,1v
r
−k,2) = |Wk|ei(ωk,2−ωk,1)t , (28)

Yk(t) ≡ ǫr (ūr
k,1v

r
−k,2) = +ǫr (ūr

k,2v
r
−k,1) = |Yk| ei(ωk,2+ωk,1)t (29)

with

|Wk| =

(

ωk,1+m1

2ωk,1

)
1

2

(

ωk,2+m2

2ωk,2

)
1

2

(

1− |k|2
(ωk,1+m1)(ωk,2+m2)

)

, (30)

|Yk| =

(

ωk,1+m1

2ωk,1

)
1

2

(

ωk,2+m2

2ωk,2

)
1

2

( |k|
(ωk,2+m2)

+
|k|

(ωk,1+m1)

)

, (31)

|Wk|2 + |Yk|2 = 1 . (32)

Note also that |Wk||Yk| = |k|(m1 + m2)/(2ωk,2ωk,1) and |Wk|2 − |Yk|2 =
(m1m2 − |k|2)/(ωk,2ωk,1).

For m2 = m1 = m, one has |Wk| = m
ωk

and |Yk| = |k|
ωk

.
Finally, we have the following relations:

|Wk||Uk| =
1

2

(

m1

ωk,1
+

m2

ωk,2

)

; |Yk||Vk| =
1

2

(

m1

ωk,1
− m2

ωk,2

)

. (33)
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