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In this talk I report on the status of the calculation of the next-to-
leading order (NLO) QCD corrections to top-quark pair production to-
gether with a jet in hadronic collisions. A precise understanding of this
process is of great importance, because pp → tt̄ + 1 jet is an important
background for the Higgs search in the Higgs mass range 120–180 GeV. In
addition the reaction is also an interesting process for precise measurements
in the top sector.

PACS numbers: 12.38.Bx, 12.38.–t, 14.65.Ha

1. Introduction

The top quark is the heaviest known elementary particle so far. With
a mass of 172.7 ± 2.9 GeV [1] it is almost as heavy as a gold atom. Be-
cause of its large mass, the top quark plays a special rôle in the Standard
Model and its extensions. In particular it is the only fermion that cou-
ples with a strength of order 1 to the not yet discovered Higgs boson. In
the Standard Model the top quark completes the third flavour family. As
a consequence its quantum numbers are completely fixed by the structure
of the Standard Model. As up-type partner of the bottom quark, its electric
charge is +2/3. The left-handed component has weak isospin +1/2, while
the right-handed component has weak isospin 0. So far our knowledge of
these quantum numbers is only from indirect measurements. In particular,
such a fundamental quantity as the electric charge of the top quark has not
been measured yet [2]. It is thus an important goal to check experimentally
that the top quark indeed behaves as predicted by the Standard Model.

∗ Presented at the XXIX International Conference of Theoretical Physics, “Matter to

the Deepest”, Ustroń, Poland, September 8–14, 2005.

(3309)



3310 P. Uwer

Apart from the interest in top-quark physics as a signal process, it also
plays an important rôle as background in many Higgs studies. For example,
in the Higgs mass range 120–180 GeV, the most important discovery channel
is the weak boson fusion process (WBF) [3, 4]. The dominant background
for the WBF process comes from top-quark pair production together with
a jet [5]. A very precise knowledge of this reaction is thus mandatory for the
discovery of the Higgs boson. It is also obvious that, for precise measure-
ments of the couplings, a detailed background determination is equally im-
portant. For example, it has been shown in Ref. [4] that even if one assumes
an only 10% uncertainty of the tt̄ + jet cross section it is still the dominant
theoretical uncertainty in the measurement of σH = σWBF ×B(H → WW ).
As also pointed out in Ref. [4] this accuracy might be achievable only through
a full next-to-leading order calculation. In what follows, I will describe the
status of the calculation of the next-to-leading order corrections to tt̄ + jet
production in hadronic collisions.

2. Outline of the calculation

In this section I briefly summarize the calculation of the NLO corrections
for the subprocess gg → tt̄g. This is an ongoing project in collaboration
with A. Brandenburg, S. Dittmaier and S. Weinzierl. In view of the number
of scales, it is clear that analytic results, even partial ones, are in general
quite lengthy. Therefore, I will restrict myself in what follows to a few
technical aspects, which are important for the construction of a numerical
stable program.

2.1. Real corrections

The calculation of the required matrix elements is straightforward. A sam-
ple diagram for the reaction gg → tt̄gg is shown in Fig. 1. We used two
different methods to obtain the required colour-ordered helicity amplitudes:

QGRAF-diagram 20

Fig. 1. Sample Feynman diagram contributing to the real corrections.
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1. A Feynman-diagram-based approach, where we evaluate all the dia-
grams contributing to one specific colour-ordered subamplitude.

2. The recurrence relations à la Berends and Giele [6].

We find complete agreement in the results of the two methods. Furthermore,
we also checked that our results agree with the ones obtained using Mad-
graph [7]. To extract the singularities from collinear or soft partons, and
to render the phase integration over the real corrections finite, we use the
dipole-subtraction method [8–10]. The idea of the subtraction method is to
add and subtract a term that, on the one hand, cancels pointwise the singu-
larities of the matrix elements in the singular regions of the phase-space and,
on the other hand, is easy enough to be integrated analytically. Schemati-
cally the NLO contribution is then obtained from the following formula:

σNLO =

∫

dRm+1 [σreal − σsub]

︸ ︷︷ ︸

finite

+

∫

dRm

[

σvirt. +

∫

dR1σ̄
1
sub

]

︸ ︷︷ ︸

finite

+

∫

dx

∫

dRm [σfact.(x) + σ̄sub(x)]

︸ ︷︷ ︸

finite

. (1)

Here σfact.(x) denotes the contribution from the factorization of initial-state
singularities due to the presence of coloured partons in the initial state;
dRm is the Lorentz-invariant phase-space measure for m particles in the fi-
nal state. The contributions σ̄1

sub, σ̄sub are obtained from σsub by integrating
out the “unresolved” parton. The result is split into two terms σ̄1

sub, σ̄sub to
render the last two integrals individually finite. A remarkable feature of the
subtraction method is that the analytic integration of the subtraction term
has to be done only once and that no approximation is made in the whole
procedure. This is made possible by the universality of soft and collinear
factorization in QCD. The explicit expressions for σsub, σ

1
sub, and σ̄sub can be

obtained from the colour-ordered subamplitudes for the subprocess gg → tt̄,
using the formulae given in Ref. [10]. In particular σsub is obtained from
a sum over individual dipole contributions. In the case at hand we have to
include the contribution from 36 individual dipoles. We do not consider the
splitting g → tt̄ because the divergence is regulated by the quark masses.
(For light quarks with mq 6= 0 one could consider the corresponding dipoles
to render the integration numerically more stable.) We have checked that the
combination of the 36 dipoles indeed reproduces all the singular limits aris-
ing from single unresolved configurations. Furthermore, we have combined
the subtraction terms together with the real corrections into a computer
program, that allows the numerical integration over the phase-space. The
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numerical result is shown in Fig. 2. To define the partonic cross section in
Fig. 2 we made the idealized assumption that the top quarks are always ob-
served. The remaining jets are then clustered according to the jet algorithm
of Ellis and Soper [11]. In addition to the two top quarks we ask for one
additional jet with a transverse momentum k⊥ of at least 20 GeV. As can
be seen from Fig. 2, even at very large (partonic) centre-of-mass energies
we obtain stable results. Note that to obtain a hadronic cross section the
partonic contribution still needs to be folded with the parton distribution
functions which put most of the weight to low centre-of-mass energies.
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Fig. 2. Result for the “real corrections” for the subprocess gg → tt̄g as defined by

the first term in Eq. (1) (k⊥ > 20 GeV).

2.2. Virtual corrections

The calculation of the virtual corrections proceeds via the following steps:

1. Generation of the Feynman diagrams, using for example Feynarts [12]
or QGRAF [13].

2. Reduction of the tensor integrals to scalar one-loop integrals.

3. Reduction of the amplitudes to standard matrix elements.

4. Numerical phase-space integration of the squared matrix elements, in-
cluding appropriate phase-space cuts.

Technically the most complicated part is the evaluation of the pentagon
diagrams. Two sample diagrams are shown in Fig. 3. Let us first address
the evaluation of the scalar 5-point integrals. To calculate these, we use
two different methods. One calculation is based on the method given in
Refs. [14, 15]. The basic idea of this method is that finite 5-point integrals
can be expressed in terms of 4-point integrals (see for example [16–18]).
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Fig. 3. Sample Feynman diagrams contributing to the virtual corrections.

To apply this observation also to soft- and mass-singular integrals, they are
rewritten according to Refs. [14, 15] in the following way:

Ed = Ed
sing. +

[

E(mass,d=4) − E
(mass,d=4)
sing.

]

. (2)

Here Ed denotes the original 5-point integral in d dimensions while E(mass,d=4)

is obtained from the original integral by dressing the massless propagators

with a small mass λ. The subtraction term E
(mass,d=4)
sing. , which has the same

singular structure as the 5-point integral E(mass,d=4) in the limit λ → 0,
is obtained by studying the soft and collinear behaviour of E(mass,d=4); it
can be expressed in terms of 3-point integrals [19]. Note that the term in
square brackets in Eq. (2) is finite and regularization-scheme-independent.
Rewriting now the finite integral E(mass,d=4) in terms of 4-point integrals,
we thus succeeded in expressing the original 5-point integral in terms of
3- and 4-point functions.A more detailed discussion can be found in Ref. [15].
The second method we used to calculate the 5-point integrals is based on
the fact that, even for divergent integrals, it is possible to obtain a represen-
tation as linear combination of 4-point integrals (see for example Ref. [18]).
Expressing the 4-point function for d = 4− 2ε in terms of the finite 4-point
function in 6 dimensions, plus a combination of 3-point integrals, allows us
also to shift all the divergences to the 3-point integrals. Defining the 5-point
functions through

Ed(p0, p1, p2, p3, p4,m0,m1,m2,m3,m4)

=
1

iπ2

∫

ddℓ

4∏

j=0

1

(ℓ + pj)2 − m2
j + iε

, (3)

we obtain for example
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E0(0, p1, p1 − p3, p4 − p2,−p2,mt,mt, 0, 0,mt)|sing.

= P (t13)P (s45)C0(p1 − p3, p4 − p2, p1, 0, 0,mt)

+ P (t24)P (s35)C0(p4 − p2,−p2, p1 − p3, 0,mt, 0)

− (t13 − t24)
2P (t13)P (t24)P (s35)P (s45)

× C0(0, p1 − p3, p4 − p2,mt, 0, 0) , (4)

with P (x) = 1/(x − m2
t ) and sij = (pi + pj)

2, tij = (pi − pj)
2. The parton

momenta are assigned according to g(p1) g(p2) → t(p3) t̄(p4) g(p5). For the
cases at hand it is possible to solve all the required box-integrals in 6 di-
mensions. We checked that the two methods yield the same results for the
5-point integrals Ed.

Having solved the scalar integrals, the next step is the reduction of the
5-point tensor integrals to scalar one-loop integrals. In principle one could
attack this problem using the standard Passarino–Veltman approach [20].
This method leads to spurious singularities in individual terms at the phase-
space boundary, which are due to vanishing Gram determinants in the de-
nominator. These spurious singularities create numerical instabilities when
doing the phase-space integration. Note that the spurious singularities will
cancel if one combines the individual terms analytically before doing the
numerical integration. One solution of this problem is a time-consuming ex-
trapolation technique, as was used for example in Ref. [15]. As an alternative
to the extrapolation technique a different reduction procedure [21] was also
used in Ref. [15]. In this work we follow the method developed in Ref. [21].
Essentially the same technique to reduce scalar 5-point integrals to scalar
4-point integrals is also applied to the tensor integrals. In this way the
5-point tensor integrals are directly reduced to 4-point ones. The explicit
calculation shows that the spurious singularities in individual terms, due to
vanishing Gram determinants depending on 4 external momenta, are avoided
[21]. Recently a refined version of the method presented in Ref. [21] as de-
scribed in Ref. [22]. In addition to the aforementioned reduction procedure,
we use a completely independent second technique [23–25] to cross-check
our results. This second method is based on a two-step procedure. In the
first step the tensor integrals are reduced to scalar integrals with raised pow-
ers of the propagators and in shifted dimensions [26]. In a second step these
integrals are reduced to a small set of one-loop master integrals using iden-
tities derived from integration by parts [27]. Defining the scalar integrals
by

In(d, {ql}, {νi}) =

∫
ddℓ

iπd/2

1

((ℓ + q1) − m2
1)

ν1

· · ·
1

((ℓ + qn) − m2
n)νn

, (5)
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the relations obtained from integration-by-parts can be written as follows
[23, 24]:

n∑

i=1

n∑

j=1

SjiyiνjIn(d; {ql}, {νl + δlj}) (6)

= −

n∑

i=1

yiIn(d−2; {ql}, {νl−δli}) −
(

d−1−

n∑

j=1

νj

) n∑

i=1

yiIn(d; {q l}, {νl}) ,

with

Sji = (qi − qj)
2 − mi

2 − mj
2 . (7)

For det(S) 6= 0 the equation Sikyk = δij can be solved and the integrals with
raised powers of the propagators can be systematically reduced to basic
integrals with unit powers of the propagators. For det(S) = 0 one can
choose yi out of the null space of S to obtain useful reduction formulae.
Furthermore, for det(S) 6= 0 but small, one can use recurrence relations that
do not terminate but yield in every order higher powers of det(S) that can be
neglected when the desired precision is reached [25,28]. In particular this last
feature, namely a systematic algorithm to handle exceptional momentum
configurations, makes this second reduction method very promising. So far
the method has been tested only in very few examples [25, 29]. Let us
just mention that there are also other methods to solve the scalar 5-point
integrals and perform the reduction of the tensor integrals. For example one
could also use the methods developed in Refs. [30–33]. In Fig. 4 we show,
as an illustration, the result at the parton level for the virtual corrections
(defined as the second term in Eq. (1)) for different centre-of-mass energies,
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Fig. 4. Result for the virtual corrections for the subprocess gg → tt̄g as defined by

the second term in Eq. (1) (k⊥ > 20 GeV).



3316 P. Uwer

using the reduction procedure described in Ref. [21]. The observable is
defined in the same way as in Fig. 2. As can be seen from Fig. 4 the method
we used for the treatment of the tensor integrals indeed gives numerically
stable results. Furthermore, we note that the inclusion of dσ̄1

sub together with
the renormalization of the coupling and the quark mass renders the second
term in Eq. (1) finite, as it must be. This is an important cross-check.

3. Status

The current status of the project is as follows: Most of the separate
contributions are already implemented in the form of computer programs
that allows the numerical evaluation of the cross sections. As mentioned
earlier we checked in particular that the integrand for the first contribu-
tion in Eq. (1) is finite for all single unresolved phase-space configurations.
As can be seen from Fig. 2, the numerical phase-space integration yields
stable results. Furthermore, the real corrections are evaluated using two
completely independent programs. Note that the subprocesses qq̄ → tt̄gg,
qg → tt̄qg, which are also necessary for the full process pp → tt̄ + jet, are
much easier to compute and can be calculated using the same technology
as discussed above. As far as the virtual corrections are concerned, many
contributions have already been checked partially although a complete check
of the pentagon diagrams is still missing. The numerical implementation of
improved Passarino–Veltman-type reduction is finished and yields numeri-
cally stable results. The implementation of the reduction scheme presented
in Refs. [23, 24] is finished and is now in the debugging phase.

4. Conclusions

Top-quark pair production together with an additional jet is an impor-
tant reaction. The interest in this reaction is twofold. First of all it is an
interesting signal process for top-quark physics. In particular, tt̄+ jet events
can be used to search for anomalous top-gluon couplings. Furthermore,
tt̄ + jet can also appear as an important background for the Higgs searches.
For example, in the case of Higgs production through weak boson fusion —
which is the most important discovery channel for a Higgs mass in the range
120–180 GeV — the tt̄ + jet process is the dominant background. A precise
knowledge of this reaction is thus mandatory for the Higgs physics program
at the LHC. The calculation of the NLO corrections for this process, al-
though often considered as conceptually solved, is still a highly non-trivial
task. In the present article I have reported on the current status of this
calculation. Complete results will be published elsewhere.

I would like to thank A. Brandenburg, S. Dittmaier and S. Weinzierl for
our fruitful collaboration on this project. Furthermore, I would like to thank
the organizers of the conference for the pleasant atmosphere at Ustroń.
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