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For more than a decade, measurements of the semileptonic branching
ratio of hadrons containing a b quark disagreed with the Standard Model
predictions. Very recently, a class of strong-interaction effects was found
to significantly increase the non-leptonic b decay rate and thus bring the
Standard Model prediction into agreement with the experiment. Final state
charm quark mass effects should be determined to refine the theoretical
description of b decays. Prospects for such improvement are discussed in
this talk.

PACS numbers: 13.25.Hw, 12.38.Bx, 14.65.Fy

1. Introduction

The b quark decays most frequently by giving rise to a charm quark and
a virtual W boson. The W boson in turn can decay into one of the three
possible leptonic channels, or into quarks. The former case is a semileptonic,
the latter a hadronic (non-leptonic) decay of the b quark. It is easy to esti-
mate the relative probability BSL of a semileptonic decay with an electron in
the final state, at least in the case when we neglect all interactions except the
weak decay mechanism. First, neglect all masses of the final-state particles:
we then have three semileptonic (eνe, µνµ, τντ ) and two (ud or cs) times
three (colors) hadronic channels. We find BSL(b → ceνe) = 1/9 = 11%.
In the opposite limit, if we consider c and τ as heavy and neglect their
contribution to the virtual W decays, we get BSL(b → ceνe) = 1/5 = 20%.

A more accurate account for the masses gives an intermediate value,
BSL(b → ceνe) ≃ (15 − 16)% [1]. On the other hand, a measurement finds
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for a B meson (one expects similar BSL for the b quark as for a hadron
containing it) [2]

Bexp
SL (B → Xe+νe) = (10.91 ± 0.26)% . (1)

The difference between the rather low experimental result and the theoretical
prediction is mainly due to the strong interactions and until very recently was
not well understood. Interestingly, most of those effects are perturbative [1]
and thus a precise prediction can be made, provided multi-loop diagrams
can be evaluated. Crucial effects are due to QED-like diagrams in which two
gluons are exchanged between the quark line originating with the b quark
and the line of quarks arising from the W decay. Those diagrams have been
evaluated this year [3] in the limit in which the masses of the c quarks (as
well as the lighter quarks) are neglected. In this limit theoretical prediction
for the semileptonic branching ratio can be decreased to almost 11 percent,
which is within one standard deviation from the experimantal value.

However, it has been pointed out that the charm quark mass can strongly
alter the size of perturbative corrections, especially in the decay b → cc̄s
[4,5]. The two charm quarks move slowly in much of the phase space of this
decay and can be influenced by Coulomb-like interactions. It is very war-
ranted to extend the analysis of [3] to evaluate the effect of the charm mass.
This may be feasible if we apply the method of asymptotic operation [6]. In
this talk its application is illustrated with the example of one-loop correc-
tions to the muon decay, which is technically equivalent to the semileptonic
b decay.

2. Example: muon decay and its radiative corrections

The electron mass effect in the muon decay is used here to illustrate the
application of the ideas of asymptotic operation. Hopefully, this approach
will lead in the future to the full knowledge of charm quark mass effects in
b decays.

We adopt the following notation: M and m denote the muon and electron

masses, ρ = m
M

, and Γ 0 =
G2

F M5

192π3 . The W boson mass MW is considered infi-
nite (four-fermion theory). Calculations are performed in D = 4−2ǫ dimen-

sions. We denote the common loop integration factor as F0 = Γ (1+ǫ)

(4π)D/2M2ǫ .

In the expansions we keep terms up to ρ6 and ǫ0.

3. Tree level decay rate

The optical theorem is used to compute the decay width from the imag-
inary part of the self-energy diagrams. We begin with the tree-level rate,
corresponding, in the unitary gauge, to the single two-loop diagram in Fig. 1.
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Fig. 1. Diagram corresponding to the tree-level decay µ → e, ν, ν.

It is convenient to use a Fierz transformed diagram (Fig. 2). For the full
decay width and with MW → ∞ we have

Fig. 2. Fierz-transformed diagram.
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After evaluating the trace and the Wick rotation we obtain a result in terms
of an integral with the following propagator factors (Fig. 3): [1] = k2

1 + m2,
[2] = k2

2 , [5] = (p − k1 + k2)
2. We identify two contributing regions of the

loop momenta:

Fig. 3. Initial integral (solid thin line — mass m, solid thick line — mass M).
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Region 1 (Fig. 4) |k1| ≫ m [1] → k2
1

Region 2 (Fig. 5) |k1| ∼ m [5] → (p + k2)
2

Fig. 4. Region 1 (|k1| ≫ m).

Fig. 5. Region 2 (|k1| ∼ m).

In the first region (Fig. 4) we have a two-loop massless integral,

ImΣ
(1)

F2
0 M1−2ǫΓ0

= −12

ǫ
ρ4 + 1 − 8ρ2 − 24ρ4 + 16ρ6. (3)

The fractional power of M arises because the external momentum p2 = −M2

is the only scale of the D-dimensional integrals. In the second region (Fig. 5)
after averaging over the directions of k1 the integral factorizes into a one-loop
vacuum bubble and a one-loop propagator-type integral,

ImΣ
(2)

F2
0 Mm−2ǫΓ0

=
12

ǫ
ρ4 + 24ρ4 − 8ρ6. (4)

Note that the fractional power now is that of m. After adding the contri-
butions and expanding the ǫ-powers of masses, we obtain a series expansion
of the decay width in powers and logarithms of the electron-to-muon mass
ratio,

Γ
(0)(µ → e, ν, ν) =

Im(Σ (1) + Σ
(2))

M
ǫ→0−→ Γ0

{

1 − 8ρ2 − 24ρ4 log ρ + 8ρ6
}

. (5)

The finite logarithmic term is a remnant of divergences in both regions.
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4. O(α) correction to the muon decay

The O(α) correction is more challenging since it receives contributions
from three three-loop diagrams, as well as two renormalization terms (Fig. 6).
As before we use the Fierz transformed “charge retention” diagrams.

I1a I1b I1c

WFD MCD

Fig. 6. O(α) diagrams.

4.1. Renormalization terms

The one-loop wave-function renormalization constant and the mass coun-
terterm are given by

WF = −F0M
−2ǫ α

4π

{

3

ǫ
+ 4 + 8ǫ + O(ǫ2)

}

, (6)

MC = iF0m
1−2ǫ α

4π

{

3

ǫ
+ 4 + 8ǫ + O(ǫ2)

}

. (7)

Their contributions are found using the same technique as in Section 3. In
the present case we need to keep an extra power of ǫ since the renormalization
constants are divergent. We find

Im(WFD(1) + WFD(2))

MΓ0α/π

ǫ→0−→ 1

ǫ

(

−3

4
+ 6ρ2 + 18ρ4 log ρ − 6ρ6

)

−85

16
+ 3 log M + 38ρ2 + 24ρ2 log ρ

+ρ4

(

45

2
+ 60 log ρ −18 log2 ρ + 72 log2 M − 6π2

)

+ρ6 (6 − 12 log ρ + 24 log M) , (8)
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Im(MCD(1) + MCD(2))

MΓ0α/π

ǫ→0−→ 1

ǫ

(

12ρ2 + 18ρ4 + 72ρ4 log ρ − 36ρ6
)

+ρ2 (76 − 24 log ρ − 48 log M)

+ρ4
(

150 + 168 log ρ − 216 log2 ρ − 72 log M

+864 log2 M − 24π2
)

+ρ6 (24 + 144 log M) . (9)

It now remains to find the genuine O(α) corrections described by three-loop
diagrams.

4.2. Asymptotic expansion regions

The three-loop diagrams I1a, I1b, and I1c in Fig. 6 are special cases of
one basic topology (see Fig. 7), with [1] = (p + k3 − k2)

2, [3] = k2
2 + m2,

[4] = k2
1 + m2, [6] = k2

3, [7] = (k1 − k2)
2, and [8] = (p + k1 − k2)

2 + M2.
Since this topology involves two different mass scales, we again analyze how

Fig. 7. Initial topology (solid thin line — mass m, solid thick line — mass M).

to factorize it into single-scale contributions. Four regions of virtualities
contribute to the imaginary part of such diagrams:

Fig. 8. Region 1 (|k1| ≫ m, |k2| ≫ m).

Fig. 9. Region 2 (|k1| ∼ m, |k2| ≫ m).
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Fig. 10. Region 3 (|k1| ≫ m, |k2| ∼ m).

Fig. 11. Region 4 (|k1| ∼ m, |k2| ∼ m).

Region 1 (Fig. 8) |k1| ≫ m, |k2| ≫ m [3] → k2
2

[4] → k2
1

Region 2 (Fig. 9) |k1| ∼ m, |k2| ≫ m [3] → k2
2

[7] → k2
2

[8] → (p − k2)
2 + M2

Region 3 (Fig. 10) |k1| ≫ m, |k2| ∼ m [4] → k2
1

[1] → (p + k3)
2

[7] → k2
1

[8] → (p + k1)
2 + M2

Region 4 (Fig. 11) |k1| ∼ m, |k2| ∼ m [1] → (p + k3)
2

[8] → 2p(k1 − k2) + iδ

Each diagram will include contributions from all regions, e.g. I1a = I1a(1) +
I1a(2) + I1a(3) + I1a(4). In the following, the calculations in all four regions
are sketched.

Region 1

The one-loop subgraph with massless propagators [1] and [6] can be
integrated. After that, we have a two-loop topology which has been solved
in [7]. The results for the three diagrams are

Im(I1a(1))

X
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ǫ2
ρ4 +

1

ǫ

(

1
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)

+
121
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2
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3
ρ2 + ρ4

(

9π2 − 465

2

)

− 451

6
ρ6, (10)
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Im(I1b(1))
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1

ǫ

(

1
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Im(I1c(1))

X
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1

ǫ

(
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)
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X =
F3

0M1−4ǫ
Γ0α

π
. (13)

The Region 1 is technically the hardest. In all remaining ones there is some
degree of factorization which simplifies the calculations.

Region 2

After averaging over the directions of momentum k1 we can integrate the
one-loop massive bubble [4]. The remainder is a two-loop diagram, in which
again we can first integrate the massless propagators [1] and [6]. The last
integration is one-loop, and we find

Im(I1a(2))
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1
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π
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Region 3

In this region we average over k2 directions, integrate the massive bubble
with [3], and the rest factorizes into two one-loop integrals. This region gives
a non-zero contribution only for I1a,

Im(I1a(3))
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Region 4

Finally, in this last region, after we integrate [1] and [6], we are left with
an “eikonal” integral [8]. Again, a solution was found in [7]. We obtain

Im(I1a(4))
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4.3. Total result for the O(α) corrections

In the sum of the contributions of all four regions we can take the limit
ǫ → 0. The result is finite,

Γ
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)
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and we now see that quadratic logarithmic terms are present, reflecting 1/ǫ2

divergences in the partial results. The result coincides with the expansion of
the known formula [9] in which the mass dependence was included exactly.

For the muon decay the expansion parameter ρ is small and allows us
to neglect all terms except for the first one which corresponds to the mass-
less electron limit. In case of the quark decays the situation may change
significantly since the expansion parameter is larger, ρ ≃ 0.27 and even in
the example above the mass effects increase the decay rate by about 10 per-
cent. Additional enhancement of the mass effects is expected in the decay
b → cc̄S, where two massive particles are present in the final state.
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5. Summary

In this talk, we have demonstrated how the mass dependence of the decay
width can be obtained using the asymptotic operation. The advantage of
the method is that at every stage of loop calculations we deal with relatively
simple one-scale integrals, which, using recurrence relations, can be reduced
to master integrals. Those can be determined analytically, at least in the
present problem.

In the future application of this method to the non-leptonic decays in-
volving two heavy quarks in the final state, we anticipate convergence prob-
lems if the Coulomb singularity is an important effect. If this turns out to
be the case, a threshold expansion can be employed [10,11]. In fact, it may
be feasible to use both expansion schemes and match the two results for
moderate values of the charm mass.

We anticipate that the evaluation of the charm mass effects, together
with a determination of the scale of the strong coupling constant, will yield
a precise theoretical prediction for the semileptonic branching ratio of the
b quark. If similar progress is made in experimental studies, it will then be
possible to confront them with the Standard Model and discover or constrain
“new physics” effects. Since the Standard Model decays of b are strongly
suppressed by the smallness of Vcb, the semileptonic branching ratio may
become a uniquely sensitive probe of exotic phenomena.

This research was supported by the Science and Engineering Research
Canada. We thank Ian Blokland for many helpful discussions.
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