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A method to efficiently compute, in a automatic way, helicity ampli-
tudes for arbitrary scattering processes at leading order in the Standard
Model is presented. The scattering amplitude is evaluated recursively
through a set of Dyson–Schwinger equations. The computational cost of
this algorithm grows asymptotically as 3n, where n is the number of par-
ticles involved in the process, compared to n! in the traditional Feynman
graphs approach. Unitary gauge is used and mass effects are available as
well. Additionally, the color and helicity structures are appropriately trans-
formed so the usual summation is replaced by Monte Carlo techniques.
Some results related to the production of vector bosons and the Higgs bo-
son in association with jets are also presented.

PACS numbers: 11.80.Gw, 11.80.La, 12.15.–y, 12.38.–t

1. Introduction

Multi-particle and multi-jet final states are of great importance at the
Tevatron and at the future LHC or e+e− Linear Collider. They serve both as
signals and as important backgrounds to many new and already discovered
physics channels. As an example the production and decay of top quarks,
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Higgs boson(s) or SUSY particles can be mentioned. A typical background
is the production of weak vector bosons in association with jets. Among oth-
ers the proper evaluation of the eight jet QCD background will be needed.
To describe the production process of a number of particles the correspond-
ing amplitudes have to be constructed. This usually results in a very large
number of terms, such that their automated construction and evaluation
becomes the only solution. Apart from handling the number of amplitudes,
which grows factorially with the number of particles, the integration over
the multidimensional phase space of the final state particles represents a
formidable task. In the past years various solutions to deal with these prob-
lems, implemented as different codes, have been presented. Either they
are based on traditional methods of constructing Feynman diagrams, or al-
ternative methods with recursive equations are implemented [1–13]. The
new formalism based on the Dyson–Schwinger equations recursively defines
one-particle off-shell Green function. It does not involve any calculation
of individual diagrams but various off-shell subamplitudes are regrouped in
such a way that as little of the computation as possible is repeated. On the
contrary, in the traditional approach, the same parts of different Feynman
diagrams are recalculated all over again, see Fig. 1, increasing the number of
steps that should be done in order to get the full amplitude. The recursive
approach significantly decreases the factorial growth of the number of terms
to be calculated with the number of particles down to 4n or 3n 1.
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Fig. 1. An example of common parts of the amplitudes for the e+e− → e+e−e+e−

process.

Some examples of automatic parton level generators for any processes in
the Standard Model are e.g. CompHEP [14–16], MadGraph/MadEvent [17, 18],
AMEGIC++ [19] and the HELAC/PHEGAS package [20, 21]. Codes designed for
specific processes are e.g. GRACE [22,23] as well as Alpgen [24]. Very recently
also on shell recursive equations have been proposed [25,26]. However, event
generators based on this new method are not publicly available yet.

1 To reduce the computational complexity down to an asymptotic 3
n, each four-boson

vertex must be replaced with a three-boson vertex e.g. by introducing an auxiliary
field represented by the antisymmetric tensor H

µν , see [13] for details.
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In this article the algorithm based on Dyson–Schwinger recursive equa-
tions is briefly reviewed. It has been implemented as a new version of the
multipurpose Monte Carlo generator HELAC in order to efficiently obtain cross
sections for arbitrary multi-particle and multi-jet processes in the Standard
Model.

2. Dyson–Schwinger recursive equations

Dyson–Schwinger equations give recursively the n-point Green’s func-
tions in terms of the 1, 2, . . . , (n−1)-point functions. These equations hold
all the information for the fields and their interactions for any number of
external legs and to all orders in perturbation theory. The recursive content
of the Dyson–Schwinger equations for QCD has already been introduced
in Ref. [13] and reviewed recently in Ref. [27]. To include the electroweak
sector, new vertices for leptons, the vector gauge bosons as well as for the
scalar Higgs boson must be included. Additionally, the recursive equation
for (anti)quarks should be rewritten to express their interaction with the
electroweak gauge bosons.

In order to better illustrate this idea let us present as an example the re-
cursive equations for the Higgs boson interaction with massive particles only.
Let p1, p2, . . . , pn represent the external momenta involved in the scattering
process taken to be incoming. For a vector field we define a four-vector
bVµ (P ), which describes any sub-amplitudes from which a vector boson V
with momentum P can be constructed. The momentum P is given as a sum
of external particles momenta. Accordingly we define a four-dimensional
spinor ψF (P ), which describes any sub-amplitude from which a fermion
with momentum P can be constructed and by ψ̄F (P ) a four-dimensional
antispinor. Additionally we have to introduces a scalar H(P ) for a Higgs
boson. The content of Dyson–Schwinger equations in this case can be un-
derstood diagrammatically as in Fig. 2. The subamplitude with an off-shell
Higgs boson momentum P has contributions from three-bosons and four-
bosons vertices plus the fermion antifermion vertex. The black blobs denote
subamplitudes with the same structure. The following general recursive
equations can be written down for a Higgs boson with the momentum P :

P p1
p2= +

p1
p2+

+
+ p1

p2
+ p1

p3
p2

p3
p1 p2

Fig. 2. Recursion equations for the Higgs boson.



3358 C.G. Papadopoulos, M. Worek

H(P ) =

n
∑

i=1

δ(P − pi)H(pi)

+
∑

P=p1+p2

igHV V ΠH bVµ (p1)b
V µ(p2)ε(p1, p2)

+
∑

P=p1+p2+p3

igHHV V ΠH H(p1)b
V
µ (p2)b

V µ(p3)ε(p1, p2, p3)

+
∑

P=p1+p2

igHFF ΠH ψ̄F (p1)ψ
F (p2)ε(p1, p2)

+
∑

P=p1+p2

igHHH ΠH H(p1)H(p2)ε(p1, p2)

+
∑

P=p1+p2+p3

igHHHH ΠH H(p1)H(p2)H(p3)ε(p1, p2, p3) ,

where the Higgs boson propagator is given by

ΠH =
i

P 2 −m2
H − iΓHmH

, (2.1)

and ε(p1, p2, p3) = ±1 is a sign function, which takes into account the sign
change when two identical fermions are interchanged.

The scattering amplitude can be calculated by any of the following rela-
tions

A(p1, . . . , pn) =











































b̂Vµ (Pi)b
V µ(pi) − vector bosons ,

Ĥ(Pi)H(pi) − Higgs boson ,

ˆ̄ψF (Pi)ψ
F (pi) − incoming fermion ,

ψF (pi)ψ̂
F (Pi) − outgoing fermion ,

(2.2)

where

Pi =
∑

j 6=i

pj ,

so that Pi +pi = 0. The functions with hat are given by the previous expres-
sions except for the propagator term which is removed by the amputation
procedure. This is because the outgoing momentum Pi must be on shell.
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The initial conditions are given by

bV µ(pi) = εµλ(pi) , λ = ±1, 0

H(pi) = 1 ,

ψF (pi) =

{

uλ(pi) if Ei ≥ 0 ,
vλ(−pi) if Ei ≤ 0 ,

ψ̄F (pi) =

{

ūλ(pi) if Ei ≥ 0 ,
v̄λ(−pi) if Ei ≤ 0 ,

where the explicit form of εµλ, uλ, vλ, ūλ, v̄λ are given in the Ref. [20].
In order to actually solve these recursive equations it is convenient to use

a binary representation of the momenta involved [10]. For a process with n
external particles, to the momentum Pµ defined as

Pµ =
n

∑

i=1

pµ
i , (2.3)

a binary vector ~m = (m1, . . . ,mn) can be assigned, where its components
take the values 0 or 1, in such a way that

Pµ =
n

∑

i=1

mi p
µ
i . (2.4)

Moreover, this binary vector can be uniquely represented by the integer

m =

n
∑

i=1

2i−1mi , (2.5)

where
1 ≤ m ≤ 2n−1 . (2.6)

Therefore, all subamplitudes can be labeled accordingly, i.e.

ψF (P ) → ψF (m) ,

ψ̄F (P ) → ψ̄F (m) , (2.7)

bVµ (P ) → bVµ (m) ,

H(P ) → H(m) .

A very convenient ordering of integers in binary representation relies on the
notion of level l, defined simply as

l =
n

∑

i=1

mi . (2.8)
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As it is easily seen all external momenta are of level 1, whereas the to-
tal amplitude corresponds to the unique level n integer 2n − 1. This or-
dering dictates the natural path of the computation; starting with level-1
sub-amplitudes, we compute the level-2 ones using the Dyson–Schwinger
equations and so on up to the level n which is the full amplitude.

Contrary to original HELAC [20, 21], the computational part consists of
only one step, where couplings allowed by the Lagrangian defined by fusion
rules are only explored. Subsequently, the helicity configurations are set up.
There are two possibilities, either exact summation over all helicity config-
urations is performed or Monte Carlo summation is applied. For example
for a massive gauge boson the second option is achieved by introducing the
polarization vector

εµφ(p) = eiφεµ+(p) + e−iφεµ−(p) + εµ
0
(p) , (2.9)

where φ ∈ (0, 2π) is a random number. By integrating over φ we can obtain
the sum over helicities

1

2π

2π
∫

0

dφ εµφ(p)(ενφ(p))∗ =
∑

λ=±

εµλ(p)(ενλ(p))∗ .

The same idea can be applied to the helicity of (anti)fermions.
Finally, the color factor is evaluated iteratively. Once again, we have two

options. Either we proceed by computing all 3nq × 3nq̄ color configurations,
where the gluon is treated as a quark–antiquark pair and nq, nq̄ is the number
of quarks and antiquarks, respectively, or Monte Carlo summation is applied.
Only a fraction of all possible 3nq × 3nq̄ color configurations gives rise to
a non zero amplitude. In the Monte Carlo approach for each event we
randomly select a non vanishing color assignment for the external particles
and evaluate the amplitude. An overall multiplicative coefficient must be
introduced to provide the correct normalization. The weight of the event
is simply proportional to the |M|2 multiplied by the number of non zero
color configurations. Assuming that, on average, all color configurations
contribute the same amount to the cross section this approach is numerically
more efficient than summing each event over all colors, see Ref. [28] for
further details.

For the spinor wave functions as well as for the Dirac matrices, we have
chosen the four-dimensional chiral representation which results in particu-
larly simple expressions. All vertices in the unitary gauge have been in-
cluded. Both the fixed width scheme (FWS) and the complex mass scheme
(CMS) for unstable particles are implemented.
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The computational cost of HELAC grows like ∼ 3n, which essentially
counts the steps used to solve the recursive equations. Obviously for large
n there is a tremendous saving of computational time, compared to the n!
growth of the Feynman graph approach.

3. Numerical results

As an example the algorithm has been used to compute total cross sec-
tions for the production of weak vector bosons and the Higgs boson in as-
sociation with jets. The following Standard Model input parameters have
been used [29]:

mW = 80.425 GeV , ΓW = 2.124 GeV ,

mZ = 91.188 GeV , ΓZ = 2.495 GeV ,

Gµ = 1.6637 × 10−5 GeV−5 ,

sin2 θW = 1 −m2
W/m2

Z .

The electromagnetic coupling is derived from the Fermi constant Gµ accord-
ing to

αem =

√
2Gµm

2
W sin2 θW

π
. (3.1)

All results are obtained with a fixed strong coupling constant αs calculated
at the mZ scale

αs(m
2
Z) = 0.1187 . (3.2)

The mass of an intermediate and a heavy Higgs boson and associated
Standard Model tree level widths are assumed to be:

mH = 130 GeV , ΓH = 0.005 GeV ,

mH = 200 GeV , ΓH = 1 GeV .

For the massive fermions the following masses have been applied:

mu = 4 MeV , md = 8 MeV ,

ms = 130 MeV , mc = 1.35 GeV ,

mb = 4.4 GeV ,

mt = 174.3 GeV , Γt = 1.56 GeV .

The mixing of the quark generations is neglected.
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The CMS energy was chosen
√
s = 14 TeV. The following cuts were used

to stay away from soft and collinear divergencies in the part of the phase
space integrated over:

pTi
> 60 GeV , |yi| < 2.5 , ∆R > 1.0 , (3.3)

where

pTi
=

√

p2
xi

+ p2
yi
, yi =

1

2
ln

(

Ei + pzi

Ei − pzi

)

, (3.4)

are the transverse momentum and rapidity of the i-jet, respectively. Addi-
tionally ∆R is a radius of the cone of the jet defined as

∆R =
√

(Φi − Φj)2 + (yi − yj)2 ,

where ∆Φij = Φi − Φj

∆Φij = arccos

(

pxi
pxj

+ pyi
pyj

pTi
pTj

)

.

There are several parameterizations for the parton structure functions,
we used CTEQ6 PDF’s parametrization [30,31]. For the phase space generation
we used two different generators. The first one is PHEGAS [32], which auto-
matically constructs mappings of all possible peaking structures of a given
scattering process. Self-adaptive procedures like multi-channel optimiza-
tion [33] is additionally applied exhibiting high efficiency. The second one is
a flat phase-space generator RAMBO [34].

In the Table I results for the total cross section for the associated produc-
tion of the Higgs boson of mH = 130 GeV mass, with a tt̄ pair are presented.
The tt̄H production channel is one of the most promising reactions to study
both the top quark and the Higgs boson at the LHC, in the second case
especially for the bb̄ decay channel of the Higgs boson [35,36]. As we can see
from the Table I the gg → tt̄H process dominates due to the enhanced gluon
structure function. The final state of this channel consists of W bosons and
four b-jet, two from the decay of the top quarks and two from the decay
of the Higgs boson. The main background process is gg → W+W−bb̄bb̄
with the contributions from all intermediate states. In Fig. 3 we present the
invariant mass distribution for the bb̄ system. Transverse momentum and
rapidity distributions of b-jet for the background process are shown in Fig. 4.

A more powerful channel for higher Higgs boson masses is the vector
boson fusion qq → V ∗V ∗ → qqH with H → W+W− decay. In the Table II
results for the total cross section for some production processes of a heavy
Higgs boson of mH = 200 GeV mass via vector boson fusion are presented.
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TABLE I

Results for the total cross section for the associated production of Higgs boson
(130 GeV) with a tt̄ pair, σEXACT corresponds to summation over all possible color
configurations, while σMC corresponds to Monte Carlo summation.

Process σEXACT ± ε (nb) σMC ± ε (nb)

gg → tt̄H (0.2723 ± 0.0016)×10−3 (0.2713 ± 0.0013)×10−3

uū→ tt̄H (0.2758 ± 0.0017)×10−4 (0.2739 ± 0.0011)×10−4

dd̄→ tt̄H (0.1816 ± 0.0011)×10−4 (0.1811 ± 0.0007)×10−4

cc̄→ tt̄H (0.8118 ± 0.0057)×10−6 (0.8094 ± 0.0032)×10−6

ss̄→ tt̄H (0.2203 ± 0.0014)×10−5 (0.2191 ± 0.0008)×10−5

bb̄→ tt̄H (0.2260 ± 0.0016)×10−6 (0.2262 ± 0.0009)×10−6
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Fig. 3. Invariant mass distribution of the bb system in gg →W+W−bb̄bb̄ process.
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Fig. 4. Transverse momentum distribution (left panel) and rapidity distribution

(right panel) of b-jet in gg →W+W−bb̄bb̄ process.
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TABLE II

Results for the total cross section for the production of a heavy Higgs boson
(200 GeV) via the vector boson fusion, σEXACT corresponds to summation over all
possible color configurations, while σMC corresponds to Monte Carlo summation.

Process σEXACT ± ε (nb) σMC ± ε (nb)

uū→ uūH (0.1406 ± 0.0029)×10−5 (0.1361 ± 0.0020)×10−5

uū→ dd̄H (0.6699 ± 0.0088)×10−5 (0.6596 ± 0.0081)×10−5

ud→ udH (0.2280 ± 0.0043)×10−4 (0.2222 ± 0.0021)×10−4

ūd→ ūdH (0.1241 ± 0.0027)×10−5 (0.1258 ± 0.0025)×10−5

dd→ ddH (0.3404 ± 0.0046)×10−5 (0.3477 ± 0.0032)×10−5

uu→ uuH (0.5132 ± 0.0081)×10−5 (0.5178 ± 0.0060)×10−5

0

0.1

0.2

0.3

0.4

0.5

x 10
-5

0 100 200 300 400 500 600 700 800 900

dσ
/d

M
W

W

MWW

Fig. 5. Invariant mass distribution of the W+W− system in uū → W+W−dd̄

process.

The main background processes consist of qq →W+W−qq channels. As an
example the distribution of the invariant mass of the W+W− system from
the uū → W+W−dd̄ process is presented in Fig. 3. Transverse momentum
and rapidity distributions of d-jet and W are also shown in Fig. 6 and
Fig. 7.
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Fig. 6. Transverse momentum distribution (left panel) and rapidity distribution

(right panel) of d-jet in uū→ W+W−dd̄ process.
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Fig. 7. Transverse momentum distribution (left panel) and rapidity distribution

(right panel) of W in uū→W+W−dd̄ process.

4. Summary

An efficient tool for automatic computation of helicity amplitudes and
cross sections for multi-particle final states in the Standard Model has been
presented. Matrix elements and cross sections are calculated iteratively by
Dyson–Schwinger equations. We are free from the task of computing all
Feynman diagrams for a given process, which can become impossible for the
large number of particles involved. The computationally expensive proce-
dures of summing over color and helicity configurations have been replaced
by Monte Carlo summation. At this stage, the code is able to compute scat-
tering matrix elements and cross sections for hard processes. In the next
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step we plan to make calculations of fully hadronic final states in pp̄ and pp
collisions possible. In particular, we wish to include the the emission of sec-
ondary partons and translate the emerging partons into primordial hadrons
e.g. by interfacing this package with codes like PYTHIA [37] or HERWIG [38].
This kind of multipurpose Monte Carlo generator will be of great interest in
the study of the Tevatron, LHC or e+e− Linear Collider data.
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