
Vol. 36 (2005) ACTA PHYSICA POLONICA B No 11

SUDAKOV RESUMMATIONS AT HIGHER ORDERS∗

S. Moch

Deutsches Elektronensynchrotron DESY
Platanenallee 6, D–15735 Zeuthen, Germany

A. Vogt

IPPP, Department of Physics, University of Durham
South Road, Durham DH1 3LE, United Kingdom

J. Vermaseren

NIKHEF, Kruislaan 409, 1098 SJ Amsterdam, The Netherlands

(Received November 9, 2005)

We summarize our recent results on the resummation of hard-scattering
coefficient functions and on-shell form factors in massless perturbative QCD.
The threshold resummation has been extended to the fourth logarithmic
order for deep-inelastic scattering, Drell–Yan lepton pair production and
Higgs production via gluon–gluon fusion. The leading six infrared pole
terms have been derived to all orders in the strong coupling constant for
the photon–quark–quark and the (heavy-top) Higgs–gluon–gluon form fac-
tors. These results have many implications, most notably they lead to a
new best estimate for the Higgs production cross section at the LHC.

PACS numbers: 12.38.Bx, 12.38.Cy, 13.60.–r, 13.85.–t

1. Introduction

Coefficient functions, or partonic cross sections, form the backbone of
perturbative QCD. These quantities are calculable as a power series in the
strong coupling constant αs, but exhibit large logarithmic corrections close
to threshold. The all-order resummation of the dominant soft-gluon contri-
butions takes the form of an exponentiation in Mellin-N space [1–4], where
the moments N are defined with respect to the appropriate scaling variable,
like Bjorken-x in deep-inelastic scattering (DIS) and x = M 2

l+l−, H/s for the

Drell–Yan (DY) process and Higgs production via gluon–gluon fusion.
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The purpose of the exponentiation is (at least) two-fold. On the one
hand, it can directly lead to improved phenomenological predictions close
to exceptional kinematic points, for instance to an improved stability un-
der scale variations. On the other hand, it can be viewed as a generating
functional of fixed-order perturbation theory close to the partonic thresh-
olds. Hence progress in the soft-gluon resummation also facilitates improved
fixed-order predictions which, depending on the specific observable, can be
relevant even very far from the hadronic threshold.

In this contribution we discuss recent results for the threshold resumma-
tion up to the fourth logarithmic (N3LL) order [5, 6], and briefly illustrate
their implications. We also summarize our recent results [7,8] for the on-shell
quark and gluon form factors and their exponentiation [9–12], which were
instrumental in extending the soft-gluon resummation to N3LL accuracy for
lepton-pair and Higgs boson production. Moreover the form-factor results
are interesting also in a wider context, e.g., they provide another link to
recent calculations performed in N =4 Super-Yang–Mills theory [13].

2. General structure of the threshold resummation

As mentioned in the introduction, the coefficient functions for inclusive
DIS, Drell–Yan lepton-pair production and Higgs boson production expo-
nentiate after transformation to Mellin N -space [1, 2],

CN = (1 + as g01 + a 2
s g02 + . . .) exp (GN ) + O(N−1 lnn N) . (1)

Here g0k collects the N -independent contributions at k-th order in the strong
coupling constant αs. The resummation exponent GN contains terms of the
form lnk N to all orders in αs and takes the form

GN = ln N g1(λ) + g2(λ) + as g3(λ) + a 2
s g4(λ) + . . . (2)

with λ = β0 as ln N . The functions gk represents the contributions of the

k-th logarithmic (Nk−1LL) order. All our relations refer to the MS scheme.

The exponential in Eq. (1) is build up from universal radiative factors
∆ p and Jp due to radiation collinear to the initial- and final-state partons,
and a process-dependent contribution ∆int from large-angle soft gluons. For
example, the resummation exponents for the processes considered here read

GN
DIS = ln ∆q + ln Jq + ln ∆int

DIS ,

GN
{DY,H} = 2 ln ∆{q,g} + ln ∆int

{DY,H} . (3)

∆p, the so-called jet function Jp and ∆int are given by certain integrals
over functions of the running coupling, Ap, Bp and D. Specifically, the
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functional dependences are ∆p(Ap), Jp(Ap, Bp) and ∆int(D). The functions
Ap, Bp and D, in turn, are defined in terms of power expansions in αs, for
which we generally employ the convention

f(αs) =
∞∑

k=1

fk

(αs

4π

)k
≡

∞∑

k=1

fk a k
s . (4)

The extent to which these functions are known sets the accuracy to which
the threshold logarithms can be resummed. It is worth noting that the
function DDIS is found to vanish to all orders [14, 15], hence ∆int

DIS = 1.
The explicit expressions for the functions gi(λ) in Eq. (2) are obtained by

performing the above-mentioned integrations, for instance using properties
of harmonic sums and algorithms for the evaluation of nested sums [16–19].
Specifically, g3 and g4 have been determined in Refs. [20,21] and [5], to which
the reader is referred for details. While the leading-log (LL) function g1
depends only on A1, the Nk≥1LL functions gk+1 include all parameters up to
Ak+1, Bk and Dk. We now turn to the present status of their determination.

3. The known resummation coefficients

The functions Ap are given by the leading large-N (or large-x) coefficients
of the diagonal splitting functions for the parton evolution,

Ppp(αs) = Ap(αs) (1 − x)−1
+ + P δ

p (αs) δ(1 − x) + O (ln(1 − x)) , (5)

which in turn are identical to the anomalous dimension of a Wilson line with
a cusp [22]. The known expansion coefficients for the quark case read [23,24]

Aq,1 = 4CF ,

Aq,2 = 8CF

[(
67

18
− ζ2

)
CA −

5

9
nf

]
,

Aq,3 = 16CF

[
C 2

A

(
245

24
−

67

9
ζ2 +

11

6
ζ3 +

11

5
ζ 2
2

)
− CF nf

(
55

24
− 2 ζ3

)

+ CAnf

(
−

209

108
+

10

9
ζ2 −

7

3
ζ3

)
+ n 2

f

(
−

1

27

)]
(6)

for nf effectively massless quark flavours. Here CF and CA are the usual

colour factors (CF = 4/3, CA = 3 in QCD), and Riemann’s zeta function is
denoted by ζn. The gluonic coefficients are related to Eqs. (6) by [22, 25]

Ag,i = CA/CF Aq,i . (7)
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It is worthwhile to note that the ζ 2
2 terms in Ap,3 have been confirmed by

the recent N =4 Super-Yang–Mills (SYM) calculation of Ref. [13].
The perturbative expansion of the functions Ap(αs) is very benign. In

fact, already A3 has a very small effect on the resummed coefficient functions
[20,21]. Therefore it is sufficient to estimate the presently unknown fourth-
order coefficients A4 entering g4 by their [1/1] Padé approximants,

Aq,4 ≈ 7849 , 4313 , 1553 for nf = 3 , 4 , 5 , (8)

to which we assign a conservative 50% uncertainty in numerical applications.
Eqs. (6) and (8) lead to the numerical four-flavour expansion

Aq(αs, nf =4) ∼= 0.4244αs (1+0.6381αs +0.5100α2
s +0.4 [1/1]α

3
s + . . .) . (9)

We now turn to the coefficients Bp entering the jet functions Jp. These
quantities can be determined by comparing the αs-expansion of Eqs. (1)
and (2) with the results of fixed-order calculations of the DIS coefficient
functions, which we have recently extended to the third order in αs [26]:

Bq,1 = −3 CF ,

Bq,2 = C 2
F

[
−

3

2
+ 12 ζ2 − 24 ζ3

]
+ CF CA

[
−

3155

54
+

44

3
ζ2 + 40 ζ3

]

+CF nf

[
247

27
−

8

3
ζ2

]
,

Bq,3 = C 3
F

[
−

29

2
− 18 ζ2 − 68 ζ3 −

288

5
ζ 2
2 + 32 ζ2ζ3 + 240 ζ5

]

+CAC 2
F

[
−46 + 287 ζ2 −

712

3
ζ3 −

272

5
ζ 2
2 − 16 ζ2ζ3 − 120 ζ5

]

−C 2
A CF

[
599375

729
−

32126

81
ζ2 −

21032

27
ζ3 +

652

15
ζ 2
2 +

176

3
ζ2ζ3 + 232ζ5

]

+C 2
F nf

[
5501

54
− 50 ζ2 +

32

9
ζ3

]
+ CF n 2

f

[
−

8714

729
+

232

27
ζ2 −

32

27
ζ3

]

+CACF nf

[
160906

729
−

9920

81
ζ2 −

776

9
ζ3 +

208

15
ζ 2
2

]
. (10)

The result for Bq,1 is, of course, well-known [1,2], and Bq,2 has been derived
by us before in Ref. [27] where we explicitly established also D DIS

2 = 0.
For the extraction of Bq,3 [5], on the other hand, we rely on the all-order
proofs [14, 15] of DDIS = 0 mentioned above.
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The numerical expansion of Bq in QCD is far less stable than Eq. (9),

Bq(αs, nf =4) ∼= −0.3183αs (1 − 1.227αs − 3.405α2
s + . . .) . (11)

Note, however, that the large third-order contribution to Bq actually sta-
bilizes the expansion of GN shown in Fig 1: for Bq,3 = 0 and N = 40, for
example, the N3LL term would be about as large as the previous order.
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Fig. 1. Left: successive approximations for the resummation exponent (2) for inclu-

sive DIS. Right: minimal-prescription [3] convolutions with a typical input shape.

The coefficients Bg,i for the gluonic jet function J g are, for instance, rel-
evant in direct-photon production which is dominated by the qq̄ → gγ and
qg → qγ subprocesses close to threshold, see Ref. [28]. These coefficients
can be obtained in the same manner as Eqs. (10), but from DIS by exchange
of a scalar φ with a pointlike coupling to gluons, like the Higgs boson in
limit of a heavy top quark. We have derived the corresponding coefficient
function Cφ,DIS up to the third order in the course of calculating the lower
row of the flavour-singlet splitting function matrix [25]. Comparison of these
results to the expansion of Eq. (1) yields Bg,1 and the previously unknown
quantities Bg,2 and Bg,3. The analytic results can be found in Ref. [5]. Here
we confine ourselves to the numerical expansion in four-flavour QCD,

Bg(αs, nf =4) ∼= −0.6631αs (1 − 0.7651αs − 2.696α2
s + . . .) , (12)

which shows a third-order enhancement similar to that in Eq. (11).
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Finally we address the process-dependent coefficients Di due to the large-
angle emission of soft gluons. Up to now, the two-loop coefficient functions
for proton-proton processes are known only for the Drell–Yan cross section
and Higgs boson production in the heavy-top approximation [29–32]. The

corresponding coefficients D
{DY,H}
2 have been extracted from these results

in Refs. [20,21]. Even for these processes, the three-loop coefficient functions
have not been calculated so far. It is possible, however, to derive their third-
order coefficients D3 from mass-factorization constraints [6], using our recent
results for the pole terms of the three-loop quark and gluon form factors [7,8]
and the third-order splitting functions [24,25]. Postponing the discussion of
this derivation to Section 5, the results for DY case read

D DY
1 = 0 ,

D DY
2 = CF

[
CA

(
−

1616

27
+

176

3
ζ2 + 56 ζ3

)
+ nf

(
224

27
−

32

3
ζ2

)]
,

D DY
3 = CF C 2

A

[
−

594058

729
+

98224

81
ζ2 +

40144

27
ζ3 −

2992

15
ζ 2
2 −

352

3
ζ2ζ3

−384 ζ5

]
+ CF CAnf

[
125252

729
−

29392

81
ζ2 −

2480

9
ζ3 +

736

15
ζ 2
2

]

+C 2
F nf

[
3422

27
− 32 ζ2 −

608

9
ζ3 −

64

5
ζ 2
2

]

+CF n 2
f

[
−

3712

729
+

640

27
ζ2 +

320

27
ζ3

]
. (13)

The corresponding coefficients for Higgs boson production via gluon–gluon
fusion are found to be related to these results by a simple colour-factor
substitution,

D H
i = CA/CF D DY

i , (14)

which is in complete analogy to Eq. (7). It worth pointing out that both the
cusp anomalous dimensions Ap and the coefficients DDY and DH exhibit a
maximally non-abelian colour structure, as anticipated for Ap in Ref. [22].

The numerical expansion of DDY in four-flavour QCD is given by

DDY(αs, nf =4) ∼= 2.3211αs (0 + αs + 2.675 α2
s + . . .) . (15)

The ratio of the third- and second-order coefficients is very similar to that
for the jet function in Eq. (11), underlining the numerical relevance of D3.

4. On-shell form factors and their exponentiation

The form factors of quarks and gluons are gauge invariant (but infrared
divergent) parts of the perturbative corrections to inclusive hard scatter-
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ing processes. They summarize the QCD corrections to the qqX and ggX
vertices with a colour-neutral particle X of either space-like or time-like
momentum q. These quantities are also key ingredients in the infrared fac-
torization of general higher-order amplitudes [33, 34].

The relevant amplitude for the space-like γ∗qq case is

Γµ = ieq (ū γµ u)Fq(αs, Q
2) , (16)

where eq represents the quark charge and Q2 = −q2 the virtuality of the
photon. The gauge-invariant scalar function Fq is the space-like quark form
factor which can be calculated order by order in the strong coupling in
dimensional regularization with D = 4− 2ǫ. The corresponding Hgg vertex
defining Fg is an effective interaction in the limit of a heavy top quark,

Leff = −
1

4
CH H G a

µνG a,µν , (17)

where G a
µν denotes the gluon field strength tensor, and the prefactor CH

includes all QCD corrections, known to N3LO [35], to the top-quark loop.

The well-known exponentiation of the form factors F is achieved by
solving the evolution equations [9–11]

Q2 ∂

∂Q2
lnF

(
αs,

Q2

µ2
, ǫ

)
=

1

2
K(αs, ǫ) +

1

2
G

(
Q2

µ2
, αs, ǫ

)
(18)

based on a factorization of the form factor F into two functions K and
G. The latter are subject to renormalization group equations [9] which are
both governed by the same anomalous dimension Ap of Eqs. (6) and (7)
because, obviously, the sum of G and K in Eq. (18) is a renormalization-
group invariant. We follow the decomposition of Refs. [11, 36], where the
function K is a pure counter-term collecting the infrared 1/ǫ poles, while
the infrared-finite function G includes all dependence on the scale Q2.

The resummed form factor is given as a double integral with the bound-
ary condition F(αs, 0, ǫ) = 1 [11]. After both integrations are performed,
lnF exhibits double logarithms of Q2/µ2 and double poles in ǫ. The rela-
tion (18) can be then used for a finite-order expansion and matching of the
predictions to the results of explicit higher-order calculations. The resulting
expressions for the bare expansion coefficients Fi in terms of the quantities
Ai and the (still ǫ-dependent) αs-expansion coefficients Gi of G(Q2/µ2 = 1)
in Eq. (18) are sketched below (see Ref. [7] for the complete formulae):
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F1 = −
1

2ǫ2
A1 −

1

2ǫ
G1 ,

F2 =
1

8ǫ4
A2

1 +
1

8ǫ3
A1(2G1 − β0) +

1

8ǫ2
(G2

1 + . . . − A2) −
1

4ǫ
G2 ,

F3 = −
1

48ǫ6
A3

1 + . . . +
1

72ǫ2
(9G1G2 + . . . − 4A3) −

1

6ǫ
G3 ,

F4 =
1

384ǫ8
A4

1 + . . . +
1

96ǫ2
(3G2

2 + 8G1G3 + . . . − 3A4) −
1

8ǫ
G4 . (19)

We have extracted all three-loop pole terms of the quark and gluon form
factors Fq and Fg from the calculation of the third-order coefficient functions
for DIS by the exchange of a photon (coupling to quarks) and a scalar φ
(coupling to gluons) [26], already mentioned above in the discussion of the
jet function Jp. The details will be reviewed in the next section.
Similar to the two-loop analysis of Ref. [12], we write the coefficients Gp as

Gp,1 = 2
(
P δ

p, 1 − δpgβ0

)
+ f p

1 + ǫG̃p,1 ,

Gp,2 = 2
(
P δ

p, 2 − 2δpgβ1

)
+ f p

2 + β0G̃p,1(ǫ=0) + ǫG̃p,2 ,

Gp,3 = 2
(
P δ

p, 3 − 3δpgβ2

)
+ f p

3 + β1G̃p,1(ǫ=0)

+ β0

[
G̃p,2(ǫ=0) − β0

˜̃
Gp,1(ǫ=0)

]
+ ǫG̃p,3 (20)

with F̃ = ǫ−1 [F − F (ǫ=0) ]. The quantities P δ
p have been defined in Eq. (5)

above, and the terms with δpg are due to the renormalization of the operator
GµνGµν in Eq. (17). The crucial point of the decomposition (20) is that the
functions f p

i turn out to be universal and, like the Ap in Eqs. (6) and (7)
maximally non-Abelian with (at least up to the third order)

f g
i = CA/CF f q

i . (21)

The explicit results for the quark case read

f q
1 = 0 , f q

2 = 2CF

{
−β0ζ2 −

56

27
nf + CA

(
404

27
− 14ζ3

)}
,

f q
3 = CF C 2

A

(
136781

729
−

12650

81
ζ2 −

1316

3
ζ3 +

352

5
ζ 2
2 +

176

3
ζ2ζ3 + 192 ζ5

)

+CACF nf

(
−

11842

729
+

2828

81
ζ2 +

728

27
ζ3 −

96

5
ζ 2
2

)
+ C 2

F nf

(
−

1711

27

+ 4 ζ2 +
304

9
ζ3 +

32

5
ζ 2
2

)
+ CF n 2

f

(
−

2080

729
−

40

27
ζ2 +

112

27
ζ3

)
. (22)
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Note that f q
2 has been obtained already in Ref. [12], and that the coefficients

of the highest ζ-function weights, ζ2ζ3 and ζ5 at three loops, agree with the
results inferred from the recent N =4 SYM calculation in Ref. [13].

Going back to Eq. (19), it is worth noting that the leading term of G3

in Eq. (20), together with corresponding coefficients of G1 and G2 to higher
powers in ǫ (see Refs. [7, 8] for the explicit results) fix the six highest poles
of the form factors at four loops and, in fact, at all higher orders. Moreover,
taking into account that the numerical effect of A4 in Eq. (9) is small, our
present results are sufficient for deriving the infrared finite absolute ratio
|Fp(q

2)/Fp(−q2)|2 of the time-like and space-like form factors up to the
fourth order in αs. The corresponding numerical results for nf = 4, 5 read

qq̄γ∗ : 1 + 2.094αs + 5.613 α 2
s + 15.70α 3

s + (48.63 ± 0.43)α 4
s ,

ggH : 1 + 4.712αs + 13.69α 2
s + 25.94α 3

s + (36.65 ± 0.35)α 4
s , (23)

where the the uncertainty of the last terms is due that of the fourth-order
cusp anomalous dimensions Ap,4, as estimated below Eq. (8) in Section 2.

5. Partonic cross section and their infrared pole structure

In this section, we finally discuss the extraction of the form factors from
our calculation of the coefficient functions for inclusive DIS and the related
derivation of all soft-enhanced third-order terms for the Drell–Yan process
and Higgs production, and thus of D3 given already in Eqs. (13) and (14),
from these form-factor results and mass-factorization constraints [6].

The starting points for the first step are the explicit results for the
bare (unrenormalized and unfactorized) partonic structure functions F b for
γ∗q → qX and φ ∗g → gX in the limit x → 1 [26]. At each order αn

s keeping
only the singular pieces proportional to δ(1 − x) and the +-distributions

Dl =

[
ln l(1 − x)

(1 − x)

]

+

, l = 1, . . . 2n − 1 , (24)

these results are compared to the general structure of the n-th order con-
tribution F b

n in terms of the l-loop form factors Fl and the corresponding
real-emission parts Sl ,

F b
0 = δ(1 − x) ,

F b
1 = 2F1 δ(1 − x) + S1 ,

F b
2 =

(
2F2 + F 2

1

)
δ(1 − x) + 2F1S1 + S2 ,

F b
3 = (2F3 + 2F1F2) δ(1 − x) +

(
2F2 + F 2

1

)
S1 + 2F1S2 + S3 . (25)
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In DIS the x-dependence of the real emission factors Sk is of the form
Sk(fk,ǫ), with the D-dimensional +-distributions fk,ǫ defined by

fk,ǫ(x) = ǫ[ (1 − x)−1−kǫ ]+ = −
1

k
δ(1 − x) +

∑

i=0

(−kǫ)i

i !
ǫDi . (26)

The dimensionally regularized (with D = 4 − 2ǫ) bare structure functions
F b

n in Eq. (25) exhibit poles in ǫ up to ǫ−2n, with a structure completely
determined by mass-factorization. On the other hand, the individual real
and virtual contributions Fk and Sk in Eq. (25) contain poles up to order
ǫ−2k, which cancel due to the Kinoshita–Lee-Nauenberg theorem [37,38].

The determination of the form factor now proceeds as follows. Once the
combinations of lower-order quantities in Eq. (25) have been subtracted from
F b

n, the n-loop form factor Fn can simply be extracted by the substitution

D0 →
1

nǫ
δ(1 − x) −

∑

i=1

(−nǫ)i

i !
Di , (27)

which exploits the particular analytical dependence of Sk on x, i.e., Eq. (26).
As δ(1 − x) enters with a factor 1/ǫ, this extraction loses one power in ǫ.
Hence from the third-order calculation to order ǫ0, as performed for the
coefficient function, we can only extract all pole terms of F3 in this manner.

The second step, the determination of the +-distribution contributions
to coefficient functions for lepton-pair and and Higgs boson production, pro-
ceeds along similar lines, see Ref. [39] for an early two-loop application to
the Drell–Yan process. In analogy to Eq. (25), the soft limit of the bare
partonic cross sections W b for qq̄ → γ∗ → l+l− and gg → H reads

W b
0 = δ(1 − x) ,

W b
1 = 2ReF1 δ(1 − x) + S1 ,

W b
2 = (2ReF2 + |F1|

2) δ(1 − x) + 2ReF1S1 + S2 ,

W b
3 = (2ReF3 + 2 |F1F2|) δ(1 − x) + (2ReF2 + |F1|

2)S1

+ 2ReF1S2 + S3 , (28)

where, of course, F now denotes the time-like quark or gluon form factor,
known by analytic continuation from q2 = −Q2 < 0 to q2 > 0. The real-
emission contributions Sk depend on the scaling variable x = M 2

γ ∗, H/s. In

this case, the dependence of Sk on x is of the form Sk(f2k,ǫ), i.e.,

Sk = f2k,ǫ

∞∑

l=−2k

2k sk,l ǫ l . (29)
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With the known time-like form factors, the expansion coefficients sk,l of
the soft function Sk can be derived recursively as far as they are subject
to the KLN cancellations and the mass-factorization structure relating the
remaining poles to the splitting functions (5). Employing the results of
Refs. [7,8] and [24,25], the third-order terms s3,−6 . . . s3,−1 can be obtained.
Due to Eq. (26) this is sufficient to derive all +-distribution contributions to
the third-order coefficient functions, in particular also the coefficient of D0

from which D
{DY,H}
3 in Eqs. (13) and (14), can be determined by matching.

An important application on these new results is presented in Fig. 2.

The connection between mass-factorization and resummation leads to a
simple relation between the coefficients Dn and f p

n in Eqs. (21) and (22),

D
{DY, H}
2 = −2f2 + 2β0s1,0 ,

D
{DY, H}
3 = −2f3 + 2β1s1,0 − 4β2

0s1,1 + 4β0

[
s2,0 −

36

5
ζ 2
2 C 2

{F,A}

]
, (30)

which has also been derived by extending the threshold resummation to the
N -independent contributions [40, 41], see also Ref. [42]. In our approach,
the sn,l terms can be traced back to the αs-renormalization of Eqs. (28).
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Fig. 2. The perturbative expansion of the total cross section for Higgs production

at the LHC. Left: dependence on the Higgs mass MH . Right: renormalization-scale

(in-)stability for MH = 120 GeV. See Ref. [6] for a detailed discussion.
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6. Summary

Building on our third-order computation of the splitting functions [24,25]
and the coefficient functions for inclusive DIS [26], we have derived new
three-loop and all-order results for the threshold resummation [5, 6], the
on-shell quark and gluon form factors [7,8], and the coefficient functions for
lepton-pair and Higgs boson production at proton colliders [6]. These results
have important implications within and beyond perturbative QCD.
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